4-Disubstituted Pyrazolin-3-Ones—Novel Class of Fungicides against Phytopathogenic Fungi
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Synthesis of the 4,4-Disubstituted Pyrazolone Derivatives
2.2. Study of the Fungicidal Activity of 4,4-Disubstituted Pyrazolones
3. Materials and Methods
3.1. 4-Hydroxy-4,5-dimethyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 1b [57]
3.2. 4-Methoxy-4,5-dimethyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 1c
3.3. 4-Fluoro-4,5-dimethyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 1d
3.4. 4-Chloro-4,5-dimethyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 1e [58]
3.5. 4-Bromo-4,5-dimethyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 1f [58]
3.6. 4,4-Difluoro-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 2d [59]
3.7. 4,4-Dichloro-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 2e [60]
3.8. 4,4-Dibromo-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 2f [61]
3.9. 4-Azido-4,5-dimethyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 1g
3.10. 4,4-Diazido-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 2g [54]
3.11. 4,5-Dimethyl-2-phenyl-4-thiocyanato-2,4-dihydro-3H-pyrazol-3-one 1h [55]
3.12. 4,4’,5,5’-Tetramethyl-2,2’-diphenyl-2,2’,4,4’-tetrahydro-3H,3’H-[4,4’-bipyrazole]-3,3’-dione, meso 1i and racemic 1j [62]
3.13. Investigation of Fungicidal Activity (Table 1)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rauzan, B.M.; Lorsbach, B.A. Designing Sustainable Crop Protection Actives. In ACS Symposium Series; Rauzan, B.M., Lorsbach, B.A., Eds.; American Chemical Society: Washington, DC, USA, 2021; Volume 1390, pp. 1–9. ISBN 978-0-8412-9821-7. [Google Scholar]
- Oerke, E.-C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Różewicz, M.; Wyzińska, M.; Grabiński, J. The Most Important Fungal Diseases of Cereals—Problems and Possible Solutions. Agronomy 2021, 11, 714. [Google Scholar] [CrossRef]
- Willocquet, L.; Meza, W.R.; Dumont, B.; Klocke, B.; Feike, T.; Kersebaum, K.C.; Meriggi, P.; Rossi, V.; Ficke, A.; Djurle, A.; et al. An Outlook on Wheat Health in Europe from a Network of Field Experiments. Crop Prot. 2021, 139, 105335. [Google Scholar] [CrossRef]
- Goudarzi, A.; Bagheri, A.; Hajebi, A. Aspergillus Niger Causes Black Mould Disease on Piarom Dates, the Most Economically Valuable Export Date Cultivar in Southern Iran. Crop Prot. 2022, 160, 106047. [Google Scholar] [CrossRef]
- Ayofemi Olalekan Adeyeye, S. Aflatoxigenic Fungi and Mycotoxins in Food: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 709–721. [Google Scholar] [CrossRef]
- Moretti, A.; Logrieco, A.F.; Susca, A. Mycotoxins: An Underhand Food Problem. In Mycotoxigenic Fungi; Moretti, A., Susca, A., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1542, pp. 3–12. ISBN 978-1-4939-6705-6. [Google Scholar]
- Iqbal, S.Z. Mycotoxins in Food, Recent Development in Food Analysis and Future Challenges; a Review. Curr. Opin. Food Sci. 2021, 42, 237–247. [Google Scholar] [CrossRef]
