Receptors Implicated in Microgravity-Induced Bone Loss
Abstract
:1. Introduction
2. Cells and Signaling Directly Involved in Bone Remodeling
2.1. Osteoclasts
2.2. Osteoblasts
2.3. Osteocytes
2.4. RANKL and RANK in Extracellular Vesicles
3. Patterns of Human Bone Loss in Low Gravity
4. Changes in Fluid Distribution and Circulation in Low Gravity
5. The Effect of Microgravity on Cell–Cell and Cell–Extracellular Matrix Interactions
5.1. Low Gravity Effects on the Matrisome
5.2. Evidence for Integrin-Mediated Response to Low Gravity
5.3. Cell–Cell Adhesions and Tight Junctions in Low Gravity
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Mack, P.B.; Lacuance, P.A.; Vose, G.P.; Vogt, F.B. Bone Demineralization of Foot and Hand of Gemini-Titan Iv, V and Vii Astronauts during Orbital Flight. Am. J. Roentgenol. 1967, 100, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Vose, G.P. Review of Roentgenographic Bone Demineralization Studies of the Gemini Space Flights. Am. J. Roentgenol. Radium. Ther. Nucl. Med. 1974, 121, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Vico, L.; Chappard, D.; Palle, S.; Bakulin, A.V.; Novikov, V.E.; Alexandre, C. Trabecular Bone Remodeling after Seven Days of Weightlessness Exposure (Biocosmos 1667). Am. J. Physiol. 1988, 255 Pt 2, R243–R247. [Google Scholar] [CrossRef] [PubMed]
- Vico, L.; Collet, P.; Guignandon, A.; Lafage-Proust, M.H.; Thomas, T.; Rehaillia, M.; Alexandre, C. Effects of Long-Term Microgravity Exposure on Cancellous and Cortical Weight-Bearing Bones of Cosmonauts. Lancet 2000, 355, 1607–1611. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.; Van Loon, J.; Bloomfield, S.; Vico, L.; Chopard, A.; Rittweger, J.; Kyparos, A.; Blottner, D.; Vuori, I.; Gerzer, R.; et al. Towards Human Exploration of Space: The Theseus Review Series on Muscle and Bone Research Priorities. npj Microgravity 2017, 3, 8. [Google Scholar] [PubMed]
- Clarke, B. Normal Bone Anatomy and Physiology. Clin. J. Am. Soc. Nephrol. 2008, 3 (Suppl. S3), S131–S139. [Google Scholar] [CrossRef] [PubMed]
- Man, J.; Graham, T.; Squires-Donelly, G.; Laslett, A.L. The Effects of Microgravity on Bone Structure and Function. npj Microgravity 2022, 8, 9. [Google Scholar]
- Liu, Z.; Wang, Q.; Zhang, J.; Qi, S.; Duan, Y.; Li, C. The Mechanotransduction Signaling Pathways in the Regulation of Osteogenesis. Int. J. Mol. Sci. 2023, 24, 14326. [Google Scholar] [CrossRef] [PubMed]
- Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.M.; De Geest, M.; Hauslage, J.; Hilbig, R.; Hill, R.J.A.; Lebert, M.; et al. Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and Recommended Terminology. Astrobiology 2013, 13, 1–17. [Google Scholar] [CrossRef]
- Nishimura, Y. Technology Using Simulated Microgravity. Regen. Ther. 2023, 24, 318–323. [Google Scholar] [CrossRef]
- Teitelbaum, S.L. Bone Resorption by Osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef]
- Lacey, D.L.; Timms, E.; Tan, H.L.; Kelley, M.J.; Dunstan, C.R.; Burgess, T.; Elliott, R.; Colombero, A.; Elliott, G.; Scully, S.; et al. Osteoprotegerin Ligand Is a Cytokine That Regulates Osteoclast Differentiation and Activation. Cell 1998, 93, 165–176. [Google Scholar] [CrossRef]
- Kong, Y.-Y.; Yoshida, H.; Sarosi, I.; Tan, H.-L.; Timms, E.; Capparelli, C.; Morony, S.; Oliveira-Dos-Santos, A.J.; Van, G.; Itie, A.; et al. Opgl Is a Key Regulator of Osteoclastogenesis, Lymphocyte Development and Lymph-Node Organogenesis. Nature 1999, 397, 315–323. [Google Scholar] [CrossRef]
- Xiong, J.; O’Brien, C.A. Osteocyte Rankl: New Insights into the Control of Bone Remodeling. J. Bone Miner. Res. 2012, 27, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Onal, M.; Jilka, R.L.; Weinstein, R.S.; Manolagas, S.C.; O’Brien, C.A. Matrix-Embedded Cells Control Osteoclast Formation. Nat. Med. 2011, 17, 1235–1241. [Google Scholar]
- Nakashima, T.; Hayashi, M.; Fukunaga, T.; Kurata, K.; Oh-Hora, M.; Feng, J.Q.; Bonewald, L.F.; Kodama, T.; Wutz, A.; Wagner, E.F.; et al. Evidence for Osteocyte Regulation of Bone Homeostasis through Rankl Expression. Nat. Med. 2011, 17, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Killock, D. Bone: Osteocyte Rankl in Bone Homeostasis: A Paradigm Shift? Nat. Rev. Rheumatol. 2011, 7, 619. [Google Scholar] [CrossRef]
- Kong, Y.-Y.; Penninger, J. Molecular Control of Bone Remodeling and Osteoporosis. Exp. Gerontol. 2000, 35, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Hikita, A.; Yana, I.; Wakeyama, H.; Nakamura, M.; Kadono, Y.; Oshima, Y.; Nakamura, K.; Seiki, M.; Tanaka, S. Negative Regulation of Osteoclastogenesis by Ectodomain Shedding of Receptor Activator of Nf-Kappab Ligand. J. Biol. Chem. 2006, 281, 36846–36855. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.Y.; Boyle, W.J.; Penninger, J.M. Osteoprotegerin Ligand: A Common Link between Osteoclastogenesis, Lymph Node Formation and Lymphocyte Development. Immunol. Cell. Biol. 1999, 77, 188–193. [Google Scholar] [CrossRef]
- Kong, Y.Y.; Feige, U.; Sarosi, I.; Bolon, B.; Tafuri, A.; Morony, S.; Capparelli, C.; Li, J.; Elliott, R.; McCabe, S.; et al. Activated T Cells Regulate Bone Loss and Joint Destruction in Adjuvant Arthritis through Osteoprotegerin Ligand. Nature 1999, 402, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Maraskovsky, E.; Billingsley, W.L.; Dougall, W.C.; Tometsko, M.E.; Roux, E.R.; Teepe, M.C.; DuBose, R.F.; Cosman, D.; Galibert, L. A Homologue of the Tnf Receptor and Its Ligand Enhance T-Cell Growth and Dendritic-Cell Function. Nature 1997, 390, 175–179. [Google Scholar] [CrossRef]
- Serrano, E.M.; Ricofort, R.D.; Zuo, J.; Ochotny, N.; Manolson, M.F.; Holliday, L.S. Regulation of Vacuolar H(+)-Atpase in Microglia by Rankl. Biochem. Biophys. Res. Commun. 2009, 389, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.J.; Sims, N.A. Rankl/Opg; Critical Role in Bone Physiology. Rev. Endocr. Metab. Disord. 2015, 16, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Faccio, R.; Takeshita, S.; Zallone, A.; Ross, F.P.; Teitelbaum, S.L. C-Fms and the Alphavbeta3 Integrin Collaborate during Osteoclast Differentiation. J. Clin. Investig. 2003, 111, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Ohneda, O.; Arai, F.; Iwamoto, K.; Okada, S.; Takagi, K.; Anderson, D.M.; Suda, T. Bifurcation of Osteoclasts and Dendritic Cells from Common Progenitors. Blood 2001, 98, 2544–2554. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, H. Osteoimmunology: Shared Mechanisms and Crosstalk between the Immune and Bone Systems. Nat. Rev. Immunol. 2007, 7, 292–304. [Google Scholar] [PubMed]
- Jiang, J.; Zuo, J.; Hurst, I.; Holliday, L. The Synergistic Effect of Peptidoglycan and Lipopolysaccaride on Osteoclast Formation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2003, 96, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Abu-Amer, Y.; Nelson, C.A.; Fremont, D.H.; Ross, F.P.; Teitelbaum, S.L. Tumour Necrosis Factor Superfamily Cytokines and the Pathogenesis of Inflammatory Osteolysis. Ann. Rheum. Dis. 2002, 61, ii82–ii83. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Takeshita, S.; Barker, J.E.; Kanagawa, O.; Ross, F.P.; Teitelbaum, S.L. Tnf-Alpha Induces Osteoclastogenesis by Direct Stimulation of Macrophages Exposed to Permissive Levels of Rank Ligand. J. Clin. Investig. 2000, 106, 1481–1488. [Google Scholar] [CrossRef]
