Association of Bitter Taste Receptors with Obesity and Diabetes and Their Role in Related Tissues
Abstract
:1. Introduction
2. Relationship of T2R, Obesity, and Diabetes
3. T2Rs in Tissues Associated with the Development of Obesity and Diabetes
3.1. Intestine
3.1.1. Expression of T2R Genes in Intestine
3.1.2. Role of T2Rs in Intestine
3.2. Adipose Tissue
3.2.1. Expression of T2R Genes in Adipose Tissue
3.2.2. Role of T2R in Maturation of Preadipocytes
3.2.3. Role of T2Rs in Mature Adipocytes
3.3. Muscle
3.3.1. Expression of T2R Genes in Muscle
3.3.2. Role of T2Rs in Muscle Tissue
3.4. Liver
3.5. Pancreatic Islets
4. Signaling Pathway of Taste 2 Receptors in Extraoral Tissues
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Behrens, M.; Foerster, S.; Staehler, F.; Raguse, J.-D.; Meyerhof, W. Gustatory Expression Pattern of the Human TAS2R Bitter Receptor Gene Family Reveals a Heterogenous Population of Bitter Responsive Taste Receptor Cells. J. Neurosci. 2007, 27, 12630–12640. [Google Scholar] [CrossRef]
- Wu, S.V.; Chen, M.C.; Rozengurt, E. Genomic Organization, Expression, and Function of Bitter Taste Receptors (T2R) in Mouse and Rat. Physiol. Genom. 2005, 22, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Freund, J.R.; Lee, R.J. Taste Receptors in the Upper Airway. World J. Otorhinolaryngol.-Head Neck Surg. 2018, 4, 67–76. [Google Scholar] [CrossRef]
- Carey, R.M.; Lee, R.J. Taste Receptors in Upper Airway Innate Immunity. Nutrients 2019, 11, 2017. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.J.; Agüera, Z.; Sabater, M.; Moreno-Navarrete, J.M.; Alonso-Ledesma, I.; Xifra, G.; Botas, P.; Delgado, E.; Jimenez-Murcia, S.; Fernández-García, J.C.; et al. Genetic Variations of the Bitter Taste Receptor TAS2R38 Are Associated with Obesity and Impact on Single Immune Traits. Mol. Nutr. Food Res. 2016, 60, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Chupeerach, C.; Tapanee, P.; On-Nom, N.; Temviriyanukul, P.; Chantong, B.; Reeder, N.; Adegoye, G.A.; Tolar-Peterson, T. The Influence of TAS2R38 Bitter Taste Gene Polymorphisms on Obesity Risk in Three Racially Diverse Groups. BioMedicine 2021, 11, 43–49. [Google Scholar] [CrossRef]
- Turner, A.; Veysey, M.; Keely, S.; Scarlett, C.J.; Lucock, M.; Beckett, E.L. Genetic Variation in the Bitter Receptors Responsible for Epicatechin Detection Are Associated with BMI in an Elderly Cohort. Nutrients 2021, 13, 571. [Google Scholar] [CrossRef]
- Dotson, C.D.; Zhang, L.; Xu, H.; Shin, Y.-K.; Vigues, S.; Ott, S.H.; Elson, A.E.T.; Choi, H.J.; Shaw, H.; Egan, J.M.; et al. Bitter Taste Receptors Influence Glucose Homeostasis. PLoS ONE 2008, 3, e3974. [Google Scholar] [CrossRef]
- Chou, W.-L. Therapeutic Potential of Targeting Intestinal Bitter Taste Receptors in Diabetes Associated with Dyslipidemia. Pharmacol. Res. 2021, 170, 105693. [Google Scholar] [CrossRef]
- Meyerhof, W.; Batram, C.; Kuhn, C.; Brockhoff, A.; Chudoba, E.; Bufe, B.; Appendino, G.; Behrens, M. The Molecular Receptive Ranges of Human TAS2R Bitter Taste Receptors. Chem. Senses 2010, 35, 157–170. [Google Scholar] [CrossRef]
- Lossow, K.; Hübner, S.; Roudnitzky, N.; Slack, J.P.; Pollastro, F.; Behrens, M.; Meyerhof, W. Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans. J. Biol. Chem. 2016, 291, 15358–15377. [Google Scholar] [CrossRef]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different Phenolic Compounds Activate Distinct Human Bitter Taste Receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef]