- Imade, F.; Ankwasa, E.M.; Geng, H.; Ullah, S.; Ahmad, T.; Wang, G.; Zhang, C.; Dada, O.; Xing, F.; Zheng, Y.; et al. Updates on Food and Feed Mycotoxin Contamination and Safety in Africa with Special Reference to Nigeria. Mycology 2021, 12, 245–260. [Google Scholar] [CrossRef]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Dyląg, M. A Global View on Fungal Infections in Humans and Animals: Opportunistic Infections and Microsporidioses. J. Appl. Microbiol. 2021, 131, 2095–2113. [Google Scholar] [CrossRef]
- van Rhijn, N.; Bromley, M. The Consequences of Our Changing Environment on Life Threatening and Debilitating Fungal Diseases in Humans. J. Fungi 2021, 7, 367. [Google Scholar] [CrossRef]
- Stierli, D.; Eberle, M.; Lamberth, C.; Jacob, O.; Balmer, D.; Gulder, T. Quarternary α-Cyanobenzylsulfonamides: A New Subclass of CAA Fungicides with Excellent Anti-Oomycetes Activity. Bioorg. Med. Chem. 2021, 30, 115965. [Google Scholar] [CrossRef]
- Winter, C.; Fehr, M. Discovery of the Trifluoromethyloxadiazoles—A New Class of Fungicides with a Novel Mode-of-Action. In Recent Highlights in the Discovery and Optimization of Crop Protection Products; Elsevier: Amsterdam, The Netherlands, 2021; pp. 401–423. ISBN 978-0-12-821035-2. [Google Scholar]
- Yan, X.; Chen, S.; Sun, W.; Zhou, X.; Yang, D.; Yuan, H.; Wang, D. Primary Mode of Action of the Novel Sulfonamide Fungicide against Botrytis Cinerea and Field Control Effect on Tomato Gray Mold. Int. J. Mol. Sci. 2022, 23, 1526. [Google Scholar] [CrossRef]
- Sparks, T.C.; Bryant, R.J. Crop Protection Compounds—Trends and Perspective. Pest Manag. Sci. 2021, 77, 3608–3616. [Google Scholar] [CrossRef]
- Roman, D.L.; Voiculescu, D.I.; Filip, M.; Ostafe, V.; Isvoran, A. Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review. Agriculture 2021, 11, 893. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Zhang, H.; Wang, Z.; Xu, H. The Research Progress in and Perspective of Potential Fungicides: Succinate Dehydrogenase Inhibitors. Bioorg. Med. Chem. 2021, 50, 116476. [Google Scholar] [CrossRef]
- Thind, T.S. New Insights into Fungicide Resistance: A Growing Challenge in Crop Protection. Indian Phytopathol. 2022, 75, 927–939. [Google Scholar] [CrossRef]
- Ishii, H.; Bryson, P.K.; Kayamori, M.; Miyamoto, T.; Yamaoka, Y.; Schnabel, G. Cross-Resistance to the New Fungicide Mefentrifluconazole in DMI-Resistant Fungal Pathogens. Pestic. Biochem. Physiol. 2021, 171, 104737. [Google Scholar] [CrossRef]
- Bastos, R.W.; Rossato, L.; Goldman, G.H.; Santos, D.A. Fungicide Effects on Human Fungal Pathogens: Cross-Resistance to Medical Drugs and Beyond. PLOS Pathog. 2021, 17, e1010073. [Google Scholar] [CrossRef]
- Thind, T.S. Changing Trends in Discovery of New Fungicides: A Perspective. Indian Phytopathol. 2021, 74, 875–883. [Google Scholar] [CrossRef]