- King, G.J.; Holtrop, M.E. Actin-Like Filaments in Bone Cells of Cultured Mouse Calvaria as Demonstrated by Binding to Heavy Meromyosin. J. Cell Biol. 1975, 66, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Lakkakorpi, P.; Tuukkanen, J.; Hentunen, T.; Järvelin, K.; Väänänen, K. Organization of Osteoclast Microfilaments during the Attachment to Bone Surface In Vitro. J. Bone Miner. Res. 1989, 4, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Destaing, O.; Saltel, F.; Géminard, J.-C.; Jurdic, P.; Bard, F. Podosomes Display Actin Turnover and Dynamic Self-Organization in Osteoclasts Expressing Actin-Green Fluorescent Protein. Mol. Biol. Cell 2003, 14, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Saltel, F.; Destaing, O.; Bard, F.; Eichert, D.; Jurdic, P. Apatite-Mediated Actin Dynamics in Resorbing Osteoclasts. Mol. Biol. Cell 2004, 15, 5231–5241. [Google Scholar] [CrossRef] [PubMed]
- Jurdic, P.; Saltel, F.; Chabadel, A.; Destaing, O. Podosome and Sealing Zone: Specificity of the Osteoclast Model. Eur. J. Cell Biol. 2005, 85, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Seano, G.; Primo, L. Podosomes and Invadopodia: Tools to Breach Vascular Basement Membrane. Cell Cycle 2015, 14, 1370–1374. [Google Scholar] [CrossRef] [PubMed]
- Génot, E.; Gligorijevic, B. Invadosomes in Their Natural Habitat. Eur. J. Cell Biol. 2014, 93, 367–379. [Google Scholar] [PubMed]
- Destaing, O.; Petropoulos, C.; Albiges-Rizo, C. Coupling between Acto-Adhesive Machinery and Ecm Degradation in Invadosomes. Cell Adhes. Migr. 2014, 8, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Teitelbaum, S.L. The Osteoclast and Its Unique Cytoskeleton. Ann. N. Y. Acad. Sci. 2011, 1240, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Lane, N.E.; Yao, W.; Nakamura, M.C.; Humphrey, M.B.; Kimmel, D.; Huang, X.; Sheppard, D.; Ross, F.P.; Teitelbaum, S.L. Mice Lacking the Integrin Beta5 Subunit Have Accelerated Osteoclast Maturation and Increased Activity in the Estrogen-Deficient State. J. Bone Miner. Res. 2005, 20, 58–66. [Google Scholar]
- McHugh, K.P.; Hodivala-Dilke, K.; Zheng, M.H.; Namba, N.; Lam, J.; Novack, D.; Feng, X.; Ross, F.P.; Hynes, R.O.; Teitelbaum, S.L. Mice Lacking Beta3 Integrins Are Osteosclerotic Because of Dysfunctional Osteoclasts. J. Clin. Investig. 2000, 105, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Baron, R. Molecular Mechanisms of Bone Resorption by the Osteoclast. Anat. Rec. 1989, 224, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Blair, H.C.; Teitelbaum, S.L.; Ghiselli, R.; Gluck, S. Osteoclastic Bone Resorption by a Polarized Vacuolar Proton Pump. Science 1989, 245, 855–857. [Google Scholar] [CrossRef]
- Collins, M.P.; Forgac, M. Regulation and Function of V-Atpases in Physiology and Disease. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183341. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Y.M.; Wu, D.; Bueler, S.A.; Robinson, C.V.; Rubinstein, J.L. Structure of V-Atpase from the Mammalian Brain. Science 2020, 367, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Long, T.; Hassan, A.; Wang, J.; Sun, Y.; Xie, X.-S.; Li, X. Cryo-Em Structures of Intact V-Atpase from Bovine Brain. Nat. Commun. 2020, 11, 3921. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.S.; Holliday, L.S.; Krits, I.; Gluck, S.L. Vacuolar H+-Atpase Activity and Expression in Mouse Bone Marrow Cultures. J. Bone Miner. Res. 1999, 14, 2127–2136. [Google Scholar] [CrossRef] [PubMed]
- Toyomura, T.; Oka, T.; Yamaguchi, C.; Wada, Y.; Futai, M. Three Subunit a Isoforms of Mouse Vacuolar H(+)-Atpase. Preferential Expression of the A3 Isoform during Osteoclast Differentiation. J. Biol. Chem. 2000, 275, 8760–8765. [Google Scholar] [CrossRef] [PubMed]
- Bromme, D.; Okamoto, K.; Wang, B.B.; Biroc, S. Human Cathepsin O2, a Matrix Protein-Degrading Cysteine Protease Expressed in Osteoclasts. Functional Expression of Human Cathepsin O2 in Spodoptera Frugiperda and Characterization of the Enzyme. J. Biol. Chem. 1996, 271, 2126–2132. [Google Scholar] [CrossRef]
- Lehenkari, P.; Hentunen, T.A.; Laitala-Leinonen, T.; Tuukkanen, J.; Väänänen, H. Carbonic Anhydrase Ii Plays a Major Role in Osteoclast Differentiation and Bone Resorption by Effecting the Steady State Intracellular Ph and Ca2+. Exp. Cell Res. 1998, 242, 128–137. [Google Scholar] [CrossRef]
- Lu, M.; Holliday, L.S.; Zhang, L.; Dunn, W.A., Jr.; Gluck, S.L. Interaction between Aldolase and Vacuolar H+-Atpase: Evidence for Direct Coupling of Glycolysis to the Atp-Hydrolyzing Proton Pump. J. Biol. Chem. 2001, 276, 30407–30413. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Sautin, Y.Y.; Holliday, L.S.; Gluck, S.L. The Glycolytic Enzyme Aldolase Mediates Assembly, Expression, and Activity of Vacuolar H+-Atpase. J. Biol. Chem. 2004, 279, 8732–8739. [Google Scholar] [CrossRef] [PubMed]
- Kornak, U.; Kasper, D.; Bösl, M.R.; Kaiser, E.; Schweizer, M.; Schulz, A.; Friedrich, W.; Delling, G.; Jentsch, T.J. Loss of the Clc-7 Chloride Channel Leads to Osteopetrosis in Mice and Man. Cell 2001, 104, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Lange, P.F.; Wartosch, L.; Jentsch, T.J.; Fuhrmann, J.C. Clc-7 Requires Ostm1 as a Beta-Subunit to Support Bone Resorption and Lysosomal Function. Nature 2006, 440, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Frattini, A.; Orchard, P.J.; Sobacchi, C.; Giliani, S.; Abinun, M.; Mattsson, J.P.; Keeling, D.J.; Andersson, A.-K.; Wallbrandt, P.; Zecca, L.; et al. Defects in Tcirg1 Subunit of the Vacuolar Proton Pump Are Responsible for a Subset of Human Autosomal Recessive Osteopetrosis. Nat. Genet. 2000, 25, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Sly, W.S.; Hewett-Emmett, D.; Whyte, M.P.; Yu, Y.S.; Tashian, R.E. Carbonic Anhydrase Ii Deficiency Identified as the Primary Defect in the Autosomal Recessive Syndrome of Osteopetrosis with Renal Tubular Acidosis and Cerebral Calcification. Proc. Natl. Acad. Sci. USA 1983, 80, 2752–2756. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Liu, J.; Zheng, X.; Wang, Z.; Zhang, Y.; Hao, Y.; Yang, T.; Deng, H. Deficiency of Atp6v1h Causes Bone Loss by Inhibiting Bone Resorption and Bone Formation through the Tgf-Beta1 Pathway. Theranostics 2016, 6, 2183–2195. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, X.; Ma, Y.; Duan, X. Atp6v1h Deficiency Blocks Bone Loss in Simulated Microgravity Mice through the Fos-Jun-Src-Integrin Pathway. Int. J. Mol. Sci. 2024, 25, 637. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, M.H.; Nesbitt, S.A.; Horton, M.A. Integrins on Rat Osteoclasts: Characterization of Two Monoclonal Antibodies (F4 and F11) to Rat Beta 3. J. Bone Miner. Res. 1992, 7, 345–351. [Google Scholar] [CrossRef]
- Hughes, D.; Salter, D.; Dedhar, S.; Simpson, R. Simpson. Integrin Expression in Human Bone. J. Bone Miner. Res. 1993, 8, 527–533. [Google Scholar] [CrossRef]
