The Glucocorticoid Receptor’s tau1c Activation Domain 35 Years on—Making Order out of Disorder
Abstract
:1. Introduction
2. The Human Glucocorticoid Receptor Can Work in Yeast
3. Acidic and Hydrophobic Amino Acids Contribute to the hGR’s tau1c Domain Function
4. Proteins without Apparent Structure Can Mediate Biological Function
5. Coupled Binding and Folding of Activation Domains
6. Intrinsically Disordered Regions and Evolution
7. Conclusions and Future Perspectives
Funding
Data Availability Statement
Conflicts of Interest
References
- McEwan, I.J. From Antibodies to Crystals: Understanding the Structure of the Glucocorticoid Receptor and Related Proteins. Receptors 2023, 2, 166–175. [Google Scholar] [CrossRef]
- Hollenberg, S.M.; Weinberger, C.; Ong, E.S.; Cerelli, G.; Oro, A.; Lebo, R.; Thompson, E.B.; Rosenfeld, M.G.; Evans, R.M. Primary Structure and Expression of a Functional Human Glucocorticoid Receptor cDNA. Nature 1985, 318, 635–641. [Google Scholar] [CrossRef]
- Gustafsson, J.-Å.; Carlstedt-Duke, J.; Okret, S.; Wikström, A.-C.; Wrange, Ö.; Payvar, F.; Yamamoto, K. Structure and Specific DNA Binding of the Rat Liver Glucocorticoid Receptor. J. Steroid Biochem. 1984, 20, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Härd, T.; Kellenbach, E.; Boelens, R.; Maler, B.A.; Dahlman, K.; Freedman, L.P.; Carlstedt-Duke, J.; Yamamoto, K.R.; Gustafsson, J.A.; Kaptein, R. Solution Structure of the Glucocorticoid Receptor DNA-Binding Domain. Science 1990, 249, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Baumann, H.; Paulsen, K.; Kovacs, H.; Berglund, H.; Wright, A.P.; Gustafsson, J.A.; Hard, T. Refined Solution Structure of the Glucocorticoid Receptor DNA-Binding Domain. Biochemistry 1993, 32, 13463–13471. [Google Scholar] [CrossRef]
- Bledsoe, R.K.; Montana, V.G.; Stanley, T.B.; Delves, C.J.; Apolito, C.J.; McKee, D.D.; Consler, T.G.; Parks, D.J.; Stewart, E.L.; Willson, T.M.; et al. Crystal Structure of the Glucocorticoid Receptor Ligand Binding Domain Reveals a Novel Mode of Receptor Dimerization and Coactivator Recognition. Cell 2002, 110, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Kauppi, B.; Jakob, C.; Färnegårdh, M.; Yang, J.; Ahola, H.; Alarcon, M.; Calles, K.; Engström, O.; Harlan, J.; Muchmore, S.; et al. The Three-Dimensional Structures of Antagonistic and Agonistic Forms of the Glucocorticoid Receptor Ligand-Binding Domain: RU-486 Induces a Transconformation That Leads to Active Antagonism. J. Biol. Chem. 2003, 278, 22748–22754. [Google Scholar] [CrossRef] [PubMed]
- Schena, M.; Yamamoto, K.R. Mammalian Glucocorticoid Receptor Derivatives Enhance Transcription in Yeast. Science 1988, 241, 965–967. [Google Scholar] [CrossRef]
- Wright, A.P.H.; Carlstedtduke, J.; Gustafsson, J.A. Ligand-Specific Transactivation of Gene-Expression by a Derivative of the Human Glucocorticoid Receptor Expressed in Yeast. J. Biol. Chem. 1990, 265, 14763–14769. [Google Scholar] [CrossRef]
- Wright, A.P.H.; Gustafsson, J.A. Glucocorticoid-Specific Gene Activation by the Intact Human Glucocorticoid Receptor Expressed in Yeast—Glucocorticoid Specificity Depends on Low-Level Receptor Expression. J. Biol. Chem. 1992, 267, 11191–11195. [Google Scholar] [CrossRef]
