Phytochemical Constituents of Indonesian Adlay (Coix lacrima-jobi L.) and Their Potential as Antioxidants and Crop Protection Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemicals
2.2. Seeds Extraction for Screening Antioxidant Potentials
2.3. Fractionation of Agrotis Variety from C. lacryma-jobi
2.4. DPPH Free Radical Scavenging Activity
2.5. ABTS Free Radical Scavenging Activity
2.6. Total Phenolic Contents (TPC)
2.7. Total Flavonoid Content (TFC)
2.8. Identification of Chemicals Constituent of C. lacrima-joby var. Agrotis by Gas Chromatography-Mass Spectrometry (GC-MS)
2.9. Statistical Analysis
3. Results
3.1. Screening Antioxidant Potentials from Adlay (C. lacryma-jobi) Varieties
3.2. Antioxidant Potentials from C. lacryma-jobi var. Agrotis Extracts
3.3. Total Phenolic and Flavonoid Contents (TPC and TFC)
3.4. Identification of Phytochemical Constituents Adlay (C. lacryma-jobi) var. Agrotis by Gas Chromatography-Mass Spectrometry (GC-MS)
3.5. Relationship of Extracting Solvents to Antioxidant Activity and Phytochemical Constituents of Adlay (C. lacryma-jobi) var. Agrotis by Principal Component Analysis (PCA)
3.6. Potential Use of Adlay Phytochemicals for Agrochemicals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loiseleur, O. Natural products in the discovery of agrochemicals. CHIMIA Int. J. Chem. 2017, 71, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Maisuthisakul, P.; Pasuk, S.; Ritthiruangdej, P. Relationship between antioxidant properties and chemical composition of some Thai plants. J. Food Compos. Anal. 2008, 21, 229–240. [Google Scholar] [CrossRef]
- Duke, J.A. Handbook of Phytochemical Constituent Grass, Herbs and Other Economic Plants: Herbal Reference Library; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Elisha, I.L.; Botha, F.S.; McGaw, L.J.; Eloff, J.N. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement. Altern. Med. 2017, 17, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bon, S.G.; Enicola, E.E.; Padasas, G.Y.; Galvez, H.F. Diversity conservation of adlay germplasm in the Philippines. Philipp. J. Crop. Sci. 2018, 42, 98–140. [Google Scholar]
- Diningrat, D.S.; Risfandi, M.; Harahap, N.S.; Sari, A.N.; Siregar, H.K. Phytochemical screening and antibacterial activity Coix lacryma-jobi oil. J. Plant Biotechnol. 2020, 47, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Wang, P.; Ali, B.; Yang, N.; Chen, Y.S.; Wu, F.F.; Xu, X.M. Changes of the phenolic compounds and antioxidant activities in germinated adlay seeds. J. Sci. Food Agric. 2017, 97, 4227–4234. [Google Scholar] [CrossRef]
- Wang, L.F.; Chen, C.; Su, A.X.; Zhang, Y.Y.; Yuan, J.; Ju, X.R. Structural characterization of phenolic compounds and antioxidant activity of the phenolic-rich fraction from defatted adlay (Coix lachryma-jobi L. var. Ma-yuen Stapf) seed meal. Food Chem. 2016, 196, 509–517. [Google Scholar]
- Yu, Q.; Ye, G.; Lei, Z.; Yang, R.; Chen, R.; He, T.; Huang, S. An isolated compound from stems and leaves of Coix lacryma-jobi L. and its anticancer effect. Food Biosci. 2021, 42, 101047. [Google Scholar] [CrossRef]