- Nesbitt, S.; Nesbit, A.; Helfrich, M.; Horton, M. Biochemical Characterization of Human Osteoclast Integrins. Osteoclasts Express Alpha V Beta 3, Alpha 2 Beta 1, and Alpha V Beta 1 Integrins. J. Biol. Chem. 1993, 268, 16737–16745. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, M.H.; Nesbitt, S.A.; Lakkakorpi, P.T.; Barnes, M.J.; Bodary, S.C.; Shankar, G.; Mason, W.T.; Mendrick, D.L.; Vaananen, H.K.; Horton, M.A. Beta 1 Integrins and Osteoclast Function: Involvement in Collagen Recognition and Bone Resorption. Bone 1996, 19, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Tachibana, I.; Miyado, K.; Kobayashi, M.; Miyazaki, T.; Funakoshi, T.; Kimura, H.; Yamane, H.; Saito, Y.; Goto, H.; et al. Tetraspanins Cd9 and Cd81 Function to Prevent the Fusion of Mononuclear Phagocytes. J. Cell Biol. 2003, 161, 945–956. [Google Scholar] [CrossRef]
- Kitazawa, S.; Ross, F.P.; McHugh, K.; Teitelbaum, S.L. Interleukin-4 Induces Expression of the Integrin Alpha V Beta 3 Via Transactivation of the Beta 3 Gene. J. Biol. Chem. 1995, 270, 4115–4120. [Google Scholar] [CrossRef] [PubMed]
- Sago, K.; Teitelbaum, S.L.; Venstrom, K.; Reichardt, L.F.; Ross, F.P. The Integrin Alphavbeta5 Is Expressed on Avian Osteoclast Precursors and Regulated by Retinoic Acid. J. Bone Miner. Res. 1999, 14, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Duong, L.T.; Rodan, G.A. Integrin-Mediated Signaling in the Regulation of Osteoclast Adhesion and Activation. Front. Biosci. 1998, 3, d849–d864. [Google Scholar] [CrossRef] [PubMed]
- Holliday, L.; Welgus, H.; Hanna, J.; Lee, B.; Lu, M.; Jeffrey, J.; Gluck, S. Interstitial Collagenase Activity Stimulates the Formation of Actin Rings and Ruffled Membranes in Mouse Marrow Osteoclasts. Calcif. Tissue Int. 2003, 72, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Holliday, L.S.; Welgus, H.G.; Fliszar, C.J.; Veith, G.M.; Jeffrey, J.J.; Gluck, S.L. Initiation of Osteoclast Bone Resorption by Interstitial Collagenase. J. Biol. Chem. 1997, 272, 22053–22058. [Google Scholar] [CrossRef] [PubMed]
- Holliday, L.S.; Vakani, A.; Archer, L.; Dolce, C. Effects of Matrix Metalloproteinase Inhibitors on Bone Resorption and Orthodontic Tooth Movement. J. Dent. Res. 2003, 82, 687–691. [Google Scholar] [CrossRef]
- Feng, X.; Novack, D.V.; Faccio, R.; Ory, D.S.; Aya, K.; Boyer, M.I.; McHugh, K.P.; Ross, F.P.; Teitelbaum, S.L. A Glanzmann’s Mutation in Beta 3 Integrin Specifically Impairs Osteoclast Function. J. Clin. Investig. 2001, 107, 1137–1144. [Google Scholar] [CrossRef]
- Mao, L.; Wang, L.; Xu, J.; Zou, J. The Role of Integrin Family in Bone Metabolism and Tumor Bone Metastasis. Cell Death Discov. 2023, 9, 119. [Google Scholar] [PubMed]
- Andreeva, E.; Matveeva, D.; Zhidkova, O.; Zhivodernikov, I.; Kotov, O.; Buravkova, L. Real and Simulated Microgravity: Focus on Mammalian Extracellular Matrix. Life 2022, 12, 1343. [Google Scholar] [CrossRef] [PubMed]
- Meyers, V.E.; Zayzafoon, M.; Gonda, S.R.; Gathings, W.E.; McDonald, J.M. Modeled Microgravity Disrupts Collagen I/Integrin Signaling during Osteoblastic Differentiation of Human Mesenchymal Stem Cells. J. Cell. Biochem. 2004, 93, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Buravkova, L.; Larina, I.; Andreeva, E.; Grigoriev, A. Microgravity Effects on the Matrisome. Cells 2021, 10, 2226. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Guo, F.; Wu, F.; Xu, H.; Yang, C.; Li, J.; Liang, P.; Zhang, H.; Qu, L.; Tan, Y.; et al. Integrin Alphavbeta3 Mediates the Synergetic Regulation of Core-Binding Factor Alpha1 Transcriptional Activity by Gravity and Insulin-Like Growth Factor-1 through Phosphoinositide 3-Kinase Signaling. Bone 2014, 69, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Gregg, R.K. Implications of Microgravity-Induced Cell Signaling Alterations Upon Cancer Cell Growth, Invasiveness, Metastatic Potential, and Control by Host Immunity. Int. Rev. Cell Mol. Biol. 2021, 361, 107–164. [Google Scholar] [PubMed]
- Lin, X.; Zhang, K.; Wei, D.; Tian, Y.; Gao, Y.; Chen, Z.; Qian, A. The Impact of Spaceflight and Simulated Microgravity on Cell Adhesion. Int. J. Mol. Sci. 2020, 21, 3031. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, N.; Khandani, A.; Camirand, A.; Harrison, R.E. Effects of Microgravity on Osteoclast Bone Resorption and Osteoblast Cytoskeletal Organization and Adhesion. Bone 2011, 49, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Hurst, I.R.; Zuo, J.; Jiang, J.; Holliday, L.S. Actin-Related Protein 2/3 Complex Is Required for Actin Ring Formation. J. Bone Miner. Res. 2004, 19, 499–506. [Google Scholar] [CrossRef]
- Fu, J.; Goldsmith, M.; Crooks, S.D.; Condon, S.F.; Morris, M.; Komarova, S.V. Bone Health in Spacefaring Rodents and Primates: Systematic Review and Meta-Analysis. Npj Microgravity 2021, 7, 19. [Google Scholar] [CrossRef]
- Rutkovskiy, A.; Stenslokken, K.O.; Vaage, I.J. Osteoblast Differentiation at a Glance. Med. Sci. Monit. Basic. Res. 2016, 22, 95–106. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. Functions of Rankl/Rank/Opg in Bone Modeling and Remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef]
- Chan, A.S.M.; Clairfeuille, T.; Landao-Bassonga, E.; Kinna, G.; Ng, P.Y.; Loo, L.S.; Cheng, T.S.; Zheng, M.; Hong, W.; Teasdale, R.D.; et al. Sorting Nexin 27 Couples Pthr Trafficking to Retromer for Signal Regulation in Osteoblasts during Bone Growth. Mol. Biol. Cell 2016, 27, 1367–1382. [Google Scholar] [CrossRef]
- Jilka, R.L.; Weinstein, R.S.; Bellido, T.; Roberson, P.; Parfitt, A.M.; Manolagas, S.C. Increased Bone Formation by Prevention of Osteoblast Apoptosis with Parathyroid Hormone. J. Clin. Investig. 1999, 104, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Balemans, W.; Van Hul, W. The Genetics of Low-Density Lipoprotein Receptor-Related Protein 5 in Bone: A Story of Extremes. Endocrinology 2007, 148, 2622–2629. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.A.; Plotkin, L.I.; Galli, C.; Goellner, J.J.; Gortazar, A.R.; Allen, M.R.; Robling, A.G.; Bouxsein, M.; Schipani, E.; Turner, C.H.; et al. Control of Bone Mass and Remodeling by Pth Receptor Signaling in Osteocytes. PLoS ONE 2008, 3, e2942. [Google Scholar]
- Kang, S. Low-Density Lipoprotein Receptor-Related Protein 6-Mediated Signaling Pathways and Associated Cardiovascular Diseases: Diagnostic and Therapeutic Opportunities. Hum. Genet. 2020, 139, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/Beta-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar]
- Van Wesenbeeck, L.; Cleiren, E.; Gram, J.; Beals, R.K.; Bénichou, O.; Scopelliti, D.; Key, L.; Renton, T.; Bartels, C.; Gong, Y.; et al. Six Novel Missense Mutations in the Ldl Receptor-Related Protein 5 (Lrp5) Gene in Different Conditions with an Increased Bone Density. Am. J. Hum. Genet. 2003, 72, 763–771. [Google Scholar] [CrossRef]
- Whyte, M.P.; McAlister, W.H.; Zhang, F.; Bijanki, V.N.; Nenninger, A.; Gottesman, G.S.; Lin, E.L.; Huskey, M.; Duan, S.; Dahir, K.; et al. New Explanation for Autosomal Dominant High Bone Mass: Mutation of Low-Density Lipoprotein Receptor-Related Protein 6. Bone 2019, 127, 228–243. [Google Scholar] [CrossRef]
- Whyte, M.P.; Mumm, S.; Baker, J.C.; Zhang, F.; Sedighi, H.; Duan, S.; Cundy, T. Lrp6 High Bone Mass Characterized in Two Generations Harboring a Unique Mutation of Low-Density Lipoprotein Receptor-Related Protein 6. JBMR Plus 2023, 7, e10717. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin Binds to Lrp5/6 and Antagonizes Canonical Wnt Signaling. J. Biol. Chem. 2005, 280, 19883–19887. [Google Scholar] [CrossRef] [PubMed]