- Mustafa, G.; Zia-ur-Rehman, M.; Sumrra, S.H.; Ashfaq, M.; Zafar, W.; Ashfaq, M. A Critical Review on Recent Trends on Pharmacological Applications of Pyrazolone Endowed Derivatives. J. Mol. Struct. 2022, 1262, 133044. [Google Scholar] [CrossRef]
- Kula, K.; Łapczuk, A.; Sadowski, M.; Kras, J.; Zawadzińska, K.; Demchuk, O.M.; Gaurav, G.K.; Wróblewska, A.; Jasiński, R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 2022, 27, 8409. [Google Scholar] [CrossRef]
- Kula, K.; Kącka-Zych, A.; Łapczuk-Krygier, A.; Wzorek, Z.; Nowak, A.K.; Jasiński, R. Experimental and Theoretical Mechanistic Study on the Thermal Decomposition of 3,3-Diphenyl-4-(Trichloromethyl)-5-Nitropyrazoline. Molecules 2021, 26, 1364. [Google Scholar] [CrossRef] [PubMed]
- Mandha, S.R.; Siliveri, S.; Alla, M.; Bommena, V.R.; Bommineni, M.R.; Balasubramanian, S. Eco-Friendly Synthesis and Biological Evaluation of Substituted Pyrano[2,3-c]Pyrazoles. Bioorg. Med. Chem. Lett. 2012, 22, 5272–5278. [Google Scholar] [CrossRef] [PubMed]
- Pasin, J.S.M.; Ferreira, A.P.O.; Saraiva, A.L.L.; Ratzlaff, V.; Andrighetto, R.; Machado, P.; Marchesan, S.; Zanette, R.A.; Bonacorso, H.G.; Zanatta, N.; et al. Antipyretic and Antioxidant Activities of 5-Trifluoromethyl-4,5-Dihydro-1H-Pyrazoles in Rats. Braz. J. Med. Biol. Res. 2010, 43, 1193–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawar, V.; Shastri, L.A.; Gudimani, P.; Joshi, S.; Sunagar, V. Synthesis, Characterization and Molecular Docking of Novel Lonazolac Analogues 3-(3-Hydroxy-5-Methyl-1H-Pyrazol-4-Yl)-3-Arylpropanoic Acid Derivatives: Highly Potential COX-1/COX-2, Matrix Metalloproteinase and Protein Denaturation Inhibitors. J. Mol. Struct. 2022, 1260, 132782. [Google Scholar] [CrossRef]
- Mingoia, F.; Panzeca, G.; Vitale, M.C.; Monica, G.L.; Bono, A.; Lauria, A.; Martorana, A. One Pot-like Regiospecific Access to 1-Aryl-1H-Pyrazol-3(2H)-One Derivatives and Evaluation of the Anticancer Activity. Arkivoc 2022, 2022, 191–203. [Google Scholar] [CrossRef]
- Marković, V.; Erić, S.; Juranić, Z.D.; Stanojković, T.; Joksović, L.; Ranković, B.; Kosanić, M.; Joksović, M.D. Synthesis, Antitumor Activity and QSAR Studies of Some 4-Aminomethylidene Derivatives of Edaravone. Bioorganic Chem. 2011, 39, 18–27. [Google Scholar] [CrossRef]
- Kshatriya, R.; Shelke, P.; Mali, S.; Yashwantrao, G.; Pratap, A.; Saha, S. Synthesis and Evaluation of Anticancer Activity of Pyrazolone Appended Triarylmethanes (TRAMs). ChemistrySelect 2021, 6, 6230–6239. [Google Scholar] [CrossRef]
- Singh, S.; Prakash, R.; Dua, N.; Sharma, C.; Pundeer, R. Some New Pyrazolyl Pyrazolones and Cyanopyrazolyl Acrylates: Design, Synthesis and Biological Evaluation. ChemistrySelect 2019, 4, 6849–6853. [Google Scholar] [CrossRef]
- Rasapalli, S.; Fan, Y.; Yu, M.; Rees, C.; Harris, J.T.; Golen, J.A.; Jasinski, J.P.; Rheingold, A.L.; Kwasny, S.M.; Opperman, T.J. Detour of Prenostodione Synthesis towards Pyrazolones for Antibacterial Activity. Bioorg. Med. Chem. Lett. 2013, 23, 3235–3238. [Google Scholar] [CrossRef]