- Son, E.S.; Kim, S.H.; Kim, Y.O.; Lee, Y.E.; Kyung, S.Y.; Jeong, S.H.; Kim, Y.J.; Park, J.W. Coix lacryma-jobi var. Ma-yuen Stapf sprout extract induces cell cycle arrest and apoptosis in human cervical carcinoma cells. BMC Complement. Altern. Med. 2019, 19, 312–327. [Google Scholar]
- Rahman, M.; Rahaman, M.; Islam, M.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.; et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2022, 27, 233. [Google Scholar] [CrossRef]
- Das, S.; Akhter, R.; Khandaker, S.; Huque, S.; Das, P.; Anwar, M.R.; Tanni, K.A.; Shabnaz, S.; Shahriar, M. Phytochemical screening, antibacterial and anthelmintic activities of leaf and seed extracts of Coix lacryma-jobi L. J. Coast Life Med. 2017, 5, 360–364. [Google Scholar] [CrossRef]
- Breitenbach, G.L.; Rosenberger, M.G.; Rosenberger, A.G.; Caetano, J.; Pellá, M.C.G.; Scheidt, D.T.; Martins, C.V.B.; Munizc, E.C.; Dragunski, D.C. Antimicrobial activity of polymeric microfibers containing Coix lacryma-jobi extract. Macromol. Res. 2020, 28, 869–876. [Google Scholar] [CrossRef]
- Truong, D.H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef] [Green Version]
- Andriana, Y.; Xuan, T.D.; Quy, T.N.; Minh, T.N.; Van, T.M.; Viet, T.D. Antihyperuricemia, antioxidant, and antibacterial activities of Tridax procumbens L. Foods 2019, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Andriana, Y.; Xuan, T.D.; Quy, T.N.; Tran, H.D.; Le, Q.T. Biological activities and chemical constituents of essential oils from Piper cubeba Bojer and Piper nigrum L. Molecules 2019, 24, 1876. [Google Scholar] [CrossRef] [Green Version]
- Iwansyah, A.C.; Desnilasari, D.; Agustina, W.; Pramesti, D.; Indriati, A.; Mayasti, N.K.I.; Andriana, Y.; Kormin, F.B. Evaluation on the physicochemical properties and mineral contents of Averrhoa bilimbi L. leaves dried extract and its antioxidant and antibacterial capacities. Food Sci. Technol. 2021, 41, 987–992. [Google Scholar] [CrossRef]
- Minh, T.N.; Xuan, T.D.; Tran, H.D.; Van, T.M.; Andriana, Y.; Khanh, T.D.; Quan, N.V.; Ahmad, A. Isolation and purification of bioactive compounds from the stem bark of Jatropha podagrica. Molecules 2019, 24, 88. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 23 June 2022).
- Clements, J.; Groves, R.L.; Cava, J.; Barry, C.C.; Chapman, S.; Olson, J.M. Conjugated linoleic acid as a novel insecticide targeting the agricultural pest Leptinotarsa decemlineata. PLoS ONE 2019, 14, 0220830. [Google Scholar] [CrossRef] [Green Version]
- Anwar, T.; Qureshi, H.; Mahnashi, M.H.; Kabir, F.; Parveen, N.; Ahmed, D.; Afzal, U.; Batool, S.; Awais, M.; Ahmed, A.S.; et al. Bioherbicidal ability and weed management of allelopathic methyl esters from Lantana camara. Saudi J. Biol. Sci. 2021, 28, 4365–4374. [Google Scholar] [CrossRef]
- Bharathithasan, M.; Ravindran, D.R.; Rajendran, D.; Chun, S.K.; Abbas, S.A.; Sugathan, S. Analysis of chemical compositions and larvicidal activity of nut extracts from Areca catechu Linn against Aedes (Diptera: Culicidae). PLoS ONE 2021, 16, e0260281. [Google Scholar] [CrossRef]
- Yousef, H.; El-Lakwah, S.F.; El-Sayed, Y.A. Insecticidal activity of linoleic acid against Spodoptera littoralis (Boisd.). Egypt. J. Agric. Res. 2013, 91, 573–580. [Google Scholar] [CrossRef]
