Beyond the Timed Up and Go: Dual-Task Gait Assessments Improve Fall Risk Detection and Reflect Real-World Mobility in Multiple Sclerosis
Abstract
1. Introduction
2. Methods
2.1. In-Lab Testing
2.2. Walking Assessments
2.2.1. Timed Up and Go
2.2.2. Timed Up and Go Extended
2.2.3. 25-Foot Walk and Turn
2.2.4. Figure 8 Walking
2.3. Cognitive Outcome Measure
2.4. Real-World Ambulation Data Collection
2.5. Real-World Ambulation Data Processing
3. Analysis
4. Results
4.1. Fall Risk Results
4.2. Comparing Lab-Based Assessments to Real-World Ambulation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalron, A. Gait variability across the disability spectrum in people with multiple sclerosis. J. Neurol. Sci. 2016, 361, 1–6. [Google Scholar] [CrossRef]
- Larocca, N.G. Impact of walking impairment in multiple sclerosis: Perspectives of patients and care partners. Patient 2011, 4, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Giroux, C.; Sogoloff, B.; Bergmans, L.; Bae, M.; Vannostrand, M.; Kasser, S.L. An Exploratory Study of Community Mobility in Adults With Multiple Sclerosis Across Different Ambulation Levels. Int. J. MS Care 2023, 25, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Zwibel, H.L. Contribution of impaired mobility and general symptoms to the burden of multiple sclerosis. Adv. Ther. 2009, 26, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Nilsagård, Y.; Gunn, H.; Freeman, J.; Hoang, P.; Lord, S.; Mazumder, R.; Cameron, M. Falls in people with MS—An individual data meta-analysis from studies from Australia, Sweden, United Kingdom and the United States. Mult. Scler. J. 2015, 21, 92–100. [Google Scholar] [CrossRef]
- Sosnoff, J.J.; Sandroff, B.M.; Pula, J.H.; Morrison, S.M.; Motl, R.W. Falls and Physical Activity in Persons with Multiple Sclerosis. Mult. Scler. Int. 2012, 2012, 315620. [Google Scholar] [CrossRef]
- Sebastião, E.; Learmonth, Y.C.; Motl, R.W. Lower Physical Activity in Persons with Multiple Sclerosis at Increased Fall Risk: A Cross-sectional Study. Am. J. Phys. Med. Rehabil. 2017, 96, 357–361. [Google Scholar] [CrossRef]
- Kasser, S.L.; Jacobs, J.V.; Littenberg, B.; Foley, J.T.; Cardinal, B.J.; Maddalozzo, G.F. Exploring physical activity in women with multiple sclerosis: Associations with fear of falling and underlying impairments. Am. J. Phys. Med. Rehabil. 2014, 93, 461–469. [Google Scholar] [CrossRef]
- Gunn, H.J.; Newell, P.; Haas, B.; Marsden, J.F.; Freeman, J.A. Identification of Risk Factors for Falls in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Phys. Ther. 2013, 93, 504–513. [Google Scholar] [CrossRef]
- Coote, S.; Comber, L.; Quinn, G.; Santoyo-Medina, C.; Kalron, A.; Gunn, H. Falls in People with Multiple Sclerosis: Risk Identification, Intervention, and Future Directions. Int. J. MS Care 2020, 22, 247–255. [Google Scholar] [CrossRef]
- Wajda, D.A.; Sosnoff, J.J. Cognitive-Motor Interference in Multiple Sclerosis: A Systematic Review of Evidence, Correlates, and Consequences. BioMed Res. Int. 2015, 2015, 720856. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, A.; Engel, C.; Apel, A.; Zettl, U.K. Cognitive impairment in multiple sclerosis. J. Neurol. 2007, 254 (Suppl. 2), II35–II42. [Google Scholar] [CrossRef]