- Roland, W.S.U.; van Buren, L.; Gruppen, H.; Driesse, M.; Gouka, R.J.; Smit, G.; Vincken, J.-P. Bitter Taste Receptor Activation by Flavonoids and Isoflavonoids: Modeled Structural Requirements for Activation of HTAS2R14 and HTAS2R39. J. Agric. Food Chem. 2013, 61, 10454–10466. [Google Scholar] [CrossRef]
- Kok, B.P.; Galmozzi, A.; Littlejohn, N.K.; Albert, V.; Godio, C.; Kim, W.; Kim, S.M.; Bland, J.S.; Grayson, N.; Fang, M.; et al. Intestinal Bitter Taste Receptor Activation Alters Hormone Secretion and Imparts Metabolic Benefits. Mol. Metab. 2018, 16, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, Y.; Ikeda, R.; Yamazaki, T.; Ito, K.; Uda, K.; Wakabayashi, K.; Watanabe, T. Activation of Human Bitter Taste Receptors by Polymethoxylated Flavonoids. Biosci. Biotechnol. Biochem. 2016, 80, 2014–2017. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Chen, B.; Xu, K.; Rigakou, A.; Diamantakos, P.; Melliou, E.; Logothetis, D.E.; Magiatis, P. Activation of Specific Bitter Taste Receptors by Olive Oil Phenolics and Secoiridoids. Sci. Rep. 2021, 11, 22340. [Google Scholar] [CrossRef] [PubMed]
- Narukawa, M.; Misaka, T. Identification of Mouse Bitter Taste Receptors That Respond to Resveratrol: A Bitter-Tasting Polyphenolic Compound. Biosci. Biotechnol. Biochem. 2022, 86, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Prandi, S.; Voigt, A.; Meyerhof, W.; Behrens, M. Expression Profiling of Tas2r Genes Reveals a Complex Pattern along the Mouse GI Tract and the Presence of Tas2r131 in a Subset of Intestinal Paneth Cells. Cell. Mol. Life Sci. 2018, 75, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Kato, E. TAS2R Expression Profile in Brown Adipose, White Adipose, Skeletal Muscle, Small Intestine, Liver and Common Cell Lines Derived from Mice. Gene Rep. 2020, 20, 100763. [Google Scholar] [CrossRef]
- Lund, T.C.; Kobs, A.J.; Kramer, A.; Nyquist, M.; Kuroki, M.T.; Osborn, J.; Lidke, D.S.; Low-Nam, S.T.; Blazar, B.R.; Tolar, J. Bone Marrow Stromal and Vascular Smooth Muscle Cells Have Chemosensory Capacity via Bitter Taste Receptor Expression. PLoS ONE 2013, 8, e58945. [Google Scholar] [CrossRef]
- Kurtz, R.; Steinberg, L.G.; Betcher, M.; Fowler, D.; Shepard, B.D. The Sensing Liver: Localization and Ligands for Hepatic Murine Olfactory and Taste Receptors. Front. Physiol. 2020, 11, 574082. [Google Scholar] [CrossRef]
- Pham, H.; Hui, H.; Morvaridi, S.; Cai, J.; Zhang, S.; Tan, J.; Wu, V.; Levin, N.; Knudsen, B.; Goddard, W.A.; et al. A Bitter Pill for Type 2 Diabetes? The Activation of Bitter Taste Receptor TAS2R38 Can Stimulate GLP-1 Release from Enteroendocrine L-Cells. Biochem. Biophys. Res. Commun. 2016, 475, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, D.A.; Wang, W.C.H.; McIlmoyle, E.L.; Robinett, K.S.; Schillinger, R.M.; An, S.S.; Sham, J.S.K.; Liggett, S.B. Bitter Taste Receptors on Airway Smooth Muscle Bronchodilate by Localized Calcium Signaling and Reverse Obstruction. Nat. Med. 2010, 16, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.G.; Ping, N.N.; Liang, D.; Li, M.Y.; Mi, Y.N.; Li, S.; Cao, L.; Cai, Y.; Cao, Y.X. The Expression of Bitter Taste Receptors in Mesenteric, Cerebral and Omental Arteries. Life Sci. 2017, 170, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Amisten, S.; Salehi, A.; Rorsman, P.; Jones, P.M.; Persaud, S.J. An Atlas and Functional Analysis of G-Protein Coupled Receptors in Human Islets of Langerhans. Pharmacol. Ther. 2013, 139, 359–391. [Google Scholar] [CrossRef]