- Alam, F.; Amin, R. Synthesis and Pharmacological Activity of Some Pyrazolone Derivatives. J. Pharm. Res. Int. 2020, 9, 46–55. [Google Scholar] [CrossRef]
- Xie, X.; Xiang, L.; Peng, C.; Han, B. Catalytic Asymmetric Synthesis of Spiropyrazolones and Their Application in Medicinal Chemistry. Chem. Rec. 2019, 19, 2209–2235. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z.; Ni, T.; Shi, W.; Guo, Y.; Li, K.; Shi, A.; Wu, S.; Sheng, C. Discovery of Pyrazolone Spirocyclohexadienone Derivatives with Potent Antitumor Activity. Bioorg. Med. Chem. Lett. 2020, 30, 126662. [Google Scholar] [CrossRef]
- Carceller-Ferrer, L.; Blay, G.; Pedro, J.R.; Vila, C. Recent Advances in Catalytic Enantioselective Synthesis of Pyrazolones with a Tetrasubstituted Stereogenic Center at the 4-Position. Synthesis 2021, 53, 215–237. [Google Scholar] [CrossRef]
- Li, Z.-F.; He, H.-J.; Wang, R.-H.; Zhou, L.-Y.; Xiao, Y.-C.; Chen, F.-E. Copper-Catalyzed Asymmetric Alkynylation of Pyrazole-4,5-Diones Using Chloramphenicol Base-Derived Hydroxyl Oxazoline Ligands. Org. Chem. Front. 2022, 9, 2792–2796. [Google Scholar] [CrossRef]
- Bao, X.; Wei, S.; Zou, L.; He, Y.; Xue, F.; Qu, J.; Wang, B. Asymmetric Chlorination of 4-Substituted Pyrazolones Catalyzed by Natural Cinchona Alkaloid. Chem. Commun. 2016, 52, 11426–11429. [Google Scholar] [CrossRef]
- Chauhan, P.; Mahajan, S.; Enders, D. Asymmetric Synthesis of Pyrazoles and Pyrazolones Employing the Reactivity of Pyrazolin-5-One Derivatives. Chem. Commun. 2015, 51, 12890–12907. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, S.; Sun, Z.; Li, P.; Ding, T. Highly Site- and Enantioselective N—H Functionalization ofN -Monosubstituted Aniline Derivatives Affording Pyrazolones Bearing a Quaternary Stereocenter. Chin. J. Chem. 2022, 40, 1144–1148. [Google Scholar] [CrossRef]
- Bao, X.; Wang, B.; Cui, L.; Zhu, G.; He, Y.; Qu, J.; Song, Y. An Organocatalytic Asymmetric Friedel–Crafts Addition/Fluorination Sequence: Construction of Oxindole–Pyrazolone Conjugates Bearing Vicinal Tetrasubstituted Stereocenters. Org. Lett. 2015, 17, 5168–5171. [Google Scholar] [CrossRef]
- Kakiuchi, Y.; Sasaki, N.; Satoh-Masuoka, M.; Murofushi, H.; Murakami-Murofushi, K. A Novel Pyrazolone, 4,4-Dichloro-1-(2,4-Dichlorophenyl)-3-Methyl-5-Pyrazolone, as a Potent Catalytic Inhibitor of Human Telomerase. Biochem. Biophys. Res. Commun. 2004, 320, 1351–1358. [Google Scholar] [CrossRef]
- Kakiuchi, Y.; Oyama, M.; Nakatake, M.; Okamoto, Y.; Kai, H.; Arima, H.; Murofushi, H.; Murakami-Murofushi, K. Inhibition of Human Tumor Cell Proliferation by the Telomerase Inhibitor TELIN. Cytologia 2010, 75, 177–183. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Xu, G.; Chen, S.; Zhang, Y.; Liu, N.; Dong, G.; Miao, C.; Su, H.; Zhang, W.; et al. Novel Spiropyrazolone Antitumor Scaffold with Potent Activity: Design, Synthesis and Structure–Activity Relationship. Eur. J. Med. Chem. 2016, 115, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, F.