- Amboni, M.; Barone, P.; Hausdorff, J.M. Cognitive contributions to gait and falls: Evidence and implications. Mov. Disord. 2013, 28, 1520–1533. [Google Scholar] [CrossRef] [PubMed]
- Chiaravalloti, N.D.; DeLuca, J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008, 7, 1139–1151. [Google Scholar] [CrossRef]
- Wajda, D.A.; Motl, R.W.; Sosnoff, J.J. Dual task cost of walking is related to fall risk in persons with multiple sclerosis. J. Neurol. Sci. 2013, 335, 160–163. [Google Scholar] [CrossRef]
- Sosnoff, J.J.; Socie, M.J.; Sandroff, B.M.; Balantrapu, S.; Suh, Y.; Pula, J.H.; Motl, R.W. Mobility and cognitive correlates of dual task cost of walking in persons with multiple sclerosis. Disabil. Rehabil. 2014, 36, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Sosnoff, J.J.; Sandroff, B.M.; Motl, R.W. Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait Posture 2012, 36, 154–156. [Google Scholar] [CrossRef]
- Kalron, A.; Dvir, Z.; Achiron, A. Walking while talking–difficulties incurred during the initial stages of multiple sclerosis disease process. Gait Posture 2010, 32, 332–335. [Google Scholar] [CrossRef]
- Shema-Shiratzky, S.; Hillel, I.; Mirelman, A.; Regev, K.; Hsieh, K.L.; Karni, A.; Devos, H.; Sosnoff, J.J.; Hausdorff, J.M. A wearable sensor identifies alterations in community ambulation in multiple sclerosis: Contributors to real-world gait quality and physical activity. J. Neurol. 2020, 267, 1912–1921. [Google Scholar] [CrossRef]
- Bae, M.; VanNostrand, M. Cognition and Measures of Physical Activity, Mobility, and Gait in Individuals With Multiple Sclerosis: A Systematic Review. Neurorehabilit. Neural Repair 2025, 15459683251335315. [Google Scholar] [CrossRef]
- VanNostrand, M.; Bae, M.; Ramsdell, J.C.; Kasser, S.L. Information processing speed and disease severity predict real-world ambulation in persons with multiple sclerosis. Gait Posture 2024, 111, 99–104. [Google Scholar] [CrossRef] [PubMed]
- VanNostrand, M.; Emberley, K.; Cairns, E.; Shanahan, K.; Kasser, S.L. Mobility and Dual Tasking in the Everyday Lives of Adults with Multiple Sclerosis: A Qualitative Exploration. Adapt. Phys. Act. Q. 2023, 40, 723–738. [Google Scholar] [CrossRef] [PubMed]
- Carling, A.; Forsberg, A.; Nilsagård, Y. Falls in people with multiple sclerosis: Experiences of 115 fall situations. Clin. Rehabil. 2018, 32, 526–535. [Google Scholar] [CrossRef]
- Tulipani, L.J.; Meyer, B.; Larie, D.; Solomon, A.J.; McGinnis, R.S. Metrics extracted from a single wearable sensor during sit-stand transitions relate to mobility impairment and fall risk in people with multiple sclerosis. Gait Posture 2020, 80, 361–366. [Google Scholar] [CrossRef]
- Tulipani, L.J.; Meyer, B.; Fox, S.; Solomon, A.J.; McGinnis, R.S. The Sit-to-Stand Transition as a Biomarker for Impairment: Comparison of Instrumented 30-Second Chair Stand Test and Daily Life Transitions in Multiple Sclerosis. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1213–1222. [Google Scholar] [CrossRef]