- Kim, K.-S.; Egan, J.M.; Jang, H.-J. Denatonium Induces Secretion of Glucagon-like Peptide-1 through Activation of Bitter Taste Receptor Pathways. Diabetologia 2014, 57, 2117–2125. [Google Scholar] [CrossRef]
- Yue, X.; Liang, J.; Gu, F.; Du, D.; Chen, F. Berberine Activates Bitter Taste Responses of Enteroendocrine STC-1 Cells. Mol. Cell. Biochem. 2018, 447, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hao, G.; Zhang, Q.; Hua, W.; Wang, M.; Zhou, W.; Zong, S.; Huang, M.; Wen, X. Berberine Induces GLP-1 Secretion through Activation of Bitter Taste Receptor Pathways. Biochem. Pharmacol. 2015, 97, 173–177. [Google Scholar] [CrossRef]
- Rose, B.D.; Bitarafan, V.; Rezaie, P.; Fitzgerald, P.C.E.; Horowitz, M.; Feinle-Bisset, C. Comparative Effects of Intragastric and Intraduodenal Administration of Quinine on the Plasma Glucose Response to a Mixed-Nutrient Drink in Healthy Men: Relations with Glucoregulatory Hormones and Gastric Emptying. J. Nutr. 2021, 151, 1453–1461. [Google Scholar] [CrossRef]
- Ning, X.; He, J.; Shi, X.; Yang, G. Regulation of Adipogenesis by Quinine through the ERK/S6 Pathway. Int. J. Mol. Sci. 2016, 17, 504. [Google Scholar] [CrossRef]
- Kimura, S.; Tsuruma, A.; Kato, E. Taste 2 Receptor Is Involved in Differentiation of 3T3-L1 Preadipocytes. Int. J. Mol. Sci. 2022, 23, 8120. [Google Scholar] [CrossRef]
- Cancello, R.; Micheletto, G.; Meta, D.; Lavagno, R.; Bevilacqua, E.; Panizzo, V.; Invitti, C. Expanding the Role of Bitter Taste Receptor in Extra Oral Tissues: TAS2R38 Is Expressed in Human Adipocytes. Adipocyte 2020, 9, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Avau, B.; Bauters, D.; Steensels, S.; Vancleef, L.; Laermans, J.; Lesuisse, J.; Buyse, J.; Lijnen, H.R.; Tack, J.; Depoortere, I. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice. PLoS ONE 2015, 10, e0145538. [Google Scholar] [CrossRef]
- Nakabayashi, H.; Hashimoto, T.; Ashida, H.; Nishiumi, S.; Kanazawa, K. Inhibitory Effects of Caffeine and Its Metabolites on Intracellular Lipid Accumulation in Murine 3T3-L1 Adipocytes. Biofactors 2008, 34, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, N.; Mori, M. Effect of Powdered Green Tea and Its Caffeine Content on Lipogenesis and Lipolysis in 3T3-L1 Cell. J. Health Sci. 2000, 46, 153–155. [Google Scholar] [CrossRef]
- Lone, J.; Parray, H.A.; Yun, J.W. Nobiletin Induces Brown Adipocyte-like Phenotype and Ameliorates Stress in 3T3-L1 Adipocytes. Biochimie 2018, 146, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-S.; Kim, Y. Effects of Isorhamnetin on Adipocyte Mitochondrial Biogenesis and AMPK Activation. Molecules 2018, 23, 1853. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, X.; Zhao, T.; Zou, Y.; Li, R.; Xu, Y. Salicylates Promote Mitochondrial Biogenesis by Regulating the Expression of PGC-1α in Murine 3T3-L1 Pre-Adipocytes. Biochem. Biophys. Res. Commun. 2017, 491, 436–441. [Google Scholar] [CrossRef]