- Goffeau, A.; Barrell, B.G.; Bussey, H.; Davis, R.W.; Dujon, B.; Feldmann, H.; Galibert, F.; Hoheisel, J.D.; Jacq, C.; Johnston, M.; et al. Life with 6000 Genes. Science 1996, 274, 546–567. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial Sequencing and Analysis of the Human Genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Dahlman-Wright, K.; Almlof, T.; McEwan, I.J.; Gustafsson, J.A.; Wright, A.P. Delineation of a Small Region within the Major Transactivation Domain of the Human Glucocorticoid Receptor That Mediates Transactivation of Gene Expression. Proc. Natl. Acad. Sci. USA 1994, 91, 1619–1623. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.P.; McEwan, I.J.; Dahlman-Wright, K.; Gustafsson, J.A. High Level Expression of the Major Transactivation Domain of the Human Glucocorticoid Receptor in Yeast Cells Inhibits Endogenous Gene Expression and Cell Growth. Mol. Endocrinol. 1991, 5, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
- Almlof, T.; Gustafsson, J.A.; Wright, A.P. Role of Hydrophobic Amino Acid Clusters in the Transactivation Activity of the Human Glucocorticoid Receptor. Mol. Cell Biol. 1997, 17, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, A.; Almlof, T.; Ford, J.; McEwan, I.J.; Gustafsson, J.A.; Wright, A.P. Role of the Ada Adaptor Complex in Gene Activation by the Glucocorticoid Receptor. Mol. Cell Biol. 1997, 17, 3065–3073. [Google Scholar] [CrossRef]
- Giguère, V.; Hollenberg, S.M.; Rosenfeld, M.G.; Evans, R.M. Functional Domains of the Human Glucocorticoid Receptor. Cell 1986, 46, 645–652. [Google Scholar] [CrossRef]
- Dahlman-Wright, K.; Baumann, H.; McEwan, I.J.; Almlof, T.; Wright, A.P.; Gustafsson, J.A.; Hard, T. Structural Characterization of a Minimal Functional Transactivation Domain from the Human Glucocorticoid Receptor. Proc. Natl. Acad. Sci. USA 1995, 92, 1699–1703. [Google Scholar] [CrossRef]
- Almlof, T.; Wright, A.P.; Gustafsson, J.A. Role of Acidic and Phosphorylated Residues in Gene Activation by the Glucocorticoid Receptor. J. Biol. Chem. 1995, 270, 17535–17540. [Google Scholar] [CrossRef]
- Sigler, P.B. Transcriptional Activation. Acid Blobs and Negative Noodles. Nature 1988, 333, 210–212. [Google Scholar] [CrossRef]
- Almlof, T.; Wallberg, A.E.; Gustafsson, J.A.; Wright, A.P. Role of Important Hydrophobic Amino Acids in the Interaction between the Glucocorticoid Receptor Tau 1-Core Activation Domain and Target Factors. Biochemistry 1998, 37, 9586–9594. [Google Scholar] [CrossRef]
- Cress, W.D.; Triezenberg, S.J. Critical Structural Elements of the VP16 Transcriptional Activation Domain. Science 1991, 251, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Staller, M.V.; Ramirez, E.; Kotha, S.R.; Holehouse, A.S.; Pappu, R.V.; Cohen, B.A. Directed Mutational Scanning Reveals a Balance between Acidic and Hydrophobic Residues in Strong Human Activation Domains. Cell Syst. 2022, 13, 334–345.e5. [Google Scholar] [CrossRef]
- Wimley, W.C.; White, S.H. Experimentally Determined Hydrophobicity Scale for Proteins at Membrane Interfaces. Nat. Struct. Biol. 1996, 3, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Kyte, J.; Doolittle, R.F. A Simple Method for Displaying the Hydropathic Character of a Protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [PubMed]
- Waibl, F.; Fernández-Quintero, M.L.; Wedl, F.S.; Kettenberger, H.; Georges, G.; Liedl, K.R. Comparison of Hydrophobicity Scales for Predicting Biophysical Properties of Antibodies. Front. Mol. Biosci. 2022, 9, 960194. [Google Scholar] [CrossRef] [PubMed]