- Wang, Y.N.; Wang, H.X.; Shen, Z.J.; Zhao, L.L.; Clarke, S.R.; Sun, J.H.; Du, Y.Y.; Shi, G.L. Methyl palmitate, an acaricidal compound occurring in green walnut husks. J. Econ. Entomol. 2009, 102, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, K.N.; Yahayu, M.; Sarip, S.H.M.; Rizan, N.H.; Min, C.B.; Mustafa, N.F.; Ngadiran, S.; Ujang, S.; Zakaria, Z.A. Evaluation on efficiency of pyroligneous acid from palm kernel shell as antifungal and solid pineapple biomass as antibacterial and plant growth promoter. Sains Malays. 2016, 45, 1423–1434. [Google Scholar]
- Huang, G.; Huang, H. Synthesis, antiasthmatic, and insecticidal/antifungal activities of allosamidins. J. Enzym. Inhib. Med. Chem. 2019, 34, 1226–1232. [Google Scholar] [CrossRef]
- Matsumura, F.; Tai, A.; Coppel, H.C.; Imaida, M. Chiral specificity of the sex pheromone of the red-headed pine sawfly, Neodiprion lecontei. J. Chem. Ecol. 1979, 5, 237–249. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, R.; Jebanesan, A.; Govindarajan, M.; Rajasekar, P. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.)(Diptera: Culicidae). Asian Pac. J. Trop. Med. 2011, 4, 706–710. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Liu, T.; Wang, N.; Dou, Z.; Wang, K.; Zuo, Y. Nematicidal effect of methyl palmitate and methyl stearate against Meloidogyne incognita in bananas. J. Agric. Food Chem. 2020, 68, 6502–6510. [Google Scholar] [CrossRef]
- Enenebeaku, U.E.; Duru, C.E.; Mgbemena, I.C.; Ukwandu, N.C.D.; Nwigwe, H.C.; Enenebeaku, C.K.; Okotcha, E.N. Phytochemical evaluation and molecular docking of bioactive compounds from the roots of Dictyandra arborescens (Welw.) against Plasmodium bergheiprotein targets. Trop. J. Nat. Prod. Res. 2021, 5, 370–381. [Google Scholar]
- Wang, X.; Zhu, X.; Chen, X.; Lv, B.; Wang, X.; Wang, D. Phenanthrene and pyrene disturbed the growth of Microcystis aeruginosa as co-cultured with Chlorella pyrenoidosa. Environ. Sci. Pollut. Res. 2020, 27, 45957–45964. [Google Scholar] [CrossRef]
- Fang, L.; Wang, X.; Guo, L.; Liu, Q. Antioxidant, anti-microbial properties and chemical composition of cumin essential oils extracted by three methods. Open Chem. 2018, 16, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.; Zeng, S.; Yu, L.; He, M.; Yang, Y.; Zhao, X.; Jiang, C.; Hu, D.; Song, B. Characterization and antifungal activity against Pestalotiopsis of a fusaricidin-type compound produced by Paenibacillus polymyxa Y-1. Pestic. Biochem. Physiol. 2018, 147, 67–74. [Google Scholar] [CrossRef]
- Tomčala, A.; Jirošová, A.; Žáček, P.; Kaušková, M.; Hovorka, O.; Koutek, B. Species specificity of aldehyde and fatty acid profiles of four family group representatives within the insect Infraorder pentatomomorpha (Hemiptera: Heteroptera). Chem. Biodivers. 2017, 14, e1600420. [Google Scholar] [CrossRef]
- Mitchell, E.R.; McLaughlin, J.R. Suppression of mating and oviposition by fall armyworm and mating by corn earworm in corn, using the air permeation technique. J. Econ. Entomol. 1982, 75, 270–274. [Google Scholar] [CrossRef]
- Farag, S.M.; Essa, E.E.; Alharbi, S.A.; Alfarraj, S.; El-Hassan, G.A. Agro-waste derived compounds (flax and black seed peels): Toxicological effect against the West Nile virus vector, Culex pipiens L. with special reference to GC–MS analysis. Saudi J. Biol. Sci. 2021, 28, 5261–5267. [Google Scholar] [CrossRef]