- Owen, T.A.; Aronow, M.; Shalhoub, V.; Barone, L.M.; Wilming, L.; Tassinari, M.S.; Kennedy, M.B.; Pockwinse, S.; Lian, J.B.; Stein, G.S. Progressive Development of the Rat Osteoblast Phenotype in Vitro: Reciprocal Relationships in Expression of Genes Associated with Osteoblast Proliferation and Differentiation during Formation of the Bone Extracellular Matrix. J. Cell. Physiol. 1990, 143, 420–430. [Google Scholar] [CrossRef]
- Hirai, F.; Nakayamada, S.; Okada, Y.; Saito, K.; Kurose, H.; Mogami, A.; Tanaka, Y. Small Gtpase Rho Signaling Is Involved in Beta1 Integrin-Mediated up-Regulation of Intercellular Adhesion Molecule 1 and Receptor Activator of Nuclear Factor Kappab Ligand on Osteoblasts and Osteoclast Maturation. Biochem. Biophys. Res. Commun. 2007, 356, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Nakayamada, S.; Okada, Y.; Saito, K.; Tamura, M.; Tanaka, Y. Beta1 Integrin/Focal Adhesion Kinase-Mediated Signaling Induces Intercellular Adhesion Molecule 1 and Receptor Activator of Nuclear Factor Kappab Ligand on Osteoblasts and Osteoclast Maturation. J. Biol. Chem. 2003, 278, 45368–45374. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; James, A.W.; Chung, J.; Lee, K.; Zhang, J.B.; Ho, S.; Lee, K.S.; Kim, T.M.; Niimi, T.; Kuroda, S.; et al. Nell-1 Promotes Cell Adhesion and Differentiation via Integrinbeta1. J. Cell Biochem. 2012, 113, 3620–3628. [Google Scholar] [CrossRef] [PubMed]
- James, A.W.; Shen, J.; Zhang, X.; Asatrian, G.; Goyal, R.; Kwak, J.H.; Jiang, L.; Bengs, B.; Culiat, C.T.; Turner, A.S.; et al. Nell-1 in the Treatment of Osteoporotic Bone Loss. Nat. Commun. 2015, 6, 7362. [Google Scholar] [CrossRef] [PubMed]
- Jilka, R.L.; Weinstein, R.S.; Bellido, T.; Parfitt, A.M.; Manolagas, S.C. Osteoblast Programmed Cell Death (Apoptosis): Modulation by Growth Factors and Cytokines. J. Bone Miner. Res. 1998, 13, 793–802. [Google Scholar] [CrossRef] [PubMed]
- A Sims, N.; Martin, T.J. Coupling the Activities of Bone Formation and Resorption: A Multitude of Signals within the Basic Multicellular Unit. Bonekey Rep. 2014, 3, 481. [Google Scholar] [CrossRef]
- Florencio-Silva, R.; da Silva Sasso, G.R.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef]
- Amarasekara, D.S.; Kim, S.; Rho, J. Regulation of Osteoblast Differentiation by Cytokine Networks. Int. J. Mol. Sci. 2021, 22, 2851. [Google Scholar] [CrossRef]
- Izu, Y.; Mizoguchi, F.; Kawamata, A.; Hayata, T.; Nakamoto, T.; Nakashima, K.; Inagami, T.; Ezura, Y.; Noda, M. Angiotensin Ii Type 2 Receptor Blockade Increases Bone Mass. J. Biol. Chem. 2008, 284, 4857–4864. [Google Scholar] [CrossRef] [PubMed]
- Queiroz-Junior, C.M.; Santos, A.C.P.M.; Galvao, I.; Souto, G.R.; Mesquita, R.A.; Sa, M.A.; Ferreira, A.J. The Angiotensin Converting Enzyme 2/Angiotensin-(1-7)/Mas Receptor Axis as a Key Player in Alveolar Bone Remodeling. Bone 2019, 128, 115041. [Google Scholar] [CrossRef]
- Strollo, F. Hormonal Changes in Humans during Spaceflight. Adv. Space Biol. Med. 1999, 7, 99–129. [Google Scholar] [PubMed]
- Strollo, F.; Strollo, G.; More, M.; Bollanti, L.; Ciarmatori, A.; Longo, E.; Quintiliani, R.; Mambro, A.; Mangrossa, N.; Ferretti, C. Hormonal Adaptation to Real and Simulated Microgravity. J. Gravit. Physiol. 1998, 5, P89–P92. [Google Scholar] [PubMed]
- Bhaskar, N.; Kachappilly, M.C.; Bhushan, V.; Pandya, H.J.; Basu, B. Electrical Field Stimulated Modulation of Cell Fate of Pre-Osteoblasts on Pvdf/Bt/Mwcnt Based Electroactive Biomaterials. J. Biomed. Mater. Res. Part. A 2022, 111, 340–353. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Yang, P.; Wang, Z.; Zhang, J.; Ding, C.; Shang, P. Biomechanical and Biophysical Environment of Bone from the Macroscopic to the Pericellular and Molecular Level. J. Mech. Behav. Biomed. Mater. 2015, 50, 104–122. [Google Scholar] [CrossRef] [PubMed]
- Kao, F.-C.; Chiu, P.-Y.; Tsai, T.-T.; Lin, Z.-H. The Application of Nanogenerators and Piezoelectricity in Osteogenesis. Technol. Adv. Mater. 2019, 20, 1103–1117. [Google Scholar] [CrossRef] [PubMed]
- Jee, S.-S.; Thula, T.T.; Gower, L.B. Development of Bone-Like Composites via the Polymer-Induced Liquid-Precursor (Pilp) Process. Part 1: Influence of Polymer Molecular Weight. Acta Biomater. 2010, 6, 3676–3686. [Google Scholar] [CrossRef] [PubMed]
- Olszta, M.J. Bone Structure and Formation: A New Perspective. Mater. Sci. Eng. R Rep. 2007, 58, 77–116. [Google Scholar] [CrossRef]
- Bouleftour, W.; Juignet, L.; Bouet, G.; Granito, R.N.; Vanden-Bossche, A.; Laroche, N.; Aubin, J.E.; Lafage-Proust, M.H.; Vico, L.; Malaval, L. The Role of the Sibling, Bone Sialoprotein in Skeletal Biology—Contribution of Mouse Experimental Genetics. Matrix Biol. 2016, 52–54, 60–77. [Google Scholar] [CrossRef] [PubMed]
- Si, J.; Wang, C.; Zhang, D.; Wang, B.; Hou, W.; Zhou, Y. Osteopontin in Bone Metabolism and Bone Diseases. Med. Sci. Monit. 2020, 26, e919159. [Google Scholar] [CrossRef]
- Gordon, J.A.R.; Tye, C.E.; Sampaio, A.V.; Underhill, T.M.; Hunter, G.K.; Goldberg, H.A. Bone Sialoprotein Expression Enhances Osteoblast Differentiation and Matrix Mineralization in Vitro. Bone 2007, 41, 462–473. [Google Scholar] [CrossRef]
- Rodriguez, D.E.; Thula-Mata, T.; Toro, E.J.; Yeh, Y.-W.; Holt, C.; Holliday, L.S.; Gower, L.B. Multifunctional Role of Osteopontin in Directing Intrafibrillar Mineralization of Collagen and Activation of Osteoclasts. Acta Biomater. 2014, 10, 494–507. [Google Scholar] [CrossRef]
- Hu, L.-F.; Li, J.-B.; Qian, A.-R.; Wang, F.; Shang, P. Mineralization Initiation of Mc3t3-E1 Preosteoblast Is Suppressed under Simulated Microgravity Condition. Cell Biol. Int. 2014, 39, 364–372. [Google Scholar] [CrossRef]
- Klement, B.; Spooner, B. Mineralization and Growth of Cultured Embryonic Skeletal Tissue in Microgravity. Bone 1999, 24, 349–359. [Google Scholar] [CrossRef]
- Van Loon, J.J.; Bervoets, D.J.; Burger, E.H.; Dieudonne, S.C.; Hagen, J.W.; Semeins, C.M.; Doulabi, B.Z.; Veldhuijzen, J.P. Decreased Mineralization and Increased Calcium Release in Isolated Fetal Mouse Long Bones under near Weightlessness. J. Bone Miner. Res. 1995, 10, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Whitson, P.A.; Pietrzyk, R.A.; Sams, C.F. Space Flight and the Risk of Renal Stones. J. Gravit. Physiol. 1999, 6, P87–P88. [Google Scholar]
- Pietrzyk, R.A.; Jones, J.A.; Sams, C.F.; Whitson, P.A. Renal Stone Formation among Astronauts. Aviat. Space Environ. Med. 2007, 78, A9–A13. [Google Scholar] [PubMed]
- Amos, F.F.; Dai, L.; Kumar, R.; Khan, S.R.; Gower, L.B. Mechanism of Formation of Concentrically Laminated Spherules: Implication to Randall’s Plaque and Stone Formation. Urol. Res. 2008, 37, 11–17. [Google Scholar] [CrossRef]
- Yoshizaki, I.; Nakamura, H.; Fukuyama, S.; Komatsu, H.; Yoda, S. Scientific Approach to the Optimization of Protein Crystallization Conditions for Microgravity Experiments. Ann. N. Y. Acad. Sci. 2004, 1027, 28–47. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, C.W., Jr.; Gerdts, C.; Johnson, M.D.; Webb, P. A Microfluidic, High throughput Protein Crystal Growth Method for Microgravity. PLoS ONE 2013, 8, e82298. [Google Scholar] [CrossRef]