- Salamanova, E.; Costeira-Paulo, J.; Han, K.-H.; Kim, D.-H.; Nilsson, L.; Wright, A.P.H. A Subset of Functional Adaptation Mutations Alter Propensity for α-Helical Conformation in the Intrinsically Disordered Glucocorticoid Receptor Tau1core Activation Domain. Biochim. Biophys. Acta BBA—Gen. Subj. 2018, 1862, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, P.; Williams, G. Structural Studies of the Acidic Transactivation Domain of the Vmw65 Protein of Herpes Simplex Virus Using 1H NMR. Biochemistry 1992, 31, 4150–4156. [Google Scholar] [CrossRef]
- Van Hoy, M.; Leuther, K.K.; Kodadek, T.; Johnston, S.A. The Acidic Activation Domains of the GCN4 and GAL4 Proteins Are Not Alpha Helical but Form Beta Sheets. Cell 1993, 72, 587–594. [Google Scholar] [CrossRef]
- Oldfield, C.J.; Cheng, Y.; Cortese, M.S.; Brown, C.J.; Uversky, V.N.; Dunker, A.K. Comparing and Combining Predictors of Mostly Disordered Proteins. Biochemistry 2005, 44, 1989–2000. [Google Scholar] [CrossRef]
- van der Lee, R.; Buljan, M.; Lang, B.; Weatheritt, R.J.; Daughdrill, G.W.; Dunker, A.K.; Fuxreiter, M.; Gough, J.; Gsponer, J.; Jones, D.T.; et al. Classification of Intrinsically Disordered Regions and Proteins. Chem. Rev. 2014, 114, 6589–6631. [Google Scholar] [CrossRef]
- Kulkarni, P.; Bhattacharya, S.; Achuthan, S.; Behal, A.; Jolly, M.K.; Kotnala, S.; Mohanty, A.; Rangarajan, G.; Salgia, R.; Uversky, V. Intrinsically Disordered Proteins: Critical Components of the Wetware. Chem. Rev. 2022, 122, 6614–6633. [Google Scholar] [CrossRef]
- Baskakov, I.V.; Kumar, R.; Srinivasan, G.; Ji, Y.S.; Bolen, D.W.; Thompson, E.B. Trimethylamine N-Oxide-Induced Cooperative Folding of an Intrinsically Unfolded Transcription-Activating Fragment of Human Glucocorticoid Receptor. J. Biol. Chem. 1999, 274, 10693–10696. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.H.; Arnott, J.A.; Kumar, R. Naturally Occurring Osmolyte, Trehalose Induces Functional Conformation in an Intrinsically Disordered Activation Domain of Glucocorticoid Receptor. PLoS ONE 2011, 6, e19689. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Wright, A.; Han, K.H. An NMR Study on the Intrinsically Disordered Core Transactivation Domain of Human Glucocorticoid Receptor. BMB Rep. 2017, 50, 522–527. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, D.-H.; Han, J.J.; Cha, E.-J.; Lim, J.-E.; Cho, Y.-J.; Lee, C.; Han, K.-H. Understanding Pre-Structured Motifs (PreSMos) in Intrinsically Unfolded Proteins. Curr. Protein Pept. Sci. 2012, 13, 34–54. [Google Scholar] [CrossRef] [PubMed]
- Dosztányi, Z.; Csizmok, V.; Tompa, P.; Simon, I. IUPred: Web Server for the Prediction of Intrinsically Unstructured Regions of Proteins Based on Estimated Energy Content. Bioinformatics 2005, 21, 3433–3434. [Google Scholar] [CrossRef]
- Obradovic, Z.; Peng, K.; Vucetic, S.; Radivojac, P.; Brown, C.J.; Dunker, A.K. Predicting Intrinsic Disorder from Amino Acid Sequence. Proteins Struct. Funct. Bioinforma. 2003, 53, 566–572. [Google Scholar] [CrossRef]
- Romero, P.; Obradovic, Z.; Li, X.; Garner, E.C.; Brown, C.J.; Dunker, A.K. Sequence Complexity of Disordered Protein. Proteins 2001, 42, 38–48. [Google Scholar] [CrossRef]