- Weed, L.; Little, C.; Kasser, S.L.; McGinnis, R.S. A Preliminary Investigation of the Effects of Obstacle Negotiation and Turning on Gait Variability in Adults with Multiple Sclerosis. Sensors 2021, 21, 5806. [Google Scholar] [CrossRef]
- Adusumilli, G.; Lancia, S.; Levasseur, V.A.; Amblee, V.; Orchard, M.; Wagner, J.M.; Naismith, R.T.; Bayer, A. Turning is an important marker of balance confidence and walking limitation in persons with multiple sclerosis. PLoS ONE 2018, 13, e0198178. [Google Scholar] [CrossRef]
- Weiss, A.; Herman, T.; Giladi, N.; Hausdorff, J.M. Objective assessment of fall risk in Parkinson’s disease using a body-fixed sensor worn for 3 days. PLoS ONE 2014, 9, e96675. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, Y. Dual task cost of cognition is related to fall risk in patients with multiple sclerosis: A prospective study. Clin. Rehabil. 2017, 31, 278–284. [Google Scholar] [CrossRef]
- Rooney, S.; Ozkul, C.; Paul, L. Correlates of dual-task performance in people with multiple sclerosis: A systematic review. Gait Posture 2020, 81, 172–182. [Google Scholar] [CrossRef]
- Quinn, G.; Comber, L.; Galvin, R.; Coote, S. The ability of clinical balance measures to identify falls risk in multiple sclerosis: A systematic review and meta-analysis. Clin. Rehabil. 2017, 32, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Abou, L.; Peters, J.; Fritz, N.E.; Sosnoff, J.J.; Kratz, A.L. Motor Cognitive Dual-Task Testing to Predict Future Falls in Multiple Sclerosis: A Systematic Review. Neurorehabilit. Neural Repair 2022, 36, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef]
- Hohol, M.J.; Orav, E.J.; Weiner, H.L. Disease steps in multiple sclerosis: A longitudinal study comparing disease steps and EDSS to evaluate disease progression. Mult. Scler. 1999, 5, 349–354. [Google Scholar] [CrossRef]
- Learmonth, Y.C.; Motl, R.W.; Sandroff, B.M.; Pula, J.H.; Cadavid, D. Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol. 2013, 13, 37. [Google Scholar] [CrossRef]
- Mancini, M.; King, L.; Salarian, A.; Holmstrom, L.; McNames, J.; Horak, F.B. Mobility Lab to Assess Balance and Gait with Synchronized Body-worn Sensors. J. Bioeng. Biomed Sci. 2011, 12 (Suppl. 1), 007. [Google Scholar]
- Spain, R.; George, R.S.; Salarian, A.; Mancini, M.; Wagner, J.; Horak, F.; Bourdette, D. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture 2012, 35, 573–578. [Google Scholar] [CrossRef]
- Moe-Nilssen, R.; Helbostad, J.L. Estimation of gait cycle characteristics by trunk accelerometry. J. Biomech. 2004, 37, 121–126. [Google Scholar] [CrossRef]
- Kalron, A.; Aloni, R.; Givon, U.; Menascu, S. Fear of falling, not falls, impacts leisure-time physical activity in people with multiple sclerosis. Gait Posture 2018, 65, 33–38. [Google Scholar] [CrossRef]
- Matsuda, P.N.; Shumway-Cook, A.; Bamer, A.M.; Johnson, S.L.; Amtmann, D.; Kraft, G.H. Falls in multiple sclerosis. PM&R 2011, 3, 624–632, quiz 632. [Google Scholar]