- Varela, C.E.; Rodriguez, A.; Romero-Valdovinos, M.; Mendoza-Lorenzo, P.; Mansour, C.; Ceballos, G.; Villarreal, F.; Ramirez-Sanchez, I. Browning Effects of (-)-Epicatechin on Adipocytes and White Adipose Tissue. Eur. J. Pharmacol. 2017, 811, 48–59. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.-X.; Wang, X.; Zhang, L.; Qu, W.; Bao, B.; Liu, C.-A.; Liu, J. Dietary Luteolin Activates Browning and Thermogenesis in Mice through an AMPK/PGC1α Pathway-Mediated Mechanism. Int. J. Obes. 2016, 40, 1841–1849. [Google Scholar] [CrossRef]
- Barbagallo, I.; Vanella, L.; Cambria, M.T.; Tibullo, D.; Godos, J.; Guarnaccia, L.; Zappalà, A.; Galvano, F.; Li Volti, G. Silibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes. Front. Pharmacol. 2016, 6, 309. [Google Scholar] [CrossRef]
- Velickovic, K.; Wayne, D.; Leija, H.A.L.; Bloor, I.; Morris, D.E.; Law, J.; Budge, H.; Sacks, H.; Symonds, M.E.; Sottile, V. Caffeine Exposure Induces Browning Features in Adipose Tissue in Vitro and in Vivo. Sci. Rep. 2019, 9, 9104. [Google Scholar] [CrossRef]
- Sakai, H.; Sato, K.; Kai, Y.; Chiba, Y.; Narita, M. Denatonium and 6-n-Propyl-2-Thiouracil, Agonists of Bitter Taste Receptor, Inhibit Contraction of Various Types of Smooth Muscles in the Rat and Mouse. Biol. Pharm. Bull. 2016, 39, 33–41. [Google Scholar] [CrossRef]
- Manson, M.L.; Säfholm, J.; Al-Ameri, M.; Bergman, P.; Orre, A.C.; Swärd, K.; James, A.; Dahlén, S.E.; Adner, M. Bitter Taste Receptor Agonists Mediate Relaxation of Human and Rodent Vascular Smooth Muscle. Eur. J. Pharmacol. 2014, 740, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Zagorchev, P.; Petkov, G.V.; Gagov, H.S. Bitter Taste Receptors as Regulators of Abdominal Muscles Contraction. Physiol. Res. 2019, 68, 991–995. [Google Scholar] [CrossRef]
- Avau, B.; Rotondo, A.; Thijs, T.; Andrews, C.N.; Janssen, P.; Tack, J.; Depoortere, I. Targeting Extra-Oral Bitter Taste Receptors Modulates Gastrointestinal Motility with Effects on Satiation. Sci. Rep. 2015, 5, 15985. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Choi, Y.; Park, T. Hepatoprotective Effect of Oleuropein in Mice: Mechanisms Uncovered by Gene Expression Profiling. Biotechnol. J. 2010, 5, 950–960. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xue, P.; Grayson, N.; Bland, J.S.; Wolfe, A. Bitter Taste Receptor Ligand Improves Metabolic and Reproductive Functions in a Murine Model of PCOS. Endocrinology 2019, 160, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Feng, S.; Liu, A.; Dai, Z.; Wang, H.; Reuhl, K.; Lu, W.; Yang, C.S. Green Tea Polyphenol EGCG Alleviates Metabolic Abnormality and Fatty Liver by Decreasing Bile Acid and Lipid Absorption in Mice. Mol. Nutr. Food Res. 2018, 62, 1700881. [Google Scholar] [CrossRef] [PubMed]
- Straub, S.G.; Mulvaney-Musa, J.; Yajima, H.; Weiland, G.A.; Sharp, G.W.G. Stimulation of Insulin Secretion by Denatonium, One of the Most Bitter-Tasting Substances Known. Diabetes 2003, 52, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Malaisse, W.J.; Best, L.C.; Herchuelz, A.; Hiriart, M.; Jijakli, H.; Kadiata, M.M.; Larrieta-Carasco, E.; Laghmich, A.; Louchami, K.; Mercan, D.; et al. Insulinotropic Action of β-l-Glucose Pentaacetate. Am. J. Physiol. Metab. 1998, 275, E993–E1006. [Google Scholar] [CrossRef] [PubMed]