- Reichert, P.; Prosise, W.; Fischmann, T.O.; Scapin, G.; Narasimhan, C.; Spinale, A.; Polniak, R.; Yang, X.; Walsh, E.; Patel, D.; et al. Pembrolizumab Microgravity Crystallization Experimentation. npj Microgravity 2019, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.J.; Grynpas, M.D.; Rosenberg, G.D. Maturation of Bone and Dentin Matrices in Rats Flown on the Soviet Biosatellite Cosmos 1887. FASEB J. 1990, 4, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J.; Slatopolsky, E. Vitamin D Analogs: Perspectives for Treatment. Miner. Electrolyte Metab. 1999, 25, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Wastney, M.E.; Morukov, B.V.; Larina, I.M.; Nyquist, L.E.; Abrams, S.A.; Taran, E.N.; Shih, C.-Y.; Nillen, J.L.; Davis-Street, J.E.; et al. Calcium Metabolism before, during, and after a 3-Mo Spaceflight: Kinetic and Biochemical Changes. Am. J. Physiol. Integr. Comp. Physiol. 1999, 277, R1–R10. [Google Scholar] [CrossRef] [PubMed]
- Baran, R.; Wehland, M.; Schulz, H.; Heer, M.; Infanger, M.; Grimm, D. Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 8650. [Google Scholar] [CrossRef] [PubMed]
- Robling, A.G.; Bonewald, L.F. The Osteocyte: New Insights. Annu. Rev. Physiol. 2020, 82, 485–506. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, L.; Ge, L.; Pathak, J.L. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-Bone-Related Clinical Complications. Curr. Osteoporos. Rep. 2020, 18, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Burger, E.H.; Klein-Nulend, J. Mechanotransduction in Bone—Role of the Lacuno-Canalicular Network. FASEB J. 1999, 13, S101–S112. [Google Scholar] [CrossRef]
- Genthial, R.; Gerbaix, M.; Farlay, D.; Vico, L.; Beaurepaire, E.; Débarre, D.; Gourrier, A. Third Harmonic Generation Imaging and Analysis of the Effect of Low Gravity on the Lacuno-Canalicular Network of Mouse Bone. PLoS ONE 2019, 14, e0209079. [Google Scholar] [CrossRef] [PubMed]
- Rodionova, N.; Oganov, V.; Zolotova, N. Ultrastructural Changes in Osteocytes in Microgravity Conditions. Adv. Space Res. 2002, 30, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Shoji-Matsunaga, A.; Ono, T.; Hayashi, M.; Takayanagi, H.; Moriyama, K.; Nakashima, T. Osteocyte Regulation of Orthodontic Force-Mediated Tooth Movement via Rankl Expression. Sci. Rep. 2017, 7, 8753. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, T.; Kittaka, M.; Doan, A.A.P.; Urata, R.; Prideaux, M.; Rojas, R.E.; Harding, C.V.; Boom, W.H.; Bonewald, L.F.; Greenfield, E.M.; et al. Osteocytes Directly Regulate Osteolysis via Myd88 Signaling in Bacterial Bone Infection. Nat. Commun. 2022, 13, 6648. [Google Scholar] [CrossRef] [PubMed]
- De Vries, T.J.; Huesa, C. The Osteocyte as a Novel Key Player in Understanding Periodontitis through Its Expression of Rankl and Sclerostin: A Review. Curr. Osteoporos. Rep. 2019, 17, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Kendler, D.L.; Cosman, F.; Stad, R.K.; Ferrari, S. Denosumab in the Treatment of Osteoporosis: 10 Years Later: A Narrative Review. Adv. Ther. 2021, 39, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Rengel, A.; Tran, V.; Toh, L.S. Denosumab as a Pharmacological Countermeasure against Osteopenia in Long Duration Spaceflight. Aerosp. Med. Hum. Perform. 2023, 94, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Langdahl, B.L.; Andersen, J.D. Treatment of Osteoporosis: Unmet Needs and Emerging Solutions. J. Bone Metab. 2018, 25, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Haas, A.V.; LeBoff, M.S. Osteoanabolic Agents for Osteoporosis. J. Endocr. Soc. 2018, 2, 922–932. [Google Scholar] [CrossRef]
- Bullock, W.A.; Pavalko, F.M.; Robling, A.G. Osteocytes and Mechanical Loading: The Wnt Connection. Orthod. Craniofacial Res. 2019, 22, 175–179. [Google Scholar] [CrossRef]
- Kramer, I.; Halleux, C.; Keller, H.; Pegurri, M.; Gooi, J.H.; Weber, P.B.; Feng, J.Q.; Bonewald, L.F.; Kneissel, M. Osteocyte Wnt/Beta-Catenin Signaling Is Required for Normal Bone Homeostasis. Mol. Cell Biol. 2010, 30, 3071–3085. [Google Scholar] [CrossRef] [PubMed]
- Haugh, M.G.; Vaughan, T.J.; McNamara, L.M. The Role of Integrin Alpha(V)Beta(3) in Osteocyte Mechanotransduction. J. Mech. Behav. Biomed. Mater. 2015, 42, 67–75. [Google Scholar] [CrossRef]
- Qin, L.; Chen, Z.; Yang, D.; He, T.; Xu, Z.; Zhang, P.; Chen, D.; Yi, W.; Xiao, G. Osteocyte Beta3 Integrin Promotes Bone Mass Accrual and Force-Induced Bone Formation in Mice. J. Orthop. Translat 2023, 40, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.A.; Almeida, E.A.; Hill, E.L.; Aguirre, J.I.; Rivera, M.F.; Nachbandi, I.; Wronski, T.J.; van der Meulen, M.C.; Globus, R.K. Role for Beta1 Integrins in Cortical Osteocytes during Acute Musculoskeletal Disuse. Matrix Biol. 2008, 27, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; He, T.; Yang, D.; Wang, Y.; Li, Z.; Yan, Q.; Zhang, P.; Chen, Z.; Lin, S.; Gao, H.; et al. Osteocyte Beta1 Integrin Loss Causes Low Bone Mass and Impairs Bone Mechanotransduction in Mice. J. Orthop. Translat. 2022, 34, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Litzenberger, J.B.; Kim, J.B.; Tummala, P.; Jacobs, C.R. Beta1 Integrins Mediate Mechanosensitive Signaling Pathways in Osteocytes. Calcif. Tissue Int. 2010, 86, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, J.I.; Plotkin, L.I.; Stewart, S.A.; Weinstein, R.S.; Parfitt, A.M.; Manolagas, S.C.; Bellido, T. Osteocyte Apoptosis Is Induced by Weightlessness in Mice and Precedes Osteoclast Recruitment and Bone Loss. J. Bone Miner. Res. 2006, 21, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, L.I.; Mathov, I.; Aguirre, J.I.; Parfitt, A.M.; Manolagas, S.C.; Bellido, T. Mechanical Stimulation Prevents Osteocyte Apoptosis: Requirement of Integrins, Src Kinases, and Erks. Am. J. Physiol. Physiol. 2005, 289, C633–C643. [Google Scholar] [CrossRef] [PubMed]
- Tkach, M.; Théry, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016, 164, 1226–1232. [Google Scholar] [CrossRef]
- Holliday, L.S.; Patel, S.S.; Rody, W.J., Jr. Rankl and Rank in Extracellular Vesicles: Surprising New Players in Bone Remodeling. Extracell. Vesicles Circ. Nucleic Acids 2021, 2, 11. [Google Scholar] [CrossRef]
- Deng, L.; Wang, Y.; Peng, Y.; Wu, Y.; Ding, Y.; Jiang, Y.; Shen, Z.; Fu, Q. Osteoblast-Derived Microvesicles: A Novel Mechanism for Communication between Osteoblasts and Osteoclasts. Bone 2015, 79, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Cappariello, A.; Loftus, A.; Muraca, M.; Maurizi, A.; Rucci, N.; Teti, A. Osteoblast-Derived Extracellular Vesicles Are Biological Tools for the Delivery of Active Molecules to Bone. J. Bone Miner. Res. 2017, 33, 517–533. [Google Scholar] [CrossRef] [PubMed]
- Cappariello, A.; Muraca, M.; Teti, A.; Rucci, N. Circulating Extracellular Vesicles Express Receptor Activator of Nuclear Factor Kappab Ligand and Other Molecules Informative of the Bone Metabolic Status of Mouse Models of Experimentally Induced Osteoporosis. Calcif. Tissue Int. 2023, 112, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Ikebuchi, Y.; Aoki, S.; Honma, M.; Hayashi, M.; Sugamori, Y.; Khan, M.; Kariya, Y.; Kato, G.; Tabata, Y.; Penninger, J.M.; et al. Coupling of Bone Resorption and Formation by Rankl Reverse Signalling. Nature 2018, 561, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.; VonMoss, L.; Smith, D.; Rahman, I.; Felemban, M.F.; Zuo, J.; Rody, W.J., Jr.; McHugh, K.P.; Holliday, L.S. Characterization of Regulatory Extracellular Vesicles from Osteoclasts. J. Dent. Res. 2016, 95, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xue, F.; Russo, A.; Wan, Y. Proteomic Analysis of Extracellular Vesicles Derived from Mda-Mb-231 Cells in Microgravity. Protein J. 2021, 40, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Wise, P.M.; Sahana, J.; Neviani, P.; Corydon, T.J.; Schulz, H.; Wehland, M.; Infanger, M.; Grimm, D. Prolonged Exposure to Simulated Microgravity Changes Release of Small Extracellular Vesicle in Breast Cancer Cells. Int. J. Mol. Sci. 2022, 23, 16095. [Google Scholar] [CrossRef] [PubMed]