- Prosperini, L.; Kouleridou, A.; Petsas, N.; Leonardi, L.; Tona, F.; Pantano, P.; Pozzilli, C. The relationship between infratentorial lesions, balance deficit and accidental falls in multiple sclerosis. J. Neurol. Sci. 2011, 304, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Christopher, A.; Kraft, E.; Olenick, H.; Kiesling, R.; Doty, A. The reliability and validity of the Timed Up and Go as a clinical tool in individuals with and without disabilities across a lifespan: A systematic review: Psychometric properties of the Timed Up and Go. Disabil. Rehabil. 2021, 43, 1799–1813. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.; Jefferson, A.; Byrnes, M.; Walters, S.; Ghosh, S.; Mastaglia, F.L.; Power, B.; Anderton, R.S. Extended “Timed Up and Go” assessment as a clinical indicator of cognitive state in Parkinson’s disease. J. Neurol. Sci. 2017, 375, 86–91. [Google Scholar] [CrossRef]
- Salarian, A.; Horak, F.B.; Zampieri, C.; Carlson-Kuhta, P.; Nutt, J.G.; Aminian, K. iTUG, a sensitive and reliable measure of mobility. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 303–310. [Google Scholar] [CrossRef]
- Kieseier, B.C.; Pozzilli, C. Assessing walking disability in multiple sclerosis. Mult. Scler. 2012, 18, 914–924. [Google Scholar] [CrossRef]
- Motl, R.W.; Cohen, J.A.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis. Mult. Scler. J. 2017, 23, 704–710. [Google Scholar] [CrossRef]
- Soke, F.; Demirkaya, S.; Gulsen, C.; Yavuz, N.; Karakoc, S.; Gulsen, E.O.; Yilmaz, O.; Kocer, B.; Aydin, F.K.; Yucesan, C. The figure-of-eight walk test is a reliable and valid test for assessing walking skill in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 67, 104099. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, A.; Del Din, S.; Barry, G.; Mathers, J.C.; Rochester, L. Instrumenting gait with an accelerometer: A system and algorithm examination. Med. Eng. Phys. 2015, 37, 400–407. [Google Scholar] [CrossRef]
- Galperin, I.; Hillel, I.; Del Din, S.; Bekkers, E.M.; Nieuwboer, A.; Abbruzzese, G.; Avanzino, L.; Nieuwhof, F.; Bloem, B.R.; Rochester, L.; et al. Associations between daily-living physical activity and laboratory-based assessments of motor severity in patients with falls and Parkinson’s disease. Park. Relat. Disord. 2019, 62, 85–90. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Bae, M.; VanNostrand, M.; Burt, K.B.; Kasser, S.L. Contribution of dual-tasking to social participation in persons with multiple sclerosis: A structural equation modeling approach. Mult. Scler. Relat. Disord. 2024, 90, 105835. [Google Scholar] [CrossRef] [PubMed]
- VanNostrand, M.; Belanger, B.; Purin, G.; Kasser, S.L.; Cannizzaro, M. Cognitive-Motor Interference and Cortical Activation While Walking in Individuals With Multiple Sclerosis. Mot. Control. 2022, 26, 677–693. [Google Scholar] [CrossRef] [PubMed]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Mov. Disord. 2012, 27, 765–770. [Google Scholar] [CrossRef]
- Kralj, A.; Jaeger, R.J.; Munih, M. Analysis of standing up and sitting down in humans: Definitions and normative data presentation. J. Biomech. 1990, 23, 1123–1138. [Google Scholar] [CrossRef]