- Shilaluke, K.C.; Moteetee, A.N. Insecticidal activities and GC-MS analysis of the selected family members of Meliaceae used traditionally as insecticides. Plants 2022, 11, 3046. [Google Scholar] [CrossRef]
- Joo, J.H.; Hussein, K.A. Biological control and plant growth promotion properties of volatile organic compound producing antagonistic Trichoderma spp. Front. Plant Sci. 2022, 13, 897668. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. An introduction to natural products isolation. Nat. Prod. Isol. 2012, 864, 1–25. [Google Scholar]
- Woo, K.S. Use of bee venom and propolis for apitherapy in Korea. In Proceedings of the Seventh Asian Apicultural Association Conference and Tenth BEENET Symposium and Technofora, College, Laguna, Philippines, 23–27 February 2004. [Google Scholar]
- Tensiska, B.N.; Endah, W.; Yushini, A.L.R. Antioxidant activity of Adlay (Coix lachryma-jobi L.) extracts with different extracting solvents. J. Agroindustri 2020, 10, 1–11. (In Indonesian) [Google Scholar] [CrossRef]
- Tuyen, P.T.; Xuan, T.D.; Khang, D.T.; Ahmad, A.; Quan, N.V.; Anh, T.T.T.; Anh, L.H.; Minh, T.N. Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata Sieb. et Zucc. Antioxidants 2017, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.; Beato, M.; Usseglio, V.L.; Camina, J.; Zygadlo, J.A.; Dambolena, J.S.; Zunino, M.P. Phenolic compounds as controllers of Sitophilus zeamais: A look at the structure-activity relationship. J. Stored Prod. Res. 2022, 99, 102038. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andriana, Y.; Ade, I.C.; Nguyen, Q.T.; Bui, Q.M.; Nguyen, M.D.; Phung, T.T.; Le, V.A.; Nguyen, H.K.; Truong, N.M. Efficacy of different solvents on the extraction process of antioxidant and potential compounds in Alpinia galanga L. from Indonesia. J. Mod. Agric. Biotechnol. 2022, 1, 5. [Google Scholar]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharm. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.E.; Araújo, S.G.; Morais, M.I.; Sá, N.P.; Lima, C.M.; Rosa, C.A.; Siqueira, E.P.; Johann, S.; Lima, L.A. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An. Acad. Bras. Ciênc. 2017, 89, 1671–1681. [Google Scholar] [CrossRef] [Green Version]
- Azzahra, G. Phytochemicals Analysis of Seeds and Seed Stalk of Wild Adlay (Coix lacryma-jobi L.) and Its Culture. Undergraduate Thesis, Indonesian University of Education, Kota Bandung, Indonesia, 2019. Available online: http://repository.upi.edu/ (accessed on 23 January 2021).
- Jin, X.L.; Wang, K.; Li, Q.Q.; Tian, W.L.; Xue, X.F.; Wu, L.M.; Hu, F.L. Antioxidant and anti-inflammatory effects of Chinese propolis during palmitic acid-induced lipotoxicity in cultured hepatocytes. J. Funct. Foods 2017, 34, 216–223. [Google Scholar] [CrossRef]
- Mohadjerani, M.; Tavakoli, R.; Hosseinzadeh, R. Fatty acid composition, antioxidant and antibacterial activities of Adonis wolgensis L. extract. Avicenna J. Phytomed. 2013, 4, 24–30. [Google Scholar]
- Andriana, Y.; Xuan, T.D.; Quan, N.V.; Quy, T.N. Allelopathic potential of Tridax procumbens L. on radish and identification of allelochemicals. Allelopath. J. 2018, 43, 223–238. [Google Scholar] [CrossRef]