-Y.; Kang, J.-W.; Zhou, J.; Peng, C.; Huang, W.; Zhou, M.-K.; He, G.; Han, B. Stereoselective Assembly of Multifunctional Spirocyclohexene Pyrazolones That Induce Autophagy-Dependent Apoptosis in Colorectal Cancer Cells. J. Org. Chem. 2019, 84, 9138–9150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, S.; Wang, S.; Fang, K.; Dong, G.; Liu, N.; Miao, Z.; Yao, J.; Li, J.; Zhang, W.; et al. Divergent Cascade Construction of Skeletally Diverse “Privileged” Pyrazole-Derived Molecular Architectures: Pyrazole-Derived Molecular Architectures. Eur. J. Org. Chem. 2015, 2015, 2030–2037. [Google Scholar] [CrossRef]
- Chande, M.S.; Barve, P.A.; Suryanarayan, V. Synthesis and Antimicrobial Activity of Novel Spirocompounds with Pyrazolone and Pyrazolthione Moiety. J. Heterocycl. Chem. 2007, 44, 49–53. [Google Scholar] [CrossRef]
- Amata, E.; Bland, N.D.; Campbell, R.K.; Pollastri, M.P. Evaluation of Pyrrolidine and Pyrazolone Derivatives as Inhibitors of Trypanosomal Phosphodiesterase B1 (TbrPDEB1). Tetrahedron Lett. 2015, 56, 2832–2835. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, C.; Huang, W.; Haruehanroengra, P.; Peng, C.; Sheng, J.; Han, B.; He, G. Application of Organocatalysis in Bioorganometallic Chemistry: Asymmetric Synthesis of Multifunctionalized Spirocyclic Pyrazolone–Ferrocene Hybrids as Novel RalA Inhibitors. Org. Chem. Front. 2018, 5, 2229–2233. [Google Scholar] [CrossRef]
- Tada, I.; Motoki, M.; Takahashi, N.; Miyata, T.; Takechi, T.; Uchida, T.; Takagi, Y. Synthesis and Structure-Activity Relationships of Miticidal 4,5-Dihydropyrazole-5-Thiones. Pestic. Sci. 1996, 48, 165–173. [Google Scholar] [CrossRef]
- Budnikov, A.S.; Lopat’eva, E.R.; Krylov, I.B.; Segida, O.O.; Lastovko, A.V.; Ilovaisky, A.I.; Nikishin, G.I.; Glinushkin, A.P.; Terent’ev, A.O. 4-Nitropyrazolin-5-Ones as Readily Available Fungicides of the Novel Structural Type for Crop Protection: Atom-Efficient Scalable Synthesis and Key Structural Features Responsible for Activity. J. Agric. Food Chem. 2022, 70, 4572–4581. [Google Scholar] [CrossRef]
- Krylov, I.B.; Budnikov, A.S.; Lopat’eva, E.R.; Nikishin, G.I.; Terent’ev, A.O. Mild Nitration of Pyrazolin-5-ones by a Combination of Fe(NO3)3 and NaNO2: Discovery of a New Readily Available Class of Fungicides, 4-Nitropyrazolin-5-ones. Chem. Eur. J. 2019, 25, 5922–5933. [Google Scholar] [CrossRef]
- Sheng, X.; Zhang, J.; Yang, H.; Jiang, G. Tunable Aerobic Oxidative Hydroxylation/Dehydrogenative Homocoupling of Pyrazol-5-Ones under Transition-Metal-Free Conditions. Org. Lett. 2017, 19, 2618–2621. [Google Scholar] [CrossRef]
- Holzschneider, K.; Tong, M.L.; Mohr, F.; Kirsch, S.F. A Synthetic Route Toward Tetrazoles: The Thermolysis of Geminal Diazides. Chem. Eur. J. 2019, 25, 11725–11733. [Google Scholar] [CrossRef] [Green Version]