- Obradovic, Z.; Peng, K.; Vucetic, S.; Radivojac, P.; Dunker, A.K. Exploiting Heterogeneous Sequence Properties Improves Prediction of Protein Disorder. Proteins Struct. Funct. Bioinforma. 2005, 61, 176–182. [Google Scholar] [CrossRef]
- Xue, B.; Dunbrack, R.L.; Williams, R.W.; Dunker, A.K.; Uversky, V.N. PONDR-FIT: A Meta-Predictor of Intrinsically Disordered Amino Acids. Biochim. Biophys. Acta BBA—Proteins Proteomics 2010, 1804, 996–1010. [Google Scholar] [CrossRef] [PubMed]
- Walsh, I.; Martin, A.J.M.; Di Domenico, T.; Tosatto, S.C.E. ESpritz: Accurate and Fast Prediction of Protein Disorder. Bioinformatics 2012, 28, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Cilia, E.; Pancsa, R.; Tompa, P.; Lenaerts, T.; Vranken, W.F. The DynaMine Webserver: Predicting Protein Dynamics from Sequence. Nucleic Acids Res. 2014, 42, W264–W270. [Google Scholar] [CrossRef] [PubMed]
- Dosztányi, Z.; Mészáros, B.; Simon, I. ANCHOR: Web Server for Predicting Protein Binding Regions in Disordered Proteins. Bioinformatics 2009, 25, 2745–2746. [Google Scholar] [CrossRef] [PubMed]
- Disfani, F.M.; Hsu, W.-L.; Mizianty, M.J.; Oldfield, C.J.; Xue, B.; Dunker, A.K.; Uversky, V.N.; Kurgan, L. MoRFpred, a Computational Tool for Sequence-Based Prediction and Characterization of Short Disorder-to-Order Transitioning Binding Regions in Proteins. Bioinformatics 2012, 28, i75–i83. [Google Scholar] [CrossRef] [PubMed]
- Dyson, H.J.; Wright, P.E. Intrinsically Unstructured Proteins and Their Functions. Nat. Rev. Mol. Cell Biol. 2005, 6, 197–208. [Google Scholar] [CrossRef]
- McEwan, I.J.; Dahlman-Wright, K.; Ford, J.; Wright, A.P. Functional Interaction of the C-Myc Transactivation Domain with the TATA Binding Protein: Evidence for an Induced Fit Model of Transactivation Domain Folding. Biochemistry 1996, 35, 9584–9593. [Google Scholar] [CrossRef]
- Andresen, C.; Helander, S.; Lemak, A.; Farès, C.; Csizmok, V.; Carlsson, J.; Penn, L.Z.; Forman-Kay, J.D.; Arrowsmith, C.H.; Lundström, P.; et al. Transient Structure and Dynamics in the Disordered C-Myc Transactivation Domain Affect Bin1 Binding. Nucleic Acids Res. 2012, 40, 6353–6366. [Google Scholar] [CrossRef]
- Hermann, S.; Berndt, K.D.; Wright, A.P. How Transcriptional Activators Bind Target Proteins. J. Biol. Chem. 2001, 276, 40127–40132. [Google Scholar] [CrossRef]
- Ferreira, M.E.; Hermann, S.; Prochasson, P.; Workman, J.L.; Berndt, K.D.; Wright, A.P. Mechanism of Transcription Factor Recruitment by Acidic Activators. J. Biol. Chem. 2005, 280, 21779–21784. [Google Scholar] [CrossRef]
- Kumar, R.; Volk, D.E.; Li, J.; Lee, J.C.; Gorenstein, D.G.; Thompson, E.B. TATA Box Binding Protein Induces Structure in the Recombinant Glucocorticoid Receptor AF1 Domain. Proc. Natl. Acad. Sci. USA 2004, 101, 16425–16430. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.H.; Awasthi, S.; Guo, C.; Goswami, D.; Ling, J.; Griffin, P.R.; Simons, S.S.; Kumar, R. Binding of the N-Terminal Region of Coactivator TIF2 to the Intrinsically Disordered AF1 Domain of the Glucocorticoid Receptor Is Accompanied by Conformational Reorganizations. J. Biol. Chem. 2012, 287, 44546–44560. [Google Scholar] [CrossRef] [PubMed]
- Shammas, S.L.; Crabtree, M.D.; Dahal, L.; Wicky, B.I.M.; Clarke, J. Insights into Coupled Folding and Binding Mechanisms from Kinetic Studies*. J. Biol. Chem. 2016, 291, 6689–6695. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.C.; Kuravsky, M.; Shammas, S.L.; Matthews, J.M. Binding and Folding in Transcriptional Complexes. Curr. Opin. Struct. Biol. 2021, 66, 156–162. [Google Scholar] [CrossRef] [PubMed]