- Wise, P.M.; Neviani, P.; Riwaldt, S.; Corydon, T.J.; Wehland, M.; Braun, M.; Krüger, M.; Infanger, M.; Grimm, D. Changes in Exosome Release in Thyroid Cancer Cells after Prolonged Exposure to Real Microgravity in Space. Int. J. Mol. Sci. 2021, 22, 2132. [Google Scholar] [CrossRef] [PubMed]
- Stavnichuk, M.; Mikolajewicz, N.; Corlett, T.; Morris, M.; Komarova, S.V. A Systematic Review and Meta-Analysis of Bone Loss in Space Travelers. npj Microgravity 2020, 6, 13. [Google Scholar] [CrossRef]
- Oganov, V.S.; Bakulin, A.V.; Novikov, V.E.; Murashko, L.M.; Kabitskaia, O.E.; Morgun, V.V.; Voronin, L.I.; Schneider, V.; Shakelford, L.; LeBlanc, A. [Reactions of the Human Bone System in Space Flight: Phenomenology]. Aviakosm Ekolog Med. 2006, 39, 3–9. [Google Scholar]
- Mack, P.B.; Vogt, F.B. Roentgenographic Bone Density Changes in Astronauts during Representative Apollo Space Flight. Am. J. Roentgenol. 1971, 113, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Vogel, J.; Whittle, M.; Whittle, J.V.A.M.; Fisher, A.J.; Fleishman, M.J.; Hancock, D.; Kaude, J.V.; Smith, T.R.; Berkowitz, D.; Frost, A.; et al. Proceedings: Bone Mineral Content Changes in the Skylab Astronauts. Am. J. Roentgenol. 1976, 126, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Vogel, J. Bone Mineral Measurement: Skylab Experiment M-078. Acta Astronaut. 1975, 2, 129–139. [Google Scholar] [CrossRef]
- Dietlein, L.F.; Johnston, R.S. U.S. Manned Space Flight: The First Twenty Years, a Biomedical Status Report. Acta Astronaut. 1981, 8, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, A.; Shigematsu, T.; Fukunaga, T.; Kawakami, K.; Mukai, C.; Sekiguchi, C. Medical Baseline Data Collection on Bone and Muscle Change with Space Flight. Bone 1998, 22, 79S–82S. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. The Mechanostat: A Proposed Pathogenic Mechanism of Osteoporoses and the Bone Mass Effects of Mechanical and Nonmechanical Agents. Bone Miner. 1987, 2, 73–85. [Google Scholar]
- Frost, H.M. Bone’s Mechanostat: A 2003 Update. Anat. Rec. Part A Discov. Mol. Cell Evol. Biol. 2003, 275, 1081–1101. [Google Scholar] [CrossRef]
- Frost, H.M. Bone Mass and the Mechanostat: A Proposal. Anat. Rec. 1987, 219, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Heer, M.; Kamps, N.; Biener, C.; Korr, C.; Boerger, A.; Zittermann, A.; Stehle, P.; Drummer, C. Calcium Metabolism in Microgravity. Eur. J. Med. Res. 1999, 4, 357–360. [Google Scholar] [PubMed]
- Bloomfield, S.A.; Martinez, D.A.; Boudreaux, R.D.; Mantri, A.V. Microgravity Stress: Bone and Connective Tissue. Compr. Physiol. 2016, 6, 645–686. [Google Scholar]
- Nguyen, H.P.; Tran, P.H.; Kim, K.-S.; Yang, S.-G. The Effects of Real and Simulated Microgravity on Cellular Mitochondrial Function. npj Microgravity 2021, 7, 44. [Google Scholar] [CrossRef]
- Smith, S.M.; Zwart, S.R. Nutritional Biochemistry of Spaceflight. Adv. Clin. Chem. 2008, 46, 87–130. [Google Scholar] [PubMed]
- Dickerson, B.L.; Sowinski, R.; Kreider, R.B.; Wu, G. Impacts of Microgravity on Amino Acid Metabolism during Spaceflight. Exp. Biol. Med. 2023, 248, 380–393. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.K. Il-6 and the Dysregulation of Immune, Bone, Muscle, and Metabolic Homeostasis during Spaceflight. npj Microgravity 2018, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Horie, K.; Hinoi, E.; Hiraiwa, M.; Kato, A.; Maekawa, Y.; Takahashi, A.; Furukawa, S. How Does Spaceflight Affect the Acquired Immune System? npj Microgravity 2020, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Kuang, Y.; Zuo, Z. The Emerging Role of Macrophages in Immune System Dysfunction under Real and Simulated Microgravity Conditions. Int. J. Mol. Sci. 2021, 22, 2333. [Google Scholar] [CrossRef]
- Fuchs, B.B.; Medvedev, A.E. Countermeasures for Ameliorating in-Flight Immune Dysfunction. J. Leukoc. Biol. 1993, 54, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Tahimic, C.G.T.; Globus, R.K. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight. Int. J. Mol. Sci. 2017, 18, 2153. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, G.; Dong, D.; Shang, P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int. J. Mol. Sci. 2018, 19, 2608. [Google Scholar] [CrossRef]
- Kirsch, K.A.; Baartz, F.-J.; Gunga, H.-C.; Wicke, H.J.; Röcker, L.; Bünsch, B. Fluid Shifts into and out of Superficial Tissues under Microgravity and Terrestrial Conditions. Clin. Investig. 1993, 71, 687–689. [Google Scholar] [CrossRef]
- Wei, F.; Flowerdew, K.; Kinzel, M.; Perotti, L.E.; Asiatico, J.; Omer, M.; Hovell, C.; Reumers, V.; Coathup, M.J. Changes in Interstitial Fluid Flow, Mass Transport and the Bone Cell Response in Microgravity and Normogravity. Bone Res. 2022, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, R.; Shaik, T.; Kaur, I.P.; Gupta, V.M.; Shaik, A.; Anamika, F.M.; Garg, N.; Jain, R. Cardiovascular Challenges Beyond Earth: Investigating the Impact of Space Travel on Astronauts’ Cardiovascular Health. Cardiol. Rev. 2024. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.B. The Bearable Lightness of Being: Bones, Muscles, and Spaceflight. Anat. Rec. 1998, 253, 24–27. [Google Scholar] [CrossRef]
- Willey, J.S.; Lloyd, S.A.; Nelson, G.A.; Bateman, T.A. Space Radiation and Bone Loss. Gravit. Space Biol. Bull. 2011, 25, 14–21. [Google Scholar] [PubMed]
- Willey, J.S.; Lloyd, S.A.; Nelson, G.A.; Bateman, T.A. Ionizing Radiation and Bone Loss: Space Exploration and Clinical Therapy Applications. Clin. Rev. Bone Miner. Metab. 2011, 9, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Vico, L.; van Rietbergen, B.; Vilayphiou, N.; Linossier, M.-T.; Locrelle, H.; Normand, M.; Zouch, M.; Gerbaix, M.; Bonnet, N.; Novikov, V.; et al. Cortical and Trabecular Bone Microstructure Did Not Recover at Weight-Bearing Skeletal Sites and Progressively Deteriorated at Non-Weight-Bearing Sites during the Year Following International Space Station Missions. J. Bone Miner. Res. 2017, 32, 2010–2021. [Google Scholar] [CrossRef] [PubMed]
- Gabel, L.; Liphardt, A.-M.; Hulme, P.A.; Heer, M.; Zwart, S.R.; Sibonga, J.D.; Smith, S.M.; Boyd, S.K. Incomplete Recovery of Bone Strength and Trabecular Microarchitecture at the Distal Tibia 1 Year after Return from Long Duration Spaceflight. Sci. Rep. 2022, 12, 9446. [Google Scholar] [CrossRef]
- Zeineddine, Y.; Friedman, M.A.; Buettmann, E.G.; Abraham, L.B.; Hoppock, G.A.; Donahue, H.J. Genetic Diversity Modulates the Physical and Transcriptomic Response of Skeletal Muscle to Simulated Microgravity in Male Mice. npj Microgravity 2023, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.A.; Buettmann, E.G.; Zeineddine, Y.; Abraham, L.B.; Hoppock, G.A.; Meas, S.J.; Zhang, Y.; Farber, C.R.; Donahue, H.J. Genetic Variation Influences the Skeletal Response to Hindlimb Unloading in the Eight Founder Strains of the Diversity Outbred Mouse Population. J. Orthop. Res. 2023, 42, 134–140. [Google Scholar] [CrossRef]