- Simon, B.R.; Parlee, S.D.; Learman, B.S.; Mori, H.; Scheller, E.L.; Cawthorn, W.P.; Ning, X.; Gallagher, K.; Tyrberg, B.; Assadi-Porter, F.M.; et al. Artificial Sweeteners Stimulate Adipogenesis and Suppress Lipolysis Independently of Sweet Taste Receptors. J. Biol. Chem. 2013, 288, 32475–32489. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-C.; Chen, Z.-H.; Xue, J.-B.; Zhao, D.-X.; Lu, C.; Li, Y.-H.; Li, S.-M.; Du, Y.-W.; Liu, Q.; Wang, P.; et al. Infection by the Parasitic Helminth Trichinella Spiralis Activates a Tas2r-Mediated Signaling Pathway in Intestinal Tuft Cells. Proc. Natl. Acad. Sci. USA 2019, 116, 5564–5569. [Google Scholar] [CrossRef]
- Wu, S.V.; Rozengurt, N.; Yang, M.; Young, S.H.; Sinnett-Smith, J.; Rozengurt, E. Expression of Bitter Taste Receptors of the T2R Family in the Gastrointestinal Tract and Enteroendocrine STC-1 Cells. Proc. Natl. Acad. Sci. USA 2002, 99, 2392–2397. [Google Scholar] [CrossRef] [PubMed]
- Vegezzi, G.; Anselmi, L.; Huynh, J.; Barocelli, E.; Rozengurt, E.; Raybould, H.; Sternini, C. Diet-Induced Regulation of Bitter Taste Receptor Subtypes in the Mouse Gastrointestinal Tract. PLoS ONE 2014, 9, e107732. [Google Scholar] [CrossRef] [PubMed]
- Jeon, T.-I.; Zhu, B.; Larson, J.L.; Osborne, T.F. SREBP-2 Regulates Gut Peptide Secretion through Intestinal Bitter Taste Receptor Signaling in Mice. J. Clin. Investig. 2008, 118, 3693–3700. [Google Scholar] [CrossRef]
- Amisten, S.; Neville, M.; Hawkes, R.; Persaud, S.J.; Karpe, F.; Salehi, A. An Atlas of G-Protein Coupled Receptor Expression and Function in Human Subcutaneous Adipose Tissue. Pharmacol. Ther. 2015, 146, 61–93. [Google Scholar] [CrossRef]
- Foster, S.R.; Porrello, E.R.; Purdue, B.; Chan, H.W.; Voigt, A.; Frenzel, S.; Hannan, R.D.; Moritz, K.M.; Simmons, D.G.; Molenaar, P.; et al. Expression, Regulation and Putative Nutrient-Sensing Function of Taste GPCRs in the Heart. PLoS ONE 2013, 8, e64579. [Google Scholar] [CrossRef]
- Caicedo, A.; Pereira, E.; Margolskee, R.F.; Roper, S.D. Role of the G-Protein Subunit α-Gustducin in Taste Cell Responses to Bitter Stimuli. J. Neurosci. 2003, 23, 9947–9952. [Google Scholar] [CrossRef]
- Kim, D.; Woo, J.A.; Geffken, E.; An, S.S.; Liggett, S.B. Coupling of Airway Smooth Muscle Bitter Taste Receptors to Intracellular Signaling and Relaxation Is via G Ai1,2,3. Am. J. Respir. Cell Mol. Biol. 2017, 56, 762–771. [Google Scholar] [CrossRef]
- Ozeck, M.; Brust, P.; Xu, H.; Servant, G. Receptors for Bitter, Sweet and Umami Taste Couple to Inhibitory G Protein Signaling Pathways. Eur. J. Pharmacol. 2004, 489, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Sainz, E.; Cavenagh, M.M.; Gutierrez, J.; Battey, J.F.; Northup, J.K.; Sullivan, S.L. Functional Characterization of Human Bitter Taste Receptors. Biochem. J. 2007, 403, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Tuzim, K.; Korolczuk, A. An Update on Extra-Oral Bitter Taste Receptors. J. Transl. Med. 2021, 19, 440. [Google Scholar] [CrossRef] [PubMed]
Compound | Target (Human) | Ref. | Target (Mouse) | Ref. |
---|---|---|---|---|
allyl isothiocyanate | TAS2R38 | [10] | Tas2r135 | [11] |
caffeine | TAS2R7, 10, 14, 43, 46 | [10] | Tas2r121 | [11] |
chloroquine | TAS2R3, 7, 10, 39 | [10] | Tas2r115 | [11] |
denatonium benzoate | TAS2R4, 8, 10, 13, 39, 43, 46, 47 | [10] | Tas2r105, 123. 135, 140, 144 | [11] |
dextromethorphan | TAS2R1, 10 | [10] | ||
epicatechin | TAS2R4, 5, 39 | [12] | Tas2r126, 144 | [11] |
epigallocatechin-3-gallate | TAS2R14, 39 | [13] | Tas2r144 | [11] |