- White, J.T.; Li, J.; Grasso, E.; Wrabl, J.O.; Hilser, V.J. Ensemble Allosteric Model: Energetic Frustration within the Intrinsically Disordered Glucocorticoid Receptor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20170175. [Google Scholar] [CrossRef] [PubMed]
- Beskow, A.; Wright, A.P. Comparative Analysis of Regulatory Transcription Factors in Schizosaccharomyces Pombe and Budding Yeasts. Yeast 2006, 23, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.; Grahn, M.; Wright, A.P. Proteome-Wide Evidence for Enhanced Positive Darwinian Selection within Intrinsically Disordered Regions in Proteins. Genome Biol. 2011, 12, R65. [Google Scholar] [CrossRef] [PubMed]
- Afanasyeva, A.; Bockwoldt, M.; Cooney, C.R.; Heiland, I.; Gossmann, T.I. Human Long Intrinsically Disordered Protein Regions Are Frequent Targets of Positive Selection. Genome Res. 2018, 28, 975–982. [Google Scholar] [CrossRef]
- Ridout, K.E.; Dixon, C.J.; Filatov, D.A. Positive Selection Differs between Protein Secondary Structure Elements in Drosophila. Genome Biol. Evol. 2010, 2, 166–179. [Google Scholar] [CrossRef]
- Abrams, A.J.; Cannatella, D.C.; Hillis, D.M.; Sawyer, S.L. Recent Host-Shifts in Ranaviruses: Signatures of Positive Selection in the Viral Genome. J. Gen. Virol. 2013, 94, 2082–2093. [Google Scholar] [CrossRef]
- Dunning, L.T.; Dennis, A.B.; Thomson, G.; Sinclair, B.J.; Newcomb, R.D.; Buckley, T.R. Positive Selection in Glycolysis among Australasian Stick Insects. BMC Evol. Biol. 2013, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Leventhal, S.M.; Lim, D.; Green, T.L.; Cantrell, A.E.; Cho, K.; Greenhalgh, D.G. Uncovering a Multitude of Human Glucocorticoid Receptor Variants: An Expansive Survey of a Single Gene. BMC Genet. 2019, 20, 16. [Google Scholar] [CrossRef] [PubMed]
Predictor | Spearman’s Rho Value 10 | p-Value 11 |
---|---|---|
Intrinsic disorder | ||
IUPred (long) 1 | −0.53 | 1.24 × 10−5 |
IUPred (short) 1 | −0.50 | 4.81 × 10−5 |
VSL2 2 | −0.42 | 8.07 × 10−4 |
VL_XT 3 | −0.42 | 9.37 × 10−4 |
VSL3 4 | −0.41 | 1.07 × 10−3 |
Pondr_Fit 5 | −0.43 | 6.32 × 10−4 |
Espritz (xray) 6 | −0.42 | 9.41 × 10−4 |
Espritz (nmr) 6 | −0.44 | 5.12 × 10−4 |
Petide backbone rigidity | ||
Dynamine 7 | 0.39 | 2.08 × 10−3 |
Protein interaction propensity | ||
ANCHOR 8 | 0.62 | 1.50 × 10−7 |
MoRFpred 9 | 0.44 | 2.08 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, A.P.H. The Glucocorticoid Receptor’s tau1c Activation Domain 35 Years on—Making Order out of Disorder. Receptors 2024, 3, 27-35. https://doi.org/10.3390/receptors3010003
Wright APH. The Glucocorticoid Receptor’s tau1c Activation Domain 35 Years on—Making Order out of Disorder. Receptors. 2024; 3(1):27-35. https://doi.org/10.3390/receptors3010003
Chicago/Turabian StyleWright, Anthony P. H. 2024. "The Glucocorticoid Receptor’s tau1c Activation Domain 35 Years on—Making Order out of Disorder" Receptors 3, no. 1: 27-35. https://doi.org/10.3390/receptors3010003
APA StyleWright, A. P. H. (2024). The Glucocorticoid Receptor’s tau1c Activation Domain 35 Years on—Making Order out of Disorder. Receptors, 3(1), 27-35. https://doi.org/10.3390/receptors3010003