- Gabel, L.; Liphardt, A.M.; Hulme, P.A.; Heer, M.; Zwart, S.R.; Sibonga, J.D.; Smith, S.M.; Boyd, S.K. Pre-Flight Exercise and Bone Metabolism Predict Unloading-Induced Bone Loss Due to Spaceflight. Br. J. Sports Med. 2021, 56, 196–203. [Google Scholar] [CrossRef]
- Zhao, C.; Oztekin, A.; Cheng, X. Gravity-Induced Swirl of Nanoparticles in Microfluidics. J. Nanoparticle Res. 2013, 15, 1611. [Google Scholar] [CrossRef] [PubMed]
- Morier, P.; Vollet, C.; Michel, P.E.; Reymond, F.; Rossier, J.S. Gravity-Induced Convective Flow in Microfluidic Systems: Electrochemical Characterization and Application to Enzyme-Linked Immunosorbent Assay Tests. Electrophoresis 2004, 25, 3761–3768. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, D.; Bennett, J.P.; Wong, M.C.; Quon, B.K.; Liu, Y.E.; Kelly, N.N.; Kelly, T.; Schoeller, D.A.; Heymsfield, S.B.; Shepherd, J.A. Accuracy and Precision of Multiple Body Composition Methods and Associations with Muscle Strength in Athletes of Varying Hydration: The Da Kine Study. Clin. Nutr. 2023, 43, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Rowe, W.J. Potential Renovascular Hypertension, Space Missions, and the Role of Magnesium. Int. J. Nephrol. Renovasc Dis. 2009, 2, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Atomi, Y. Gravitational Effects on Human Physiology. Subcell. Biochem. 2015, 72, 627–659. [Google Scholar] [PubMed]
- Hettrick, H.; Aviles, F. Microgravity and Lymphatics: Why Space Programs Need Lymphedema Physiology Specialists. Lymphat. Res. Biol. 2023, 21, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Belgrado, J.P.; Bonetti, G.; Maloizelle-Delaunay, J.; Stoichkova, V.; Tartaglia, G.M.; Chiurazzi, P.; Cecchin, S.; Bertelli, M. Lymphatic Circulation in Astronauts: Basic Knowledge, Challenges and Perspectives. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 119–126. [Google Scholar] [PubMed]
- Ly, V.; Velichala, S.R.; Hargens, A.R. Cardiovascular, Lymphatic, and Ocular Health in Space. Life 2022, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Wostyn, P.; Gibson, C.R.; Mader, T.H. The Odyssey of the Ocular and Cerebrospinal Fluids during a Mission to Mars: The Ocular Glymphatic System under Pressure. Eye 2021, 36, 686–691. [Google Scholar] [CrossRef]
- Miglietta, S.; Cristiano, L.; Espinola, M.S.B.; Masiello, M.G.; Micara, G.; Battaglione, E.; Linari, A.; Palmerini, M.G.; Familiari, G.; Aragona, C.; et al. Effects of Simulated Microgravity In Vitro on Human Metaphase Ii Oocytes: An Electron Microscopy-Based Study. Cells 2023, 12, 1346. [Google Scholar] [CrossRef]
- Mao, X.; Chen, Z.; Luo, Q.; Zhang, B.; Song, G. Simulated Microgravity Inhibits the Migration of Mesenchymal Stem Cells by Remodeling Actin Cytoskeleton and Increasing Cell Stiffness. Cytotechnology 2016, 68, 2235–2243. [Google Scholar] [CrossRef]
- Hughes-Fulford, M. The Role of Signaling Pathways in Osteoblast Gravity Perception. J. Gravit. Physiol. 2002, 9, P257–P260. [Google Scholar]
- Smith, J.K. Osteoclasts and Microgravity. Life 2020, 10, 207. [Google Scholar] [CrossRef]
- Hynes, R.O.; Naba, A. Overview of the Matrisome—An Inventory of Extracellular Matrix Constituents and Functions. Cold Spring Harb. Perspect. Biol. 2012, 4, a004903. [Google Scholar] [CrossRef] [PubMed]
- Karamanos, N.K.; Theocharis, A.D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S.S.; Vynios, D.H.; Orian-Rousseau, V.; Ricard-Blum, S.; Schmelzer, C.E.H.; et al. A Guide to the Composition and Functions of the Extracellular Matrix. FEBS J. 2021, 288, 6850–6912. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef]
- Zhivodernikov, I.; Ratushnyy, A.; Buravkova, L. Simulated Microgravity Remodels Extracellular Matrix of Osteocommitted Mesenchymal Stromal Cells. Int. J. Mol. Sci. 2021, 22, 5428. [Google Scholar] [CrossRef] [PubMed]
- Hughes-Fulford, M.; Gilbertson, V.; Guignandon, A.; Faure, C.; Neutelings, T.; Rattner, A.; Mineur, P.; Linossier, M.-T.; Laroche, N.; Lambert, C.; et al. Osteoblast Fibronectin Mrna, Protein Synthesis, and Matrix Are Unchanged after Exposure to Microgravity. FASEB J. 1999, 13, S121–S127. [Google Scholar] [CrossRef]
- Chatziravdeli, V.; Katsaras, G.N.; Lambrou, G.I. Gene Expression in Osteoblasts and Osteoclasts under Microgravity Conditions: A Systematic Review. Curr. Genom. 2019, 20, 184–198. [Google Scholar] [CrossRef]
- Zhivodernikov, I.V.; Ratushnyy, A.Y.; Matveeva, D.K.; Buravkova, L.B. Extracellular Matrix Proteins and Transcription of Matrix-Associated Genes in Mesenchymal Stromal Cells during Modeling of the Effects of Microgravity. Bull. Exp. Biol. Med. 2020, 170, 230–232. [Google Scholar] [CrossRef]
- Genchi, G.G.; Sinibaldi, E.; Ceseracciu, L.; Labardi, M.; Marino, A.; Marras, S.; De Simoni, G.; Mattoli, V.; Ciofani, G. Ultrasound-Activated Piezoelectric P(Vdf-Trfe)/Boron Nitride Nanotube Composite Films Promote Differentiation of Human Saos-2 Osteoblast-like Cells. Nanomedicine 2018, 14, 2421–2432. [Google Scholar] [CrossRef]
- Ahn, A.C.; Grodzinsky, A.J. Relevance of Collagen Piezoelectricity to Wolff’s Law: A Critical Review. Med. Eng. Phys. 2009, 31, 733–741. [Google Scholar] [CrossRef]
- Sun, W.; Chi, S.; Li, Y.; Ling, S.; Tan, Y.; Xu, Y.; Jiang, F.; Li, J.; Liu, C.; Zhong, G.; et al. The Mechanosensitive Piezo1 Channel Is Required for Bone Formation. eLife 2019, 8, e47454. [Google Scholar] [CrossRef]
- Wang, L.; You, X.; Lotinun, S.; Zhang, L.; Wu, N.; Zou, W. Mechanical Sensing Protein Piezo1 Regulates Bone Homeostasis via Osteoblast-Osteoclast Crosstalk. Nat. Commun. 2020, 11, 282. [Google Scholar] [CrossRef]
- Moussa, M.; Goldsmith, M.; Komarova, S. Craniofacial Bones and Teeth in Spacefarers: Systematic Review and Meta-Analysis. JDR Clin. Transl. Res. 2022, 8, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Grove, D.S.; Pishak, S.A.; Mastro, A.M. The Effect of a 10-Day Space Flight on the Function, Phenotype, and Adhesion Molecule Expression of Splenocytes and Lymph Node Lymphocytes. Exp. Cell Res. 1995, 219, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Gioia, M.; Michaletti, A.; Scimeca, M.; Marini, M.; Tarantino, U.; Zolla, L.; Coletta, M. Simulated Microgravity Induces a Cellular Regression of the Mature Phenotype in Human Primary Osteoblasts. Cell Death Discov. 2018, 4, 59. [Google Scholar] [CrossRef] [PubMed]
- Zayzafoon, M.; Meyers, V.E.; McDonald, J.M. Microgravity: The Immune Response and Bone. Immunol. Rev. 2005, 208, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.J.; Gombocz, E.; Wehland, M.; Bauer, J.; Infanger, M.; Grimm, D. Insight in Adhesion Protein Sialylation and Microgravity Dependent Cell Adhesion—An Omics Network Approach. Int. J. Mol. Sci. 2020, 21, 1749. [Google Scholar] [CrossRef]
- Fan, C.; Wu, Z.; Cooper, D.M.L.; Magnus, A.; Harrison, K.; Eames, B.F.; Chibbar, R.; Groot, G.; Huang, J.; Genth, H.; et al. Activation of Focal Adhesion Kinase Restores Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation via Wnt/Beta-Catenin Pathway. Int. J. Mol. Sci. 2022, 23, 5593. [Google Scholar] [CrossRef]