- Shah, V.V.; McNames, J.; Mancini, M.; Carlson-Kuhta, P.; Spain, R.I.; Nutt, J.G.; El-Gohary, M.; Curtze, C.; Horak, F.B. Quantity and quality of gait and turning in people with multiple sclerosis, Parkinson’s disease and matched controls during daily living. J. Neurol. 2020, 267, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Arpan, I.; Shah, V.V.; McNames, J.; Harker, G.; Carlson-Kuhta, P.; Spain, R.; El-Gohary, M.; Mancini, M.; Horak, F.B. Fall prediction based on instrumented measures of gait and turning in daily life in people with multiple sclerosis. Sensors 2022, 22, 5940. [Google Scholar] [CrossRef]
- Quinn, G.; Comber, L.; McGuigan, C.; Galvin, R.; Coote, S. Discriminative ability and clinical utility of the Timed Up and Go (TUG) in identifying falls risk in people with multiple sclerosis: A prospective cohort study. Clin. Rehabil. 2019, 33, 317–326. [Google Scholar] [CrossRef]
- Tajali, S.; Shaterzadeh-Yazdi, M.-J.; Negahban, H.; van Dieën, J.H.; Mehravar, M.; Majdinasab, N.; Saki-Malehi, A.; Mofateh, R. Predicting falls among patients with multiple sclerosis: Comparison of patient-reported outcomes and performance-based measures of lower extremity functions. Mult. Scler. Relat. Disord. 2017, 17, 69–74. [Google Scholar] [CrossRef]
- Dibble, L.E.; Lopez-Lennon, C.; Lake, W.; Hoffmeister, C.; Gappmaier, E. Utility of disease-specific measures and clinical balance tests in prediction of falls in persons with multiple sclerosis. J. Neurol. Phys. Ther. 2013, 37, 99–104. [Google Scholar] [CrossRef]
- Quinn, G.; Comber, L.; McGuigan, C.; Hannigan, A.; Galvin, R.; Coote, S. Risk factors for falling for people with Multiple Sclerosis identified in a prospective cohort study. Clin. Rehabil. 2021, 35, 765–774. [Google Scholar] [CrossRef]
- Nilsagard, Y.; Lundholm, C.; Denison, E.; Gunnarsson, L.G. Predicting accidental falls in people with multiple sclerosis—A longitudinal study. Clin. Rehabil. 2009, 23, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Coote, S.; Sosnoff, J.J.; Gunn, H. Fall Incidence as the Primary Outcome in Multiple Sclerosis Falls-Prevention Trials: Recommendation from the International MS Falls Prevention Research Network. Int. J. MS Care 2014, 16, 178–184. [Google Scholar] [CrossRef] [PubMed]
Variables | Fallers (N = 14) | Non-Fallers (N = 13) | p-Value | Cohen’s d |
---|---|---|---|---|
Age (years ± SD) | 60.07 ± 11.31 | 58.08 ± 10.06 | 0.63 | −0.18 |
Years post diagnosis (years ± SD) | 24.00 ± 15.40 | 19.23 ± 7.67 | 0.32 | 0.38 |
PDDSs (median [range]) | 2 (0–6) | 1 (0–6) | 0.07 | −0.74 |
Gender (% female) | 92.86 | 76.92 | 0.24 | -- |
MS subtype | 8 RR, 5 SP, 1 PP | 11 RR, 2 SP | 0.26 | -- |
Test | Metrics | Fallers (N = 14) | Non-Fallers (N = 13) | p-Value | Cohen’s d |
---|---|---|---|---|---|
TUG | Gait speed (m/s) | 1.04 ± 0.32 | 1.14 ± 0.27 | 0.39 | 0.34 |
Stride regularity (arbitrary units) | 0.57 ± 0.14 | 0.65 ± 0.16 | 0.18 | 0.54 | |
TUG-extended | Gait speed (m/s) | 0.87 ± 0.29 | 0.96 ± 0.27 | 0.39 | 0.34 |