- Sharipov, M.Y.; Krylov, I.B.; Karpov, I.D.; Vasilkova, O.V.; Oleksiienko, A.-M.V.; Terent’ev, A.O. NaSCN–(NH4)2Ce(NO3)6 System in Heterocycle Thiocyanation: Synthesis of Novel Highly Potent Broad-Spectrum Fungicides for Crop Protection. Chem. Heterocycl. Compd. 2021, 57, 531–537. [Google Scholar] [CrossRef]
- Krylov, I.B.; Lopat’eva, E.R.; Subbotina, I.R.; Nikishin, G.I.; Yu, B.; Terent’ev, A.O. Mixed Hetero-/Homogeneous TiO2/N-Hydroxyimide Photocatalysis in Visible-Light-Induced Controllable Benzylic Oxidation by Molecular Oxygen. Chin. J. Catal. 2021, 42, 1700–1711. [Google Scholar] [CrossRef]
- Veibel, S.; Westöö, G.; Jensen, K.A.; Schønfeldt, E.; Steensgaard, I.; Rosenberg, T. Pyrazole Studies. V. The Oxidation by Air of Some 3,4-Dialkylsubstituted 1-Phenylpyrazolones-5. Acta Chem. Scand. 1953, 7, 119–127. [Google Scholar] [CrossRef]
- Westöö, G.; Virtanen, A.I.; Lunde, K. Studies on Pyrazolones. I. Light Absorption and Constitution of Certain 4-Halo-5-Pyrazolones. Acta Chem. Scand. 1952, 6, 1499–1515. [Google Scholar] [CrossRef]
- Howard, J.L.; Nicholson, W.; Sagatov, Y.; Browne, D.L. One-Pot Multistep Mechanochemical Synthesis of Fluorinated Pyrazolones. Beilstein J. Org. Chem. 2017, 13, 1950–1956. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.A.S.; Breen, G.J.W.; Hajek, M.K.; Awang, D.V.C. Isolation of Primary Decomposition Products of Azides. II. Azidopyrazoles. J. Org. Chem. 1970, 35, 2215–2221. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Lin, H.-C.; Cheng, K.-M.; Su, W.-N.; Sung, K.-C.; Lin, T.-P.; Huang, J.-J.; Lin, S.-K.; Wong, F.F. Efficient Di-Bromination of 5-Pyrazolones and 5-Hydroxypyrazoles by N-Bromobenzamide. Tetrahedron 2009, 65, 9592–9597. [Google Scholar] [CrossRef]
- Veibel, S.; Meza, S.; Haug, A.; Songstad, J.; Pilotti, Å. Pyrazole Studies. XIII. Oxidation by Air of 4-Substituted Pyrazole-5-Ones and Stereochemistry of the Oxidation Products. Acta Chem. Scand. 1972, 26, 3685–3690. [Google Scholar] [CrossRef]
- Ncama, K.; Mditshwa, A.; Tesfay, S.Z.; Mbili, N.C.; Magwaza, L.S. Topical Procedures Adopted in Testing and Application of Plant-Based Extracts as Bio-Fungicides in Controlling Postharvest Decay of Fresh Produce. Crop Prot. 2019, 115, 142–151. [Google Scholar] [CrossRef]
- Pan, L.; Li, X.; Gong, C.; Jin, H.; Qin, B. Synthesis of N-Substituted Phthalimides and Their Antifungal Activity against Alternaria Solani and Botrytis Cinerea. Microb. Pathog. 2016, 95, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Popkov, S.V.; Kovalenko, L.V.; Bobylev, M.M.; Molchanov, O.Y.; Krimer, M.Z.; Tashchi, V.P.; Putsykin, Y.G. The Synthesis and Fungicidal Activity of 2-Substituted 1-Azol-1-Ylmethyl-6-Arylidenecyclohexanols. Pestic. Sci. 1997, 49, 125–129. [Google Scholar] [CrossRef]
- Xia, D.; Cheng, X.; Liu, X.; Zhang, C.; Wang, Y.; Liu, Q.; Zeng, Q.; Huang, N.; Cheng, Y.; Lv, X. Discovery of Novel Pyrazole Carboxylate Derivatives Containing Thiazole as Potential Fungicides. J. Agric. Food Chem. 2021, 69, 8358–8365. [Google Scholar] [CrossRef] [PubMed]