isorhamnetin | TAS2R14, 39 | [13] | ||
KDT501 | TAS2R1 | [14] | Tas2r108 | [14] |
luteolin | TAS2R14, 39 | [13] | ||
nobiletin | TAS2R14 | [15] | ||
noscapine | TAS2R14 | [10] | ||
oleuropein | TAS2R8 | [16] | ||
6-propyl-2-thiouracil (Prop) | TAS2R4, 38 | [10] | Tas2r105, 108, 120, 121, 135, 137 | [11] |
quercetin | TAS2R14 | [13] | ||
quinine | TAS2R4, 7, 10, 14, 39, 40, 43, 44, 46 | [10] | Tas2r105, 108, 115, 126. 137, 140, 144 | [11] |
resveratrol | TAS2R14, 39 | [13] | Tas2r108, 109, 131, and 137 | [17] |
saccharin | TAS2R8, 43, 44 | [10] | Tas2r105, 109, 135, 144 | [11] |
salicylic acid | Tas2r135 | [11] | ||
silibinin | TAS2R14, 39 | [13] |
Tissue or Cell | Expression | Ref. |
---|---|---|
Intestine | Tas2r108, 126, 135, 137, 138, and 143 | [18,19] |
Inguinal WAT | Tas2r108, 113, 118, 119, 126, 135, 137, 138, 140, 143, and 144 | [19] |
Hind limb skeletal muscle | Tas2r108, 126, 134, 135, 137, 140, 143, and 144 | [19] |
Vascular smooth muscle | Tas2r116 and Tas2r143 | [20] |
Liver | Tas2r108, 126, 135, 137, 138, and 143 | [18,21] |
Liver | Tas2r108, 109, 126, 130, 135, 137, 138, and 143 | [19] |
Tissue or Cell | Expression | Ref. |
---|---|---|
Intestine | TAS2R4, 5, 14, 20 (High), TAS2R3, 10, 13, 19, 30, 31, 38, 43, 46, 50, and 60 (Low) | GTEx |
Intestinal L-cells | TAS2R38 | [22] |
Subcutaneous WAT | TAS2R14, 19, 45, and 46 (High) TAS2R3, 7, 31, and 43 (intermediate), TAS2R5, 10, 13, 20, and 39 (Low) | [19] |
Subcutaneous and visceral WAT | TAS2R5, 14, and 20 (High), TAS2R4, 10, 19, and 31 (intermediate), TAS2R3, 13, 43, 46, and 50 (Low) | GTEx |
Airway smooth muscle | TAS2R1, 3, 4, 5, 8, 9, 10, 13, 14, 19, 30, 31, 42, 45, 46, and 50 | [23] |
Vascular smooth muscle | TAS2R3, 4, 7, 10, 14, 39, and 40 TAS2R46 | [24] [20] |
Cardiac muscle | TAS2R3, 4, 5, 9, 10, 13, 14, 19, 20, 30, 31, 39, 43, 45, 46, and 50 | [20] |
Gastrocnemius muscle | TAS2R5, 14, and 20 (High), TAS2R4 and 19 (intermediate), TAS2R3, 10, 13, 30, 31, 43, and 50 (Low) | GTEx |
Liver | TAS2R4, 5, 10, 13, 14, 19, 20, 30, 31, 43, and 46 | GTEx |
Islets of Langerhans | TAS2R3, 4, 5, 9, 10, 13, 14, 19, 31, 43, 45, 46, 50, and 60 | [25] |
Pancreas | TAS2R3, 4, 5, 10, 14, 19, 20, and 31 | GTEx |
Tissue | Experimental Model | Specie | Summary | Ref. |
---|---|---|---|---|
Intestine | NCI-H716 cells isolated proximal duodenum | human mouse | Denatonium and quinine stimulate cells to secrete GLP-1, and the knockdown of TAS2R3, 44, and 46 decreased the response. Isolated proximal duodenum secretes GLP-1 in response to denatonium. | [26] |
HuTu-80 cells BALB/c mice | human mouse | PROP and Z7 stimulate cells to secrete GLP-1, and the knockdown of TAS2R38 decreased the response. Oral administration of TAS2R38 ligand increased serum GLP-1 levels. | [22] | |
NCI-H716cells STC-1 cells | human | Berberine upregulates the secretion of GLP-1, and the knockdown of TAS2R38 decreased the response. | [27,28] | |
diet-induced obese mice | mouse | Oral gavage of KDT501 increased plasma GLP-1 levels | [14] | |
healthy men | human | intraduodenal administration of quinine increased plasma GLP-1 levels. | [29] | |
Adipose | primary preadipocytes | mouse | Quinine stimulates adipogenesis, and Tas2r106 knockdown suppressed the action. | [30] |
3T3-L1 preadipocytes | mouse | Overexpression of Tas2r108 or Tas2r126 reduced adipogenesis | [31] | |