Stride regularity (arbitrary units) | 0.46 ± 0.19 | 0.57 ± 0.17 | 0.13 | 0.61 | |
Verbal fluency (utterances per second) | 0.32 ± 0.17 | 0.32 ± 0.14 | 0.97 | 0.01 | |
25-foot walk and turn | Gait speed (m/s) | 0.83 ± 0.30 | 0.95 ± 0.24 | 0.30 | 0.41 |
Stride regularity (arbitrary units) | 0.44 ± 0.20 | 0.59 ± 0.18 | 0.06 | 0.77 | |
Verbal fluency (utterances per second) | 0.27 ± 0.12 | 0.37 ± 0.08 | 0.02 * | 0.94 | |
Figure 8 walk | Gait speed (m/s) | 0.79 ± 0.27 | 0.87 ± 0.25 | 0.47 | 0.28 |
Stride regularity (arbitrary units) | 0.44 ± 0.20 | 0.59 ± 0.18 | 0.19 | 0.52 | |
Verbal fluency (utterances per second) | 0.33 ± 0.15 | 0.35 ± 0.10 | 0.58 | 0.22 |
Assessment | R2 | Goodness of Fit | AUC | AUC 95% CI | Sensitivity | Specificity | Predictive Value |
---|---|---|---|---|---|---|---|
TUG | 0.10 | 0.49 | 0.67 | 0.46–0.88 | 64.30% | 61.50% | 63.00% |
TUG-extended | 0.13 | 0.03 | 0.63 | 0.42–0.85 | 46.20% | 57.10% | 51.90% |
25-foot walk and turn | 0.32 | 0.06 | 0.76 | 0.56–0.96 | 71.40% | 69.20% | 70.40% |
Figure 8 walk | 0.10 | 0.51 | 0.67 | 0.45–0.88 | 53.80% | 71.40% | 63.00% |
Metrics | Test | Mean ± SD | p-Value | Cohen’s d | ICC | ICC 95% CI |
---|---|---|---|---|---|---|
Gait speed (m/s) | Real-world ambulation | 0.98 ± 0.29 | -- | -- | -- | -- |
TUG | 1.14 ± 0.29 | <0.01 * | 0.69 | 0.56 | 0.12–0.81 | |
TUG-extended | 0.93 ± 0.29 | 0.44 | 0.18 | 0.66 | 0.32–0.85 | |
25-foot walk and turn | 0.93 ± 0.30 | 0.37 | 0.21 | 0.75 | 0.48–0.89 | |
Figure 8 walk | 0.85 ± 0.27 | 0.03 * | 0.53 | 0.61 | 0.23–0.83 | |
Stride regularity (arbitrary units) | Real-world ambulation | 0.51 ± 0.21 | -- | -- | -- | -- |
TUG | 0.61 ± 0.17 | 0.04 * | 0.48 | 0.41 | 0.01–0.70 | |
TUG-extended | 0.53 ± 0.20 | 0.52 | 0.15 | 0.63 | 0.41–0.89 | |
25-foot walk and turn | 0.54 ± 0.21 | 0.22 | 0.29 | 0.81 | 0.59–0.92 | |
Figure 8 walk | 0.49 ± 0.16 | 0.53 | 0.15 | 0.74 | 0.46–0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
VanNostrand, M.; Bae, M.; Lloyd, N.; Khodabandeloo, S.; Kasser, S.L. Beyond the Timed Up and Go: Dual-Task Gait Assessments Improve Fall Risk Detection and Reflect Real-World Mobility in Multiple Sclerosis. Sclerosis 2025, 3, 22. https://doi.org/10.3390/sclerosis3030022
VanNostrand M, Bae M, Lloyd N, Khodabandeloo S, Kasser SL. Beyond the Timed Up and Go: Dual-Task Gait Assessments Improve Fall Risk Detection and Reflect Real-World Mobility in Multiple Sclerosis. Sclerosis. 2025; 3(3):22. https://doi.org/10.3390/sclerosis3030022
Chicago/Turabian StyleVanNostrand, Michael, Myeongjin Bae, Natalie Lloyd, Sadegh Khodabandeloo, and Susan L. Kasser. 2025. "Beyond the Timed Up and Go: Dual-Task Gait Assessments Improve Fall Risk Detection and Reflect Real-World Mobility in Multiple Sclerosis" Sclerosis 3, no. 3: 22. https://doi.org/10.3390/sclerosis3030022
APA StyleVanNostrand, M., Bae, M., Lloyd, N., Khodabandeloo, S., & Kasser, S. L. (2025). Beyond the Timed Up and Go: Dual-Task Gait Assessments Improve Fall Risk Detection and Reflect Real-World Mobility in Multiple Sclerosis. Sclerosis, 3(3), 22. https://doi.org/10.3390/sclerosis3030022