- Jadeeswari, P.; Nishanthini, A.; Muthukumarasamy, S.M.V.R.; Mohan, V.R. GC-MS analysis of bioactive components of Aristolochia krysagathra (Aristolochiaceae). J. Curr. Chem. Pharm. Sci. 2012, 2, 226–232. [Google Scholar]
Varieties | IC50 DPPH (µg/mL) | IC50 ABTS (µg/mL) |
---|---|---|
Ma-yuen | 2960.13 ± 42.04 d | 1149.63 ± 6.26 d |
Agrotis | 741.39 ± 37.39 b | 152.69 ± 2.83 b |
Aquatic | 1010.92 ± 1.64 c | 464.34 ± 5.47 c |
Quercetin * | 6.33 ± 0.74 a | 13.12 ± 0.41 a |
Extracts | IC50 (µg/mL) | |
---|---|---|
DPPH | ABTS | |
Hexane | 3520.19 ± 47.06 e | 2270.80 ± 8.71 e |
Chloroform | 165.89 ± 2.37 c | 38.20 ± 2.35 c |
Ethyl acetate | 106.34 ± 1.74 b | 17.62 ± 1.87 b |
Water | 240.90 ± 8.9 d | 126.50 ± 4.74 d |
Quercetin * | 6.55 ± 1.64 a | 9.24 ± 0.85 a |
No. | Compounds | Molecular Formula | MW (g/mol) | Class | Rt (min) | % Area | |||
---|---|---|---|---|---|---|---|---|---|
Hexane | CHCl3 | EtOAc | Water | ||||||
1 | 2-Cyclopentene, 1,4-bis(methoxyethoxymethoxy)-, cis- | C13H24O6 | 276.33 | Cycloalkenes | 4.339 | - | - | - | 14.41 ± 0.02 |
2 | Acetothioamide | CH3CSNH2 | 75.14 | Amides | 4.415 | - | - | - | 5.82 ± 0.01 |
3 | 3-Acetoxypentadecane | C17H34O2 | 270.5 | Alkanes | 8.284 | 0.17 ± 0.02 | - | - | - |
4 | Methyl palmitate | C17H34O2 | 270.5 | FAMEs | 18.152 | 1.81 ± 0.01 | 18.79 ± 0.07 | 6.64 ± 0.03 | 14.31 ± 0.01 |
5 | 7-Hexadecenoic acid | C16H30O2 | 254.41 | Fatty acids | 18.354 | 0.17 ± 0.03 | - | - | - |
6 | Palmitic acid | C16H32O2 | 256.42 | Fatty acids | 18.656 | 12.19 ± 0.01 | - | 9.66 ± 0.01 | - |
7 | Methyl linoleate | C19H34O2 | 294.5 | FAMEs | 19.778 | 7.22 ± 0.01 | 42.07 ± 0.17 | 14.07 ± 0.01 | 8.56 ± 0.03 |
8 | Methyl vaccinates | C19H36O2 C19H36O2 C19H36O2 | 296.5 | FAMEs | 19.816 | - | 29.25 ± 0.08 | 9.51 ± 0.01 | 23.78 ± 0.12 |
9 | Methyl stearate | C19H38O2 | 298.5 | FAMEs | 20.043 | - | - | 1.09 ± 0.02 | - |
10 | cis-13-Octadecenoic acid | C18H34O2 | 282.5 | Fatty acids | 20.181 | - | 3.91 ± 0.01 | - | - |
11 | Pyrene | C16H10 | 202.25 | PAHs | 20.206 | - | - | - | 11.51 ± 0.01 |
12 | Linoelaidic acid | C18H32O2 | 280.4 | Fatty acids | 20.270 | - | - | 38.28 ± 0.13 | - |
13 | Bovinic acid | C18H32O2 | 280.4 | Fatty acids | 20.496 | 71.32 ± 1.38 | - | - | - |
14 | 2-Methyl-Z,Z-3,13-octadecadienol | C19H36O | 280.5 | Alcohols | 21.530 | 0.37 ± 0.01 | - | - | - |
15 | 15-Hydroxypentadecanoic acid | C15H30O3 | 258.4 | Fatty acids | 23.269 | 0.25 ± 0.01 | - | - | - |
16 | Linoleyl aldehyde | C18H32O | 264.4 | Aldehydes | 24.279 | 0.34 ± 0.00 | - | - | - |
17 | Elaidolinoleyl alcohol | C18H34O | 266.5 | Alcohols | 24.630 | - | 5.99 ± 0.00 | - | - |
18 | 9,17-Octadecadienal | C18H32O | 264.4 | Aldehydes | 24.643 | 5.22 ± 0.03 | - | 9.49 ± 0.03 | - |
19 | Cyclotrisiloxane | H6O3Si3 | 138.3 | Cyclosiloxanes | 27.352 | - | - | - | 1.61 ± 0.01 |
20 | Tetrasiloxane, decamethyl- | C10H30O3Si4 | 310.68 | Others | 27.642 | - | - | - | 19.99 ± 0.01 |
No | Compounds | Other Sources | Pesticidal Effects | Indicator Species | References |
---|---|---|---|---|---|
1. | 2-Cyclopentene, 1,4-bis(methoxyethoxymethoxy)-, cis- | Palm kernel shell (Elaeis guineensis) | Fungicide, bactericide | Aspergilllus niger, Botryodiplodia theobromae | [25] |