primary adipocytes | human | PROP, quinine, and caffeine reduce lipid accumulation and increase the expression of TAS2R38 | [32] | |
3T3-F442A adipocytes | mouse | Denatonium benzoate and quinine reduce lipid accumulation and increase the expression of Tas2r108 and Tas2r135. | [33] | |
3T3-L1 adipocytes | mouse | Caffeine reduces lipid accumulation | [34,35] | |
3T3-L1 adipocytes | mouse | Nobiletin, isorhamnetin, and salicylic acid upregulate brown adipocyte marker gene or protein. | [36,37,38] | |
diet-induced obese mice | mouse | Oral gavage of epicatechin increases BAT-specific markers in perivisceral subcutaneous adipose tissue. | [39] | |
high-fat diet-fed mice | mouse | Supplementation of luteolin in diet promoted thermogenesis in BAT and subcutaneous adipose tissue. | [40] | |
primary adipocytes | human | Silibinin increases thermogenic marker genes | [41] | |
primary adipocytes | human | Caffeine increased UCP-1 level | [42] | |
Muscle | isolated trachea | mouse | Chloroquine, quinine, and denatonium benzoate induce relaxation | [23] |
airway smooth muscle cells | human | Saccharine and chloroquine increase intracellular Ca2+ | [23] | |
isolated bronchial smooth muscle | rat and mouse | Denatonium or PROP induces relaxation | [43] | |
isolated aorta ring | guinea pig | Chloroquine, denatonium, dextromethorphan, or noscapine induce relaxation | [44] | |
isolated pulmonary arteries | human | Chloroquine, dextromethorphan, or noscapine induce relaxation | [44] | |
vascular smooth muscle cells | human and rat | Denatonium increases intracellular Ca2+ | [20] | |
isolated ileal smooth muscle | mouse | Responds to denatonium or PROP | [43] | |
isolated abdominal skeletal muscle | rat | Denatonium induce relaxation | [45] | |
gastric smooth muscle cells | human | Denatonium benzoate induces contraction and relaxation at different concentration | [46] | |
Liver | high-fat diet-fed mice | mouse | Supplementation of oleuropein to diet reduced liver weight and hepatic triglyceride level | [47] |
diet-induced obese mice | mouse | Oral gavage of KDT501 reduced lipid deposition of the liver | [48] | |
high-fat diet-fed mice | mouse | Supplementation of epigallocatechin-3-gallate to diet reduced hepatic lipid and cholesterol content | [49] | |
Islet | HIT-T15 cells isolated islet | hamster rat | Denatonium benzoate induces insulin secretion | [50] |
isolated islet | rat | β-L-Glucose pentaacetate induces insulin secretion | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, E.; Oshima, S. Association of Bitter Taste Receptors with Obesity and Diabetes and Their Role in Related Tissues. Receptors 2023, 2, 251-263. https://doi.org/10.3390/receptors2040017
Kato E, Oshima S. Association of Bitter Taste Receptors with Obesity and Diabetes and Their Role in Related Tissues. Receptors. 2023; 2(4):251-263. https://doi.org/10.3390/receptors2040017
Chicago/Turabian StyleKato, Eisuke, and Shota Oshima. 2023. "Association of Bitter Taste Receptors with Obesity and Diabetes and Their Role in Related Tissues" Receptors 2, no. 4: 251-263. https://doi.org/10.3390/receptors2040017
APA StyleKato, E., & Oshima, S. (2023). Association of Bitter Taste Receptors with Obesity and Diabetes and Their Role in Related Tissues. Receptors, 2(4), 251-263. https://doi.org/10.3390/receptors2040017