- Ingram, M.; Techy, G.B.; Saroufeem, R.; Yazan, O.; Narayan, K.S.; Goodwin, T.J.; Spaulding, G.F. Three-Dimensional Growth Patterns of Various Human Tumor Cell Lines in Simulated Microgravity of a Nasa Bioreactor. In Vitro Cell. Dev. Biol. Anim. 1997, 33, 459–466. [Google Scholar] [CrossRef]
- Sahana, J.; Nassef, M.Z.; Wehland, M.; Kopp, S.; Krüger, M.; Corydon, T.J.; Infanger, M.; Bauer, J.; Grimm, D. Decreased E-Cadherin in Mcf7 Human Breast Cancer Cells Forming Multicellular Spheroids Exposed to Simulated Microgravity. Proteomics 2018, 18, e1800015. [Google Scholar] [CrossRef] [PubMed]
- Sahana, J.; Corydon, T.J.; Wehland, M.; Krüger, M.; Kopp, S.; Melnik, D.; Kahlert, S.; Relja, B.; Infanger, M.; Grimm, D. Alterations of Growth and Focal Adhesion Molecules in Human Breast Cancer Cells Exposed to the Random Positioning Machine. Front. Cell Dev. Biol. 2021, 9, 672098. [Google Scholar] [CrossRef]
- Grimm, D.; Wehland, M.; Corydon, T.J.; Richter, P.; Prasad, B.; Bauer, J.; Egli, M.; Kopp, S.; Lebert, M.; Krüger, M. The Effects of Microgravity on Differentiation and Cell Growth in Stem Cells and Cancer Stem Cells. Stem Cells Transl. Med. 2020, 9, 882–894. [Google Scholar] [CrossRef]
- Gambacurta, A.; Merlini, G.; Ruggiero, C.; Diedenhofen, G.; Battista, N.; Bari, M.; Balsamo, M.; Piccirillo, S.; Valentini, G.; Mascetti, G.; et al. Human Osteogenic Differentiation in Space: Proteomic and Epigenetic Clues to Better Understand Osteoporosis. Sci. Rep. 2019, 9, 8343. [Google Scholar] [CrossRef] [PubMed]
- Wahl, J.R.; Vivek, A.; Palomino, S.M.; Almuslim, M.; Cottier, K.E.; Langlais, P.R.; Streicher, J.M.; Vanderah, T.W.; Liktor-Busa, E.; Largent-Milnes, T.M. Extracellular Alterations in Ph and K+ Modify the Murine Brain Endothelial Cell Total and Phospho-Proteome. Pharmaceutics 2022, 14, 1469. [Google Scholar] [CrossRef]
- Pavlakou, P.; Dounousi, E.; Roumeliotis, S.; Eleftheriadis, T.; Liakopoulos, V. Oxidative Stress and the Kidney in the Space Environment. Int. J. Mol. Sci. 2018, 19, 3176. [Google Scholar] [CrossRef]
- Versari, S.; Longinotti, G.; Barenghi, L.; Maier, J.A.M.; Bradamante, S. The Challenging Environment on Board the International Space Station Affects Endothelial Cell Function by Triggering Oxidative Stress through Thioredoxin Interacting Protein Overexpression: The Esa-Sphinx Experiment. FASEB J. 2013, 27, 4466–4475. [Google Scholar] [CrossRef] [PubMed]
- De Santo, N.G.; Cirillo, M.; Valenti, G.; Perna, A.; Anastasio, P.; Drummer, C. Renal Function in Space: The Link between Osteoporosis, Hypercalciuria, and Aquaporins. J. Ren. Nutr. 2005, 15, 183–188. [Google Scholar] [CrossRef]
- Doty, S.; Seagrave, R. Human Water, Sodium, and Calcium Regulation during Space Flight and Exercise. Acta Astronaut. 2000, 46, 591–604. [Google Scholar] [CrossRef]
- Seo, H.; Itoh, T.; Murata, Y.; Ohmori, S.; Kambe, F.; Mohri, M.; Sekiguchi, C.; Matsui, N. Changes in Urinary Excretion of Pyridinium Cross-Links during Spacelab-J. Biol. Sci. Space 1997, 11, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Hannan, F.M.; Kallay, E.; Chang, W.; Brandi, M.L.; Thakker, R.V. The Calcium-Sensing Receptor in Physiology and in Calcitropic and Noncalcitropic Diseases. Nat. Rev. Endocrinol. 2018, 15, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Dusso, A.S.; Brown, A.J.; Slatopolsky, E. Vitamin D. Am. J. Physiol. Renal Physiol. 2005, 289, F8–F28. [Google Scholar] [CrossRef] [PubMed]
- Jüppner, H.; Abou-Samra, A.-B.; Freeman, M.; Kong, X.F.; Schipani, E.; Richards, J.; Kolakowski, L.F., Jr.; Hock, J.; Potts, J.T.; Kronenberg, H.M.; et al. A G Protein-Linked Receptor for Parathyroid Hormone and Parathyroid Hormone-Related Peptide. Science 1991, 254, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Dusso, A.S.; Thadhani, R.; Slatopolsky, E. Vitamin D Receptor and Analogs. Semin. Nephrol. 2004, 24, 10–16. [Google Scholar] [CrossRef]
- Chappell, M.C. Biochemical Evaluation of the Renin-Angiotensin System: The Good, Bad, and Absolute? Am. J. Physiol. Circ. Physiol. 2016, 310, H137–H152. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.S.; Wehland, M.; Wise, P.M.; Grimm, D. Latest Knowledge on the Role of Vitamin D in Hypertension. Int. J. Mol. Sci. 2023, 24, 4679. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-L.; Shen, H.; Liu, A.; Dong, S.-S.; Zhang, L.; Deng, F.-Y.; Zhao, Q.; Deng, H.-W. A Road Map for Understanding Molecular and Genetic Determinants of Osteoporosis. Nat. Rev. Endocrinol. 2019, 16, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Moayyeri, A.; Cheung, C.L.; Tan, K.C.; Morris, J.A.; Cerani, A.; Mohney, R.P.; Richards, J.B.; Hammond, C.; Spector, T.D.; Menni, C. Metabolomic Pathways to Osteoporosis in Middle-Aged Women: A Genome-Metabolome-Wide Mendelian Randomization Study. J. Bone Miner. Res. 2017, 33, 643–650. [Google Scholar] [CrossRef]
- Zhou, S.; Sosina, O.A.; Bovijn, J.; Laurent, L.; Sharma, V.; Akbari, P.; Forgetta, V.; Jiang, L.; Kosmicki, J.A.; Banerjee, N.; et al. Converging Evidence from Exome Sequencing and Common Variants Implicates Target Genes for Osteoporosis. Nat. Genet. 2023, 55, 1277–1287. [Google Scholar] [CrossRef]
- Morris, J.A.; Kemp, J.P.; Youlten, S.E.; Laurent, L.; Logan, J.G.; Chai, R.C.; Vulpescu, N.A.; Forgetta, V.; Kleinman, A.; Mohanty, S.T.; et al. An Atlas of Genetic Influences on Osteoporosis in Humans and Mice. Nat. Genet. 2019, 51, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Singh, S.; Chen, Y.; Hamadeh, I.S.; Langaee, T.; McDonough, C.W.; Holliday, L.S.; Lamba, J.K.; Moreb, J.S.; Katz, J.; et al. Pharmacogenomics of Osteonecrosis of the Jaw. Bone 2019, 124, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Cappellesso, R.; Nicole, L.; Guido, A.; Pizzol, D. Spaceflight Osteoporosis: Current State and Future Perspective. Endocr. Regul. 2015, 49, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.L.; Blue, R.S.; Jennings, R.T.; Tarver, W.J.; Gray, G.W. Astronaut Medical Selection during the Shuttle Era: 1981–2011. Aviat. Space, Environ. Med. 2014, 85, 823–827. [Google Scholar] [CrossRef]
- Loriè, E.P.; Baatout, S.; Choukér, A.; Buchheim, J.-I.; Baselet, B.; Russo, C.D.; Wotring, V.; Monici, M.; Morbidelli, L.; Gagliardi, D.; et al. The Future of Personalized Medicine in Space: From Observations to Countermeasures. Front. Bioeng. Biotechnol. 2021, 9, 739747. [Google Scholar]
- Boron, W.F.; Boulpaep, E.L. Medical Physiology: A Cellular and Molecular Approach; Elsevier/Saunders: Philadelphia, PA, USA, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, E.F.; Pelegrine, A.A.; Holliday, L.S. Receptors Implicated in Microgravity-Induced Bone Loss. Receptors 2024, 3, 280-303. https://doi.org/10.3390/receptors3020014
Martinez EF, Pelegrine AA, Holliday LS. Receptors Implicated in Microgravity-Induced Bone Loss. Receptors. 2024; 3(2):280-303. https://doi.org/10.3390/receptors3020014
Chicago/Turabian StyleMartinez, Elizabeth Ferreira, André Antonio Pelegrine, and L. Shannon Holliday. 2024. "Receptors Implicated in Microgravity-Induced Bone Loss" Receptors 3, no. 2: 280-303. https://doi.org/10.3390/receptors3020014
APA StyleMartinez, E. F., Pelegrine, A. A., & Holliday, L. S. (2024). Receptors Implicated in Microgravity-Induced Bone Loss. Receptors, 3(2), 280-303. https://doi.org/10.3390/receptors3020014