- Obydennov, K.L.; Kalinina, T.A.; Galieva, N.A.; Beryozkina, T.V.; Zhang, Y.; Fan, Z.; Glukhareva, T.V.; Bakulev, V.A. Synthesis, Fungicidal Activity, and Molecular Docking of 2-Acylamino and 2-Thioacylamino Derivatives of 1H-Benzo[d]Imidazoles as Anti-Tubulin Agents. J. Agric. Food Chem. 2021, 69, 12048–12062. [Google Scholar] [CrossRef]
- Gazieva, G.A.; Anikina, L.V.; Nechaeva, T.V.; Pukhov, S.A.; Karpova, T.B.; Popkov, S.V.; Nelyubina, Y.V.; Kolotyrkina, N.G.; Kravchenko, A.N. Synthesis and Biological Evaluation of New Substituted Thioglycolurils, Their Analogues and Derivatives. Eur. J. Med. Chem. 2017, 140, 141–154. [Google Scholar] [CrossRef]
- Tao, N.; OuYang, Q.; Jia, L. Citral Inhibits Mycelial Growth of Penicillium Italicum by a Membrane Damage Mechanism. Food Control 2014, 41, 116–121. [Google Scholar] [CrossRef]
Compound | C, mg/L | Mycelium Growth Inhibition | ||||||
---|---|---|---|---|---|---|---|---|
V. i. | R. s. | F. o. | F. m. | B. s. | S. s. | |||
1 | 10 | 100 | 100 | 61 | 100 | 100 | 88 | |
2 | 10 | 7 | 20 | 11 | 8 | 0 | 0 | |
3 | 10 | 11 | 25 | 6 | 17 | 1 | 14 | |
4 | 10 | 58 | 51 | 80 | 89 | 74 | 42 | |
5 | 10 | 100 | 100 | 55 | 61 | 66 | 36 | |
6 | 10 | 100 | 100 | 31 | 83 | 60 | 54 | |
7 | 10 | 29 | 32 | 53 | 68 | 53 | 36 | |
8 | 10 | 100 | 100 | 85 | 100 | 77 | 100 | |
5 | 100 | 100 | 68 | 100 | 52 | 31 | ||
9 | 10 | 100 | 100 | 100 | 100 | 100 | 100 | |
5 | 100 | 100 | 97 | 100 | 62 | 100 | ||
10 | 10 | 33 | 38 | 8 | 22 | 6 | 1 | |
11 | 10 | 100 | 100 | 50 | 83 | 74 | 28 | |
12 | 10 | 22 | 39 | 11 | 11 | 16 | 11 | |
13 | 10 | 11 | 26 | 17 | 11 | 12 | 0 | |
14 | 10 | 11 | 24 | 6 | 19 | 14 | 0 | |
15 | Kresoxim-methyl | 10 | 100 | 100 | 65 | 64 | 58 | 54 |
16 | Triadimefon | 10 | 49 | 58 | 62 | 82 | 64 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopat’eva, E.R.; Budnikov, A.S.; Krylov, I.B.; Alekseenko, A.L.; Ilovaisky, A.I.; Glinushkin, A.P.; Terent’ev, A.O. 4-Disubstituted Pyrazolin-3-Ones—Novel Class of Fungicides against Phytopathogenic Fungi. Agrochemicals 2023, 2, 34-46. https://doi.org/10.3390/agrochemicals2010004
Lopat’eva ER, Budnikov AS, Krylov IB, Alekseenko AL, Ilovaisky AI, Glinushkin AP, Terent’ev AO. 4-Disubstituted Pyrazolin-3-Ones—Novel Class of Fungicides against Phytopathogenic Fungi. Agrochemicals. 2023; 2(1):34-46. https://doi.org/10.3390/agrochemicals2010004
Chicago/Turabian StyleLopat’eva, Elena R., Alexander S. Budnikov, Igor B. Krylov, Anna L. Alekseenko, Alexey I. Ilovaisky, Alexey P. Glinushkin, and Alexander O. Terent’ev. 2023. "4-Disubstituted Pyrazolin-3-Ones—Novel Class of Fungicides against Phytopathogenic Fungi" Agrochemicals 2, no. 1: 34-46. https://doi.org/10.3390/agrochemicals2010004
APA StyleLopat’eva, E. R., Budnikov, A. S., Krylov, I. B., Alekseenko, A. L., Ilovaisky, A. I., Glinushkin, A. P., & Terent’ev, A. O. (2023). 4-Disubstituted Pyrazolin-3-Ones—Novel Class of Fungicides against Phytopathogenic Fungi. Agrochemicals, 2(1), 34-46. https://doi.org/10.3390/agrochemicals2010004