2. | Acetothioamide | Streptomyces sp., Piper nigrum | Insecticide, fungicide | Lucilia cuprina, Tineola bisselliella, Myzus persicae | [26] |
3. | 3-Acetoxypentadecane | Neodiprion lecontei | Insect repellent | n/a | [27] |
4. | Methyl palmitate | Green walnut (Juglans regia L.) husks | Acaricide | Tetranychus cinnabarinus Boisduval | [24] |
5. | 7-Hexadecenoic acid | Canola (Brassica napas L.) seed | Insecticide, larvicide | Aphids, mealybugs, thrips | [28] |
6. | Palmitic acid | Areca palm (Areca catechu Linn.) | Insecticide, larvicide, insect repellent | Aedes aegypti Linn., Culex quinquefasciatus Say, | [22,29] |
7. | Methyl linoleate | Lantana (Lantana camara) | Herbicide | Avena fatua, Euphorbia helioscopia, Chenopodium album, Phalaris minor, Rumex dentatus | [21] |
8. | Methyl vaccinates | n/a | n/a | n/a | n/a |
9. | Methyl stearate | Chicken manure (CM) | Nematicide | Meloidogyne incognita | [30] |
10. | cis-13-Octadecenoic acid | Root of Dictyandra arborescens Welw. | Plasmodicide | Plasmodium sp. | [31] |
11. | Pyrene | n/a | Bactericide | Microcystis aeruginosa | [32] |
12. | Linoelaidic acid | n/a | Insecticide | Spodoptera littoralis | [23] |
13. | Bovinic acid | n/a | Insecticide | Leptinotarsa decemlineata | [20] |
14. | 2-Methyl-Z,Z-3,13-octadecadienol | n/a | Bactericide | Escherichia coli, Bacillus subtilis | [33] |
15. | 15-Hydroxypentadecanoic acid | Paenibacillus polymyxa | Fungicide | Pestalotiopsis sp. | [34] |
16. | Linoleyl aldehyde | n/a | Insecticide | Pentatomomorpha (Hemiptera: Heteroptera). | [35] |
17. | Elaidolinoleyl alcohol | Tobacco budworms (Chloridea virescens) | Insect repellent | Spodoptera frugiperda | [36] |
18. | 9,17-Octadecadienal | Linuim usitatissium, Nigella sativa | Insecticide | Culex pipiens L. | [37] |
19. | Cyclotrisiloxane | Melia azedarach | Insecticide | Spodoptera frugiperda, Plutella xylostella | [38] |
20. | Tetrasiloxane, decamethyl- | Trichoderma atroviride | Fungicide | Alternaria panax, Botrytis cinerea, Cylindrocarpon destructans, and Sclerotinia nivalis | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andriana, Y.; Fajriani, N.A.; Iwansyah, A.C.; Xuan, T.D. Phytochemical Constituents of Indonesian Adlay (Coix lacrima-jobi L.) and Their Potential as Antioxidants and Crop Protection Agents. Agrochemicals 2023, 2, 135-149. https://doi.org/10.3390/agrochemicals2010010
Andriana Y, Fajriani NA, Iwansyah AC, Xuan TD. Phytochemical Constituents of Indonesian Adlay (Coix lacrima-jobi L.) and Their Potential as Antioxidants and Crop Protection Agents. Agrochemicals. 2023; 2(1):135-149. https://doi.org/10.3390/agrochemicals2010010
Chicago/Turabian StyleAndriana, Yusuf, Nabila Ayunisa Fajriani, Ade Chandra Iwansyah, and Tran Dang Xuan. 2023. "Phytochemical Constituents of Indonesian Adlay (Coix lacrima-jobi L.) and Their Potential as Antioxidants and Crop Protection Agents" Agrochemicals 2, no. 1: 135-149. https://doi.org/10.3390/agrochemicals2010010
APA StyleAndriana, Y., Fajriani, N. A., Iwansyah, A. C., & Xuan, T. D. (2023). Phytochemical Constituents of Indonesian Adlay (Coix lacrima-jobi L.) and Their Potential as Antioxidants and Crop Protection Agents. Agrochemicals, 2(1), 135-149. https://doi.org/10.3390/agrochemicals2010010