Which Commodity Sectors Effectively Hedge Emerging Eastern European Stock Markets? Evidence from MGARCH Models
Abstract
:1. Introduction
2. Literature Review
3. Data and Descriptive Statistics
4. Methodology
5. Empirical Results
5.1. Regression Results
5.2. Dynamic Conditional Correlations
5.3. Hedging and Risk Management
6. Robustness Analysis
7. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chong, J.; Miffre, J. Conditional Correlation and Volatility in Commodity Futures and Traditional Asset Markets. Res. Int. Bus. Financ. 2010, 38, 22–34. [Google Scholar]
- Mensi, W.; Beljid, M.; Boubaker, A.; Managi, S. Correlations and Volatility Spillovers across Commodity and Stock Markets: Linking Energies, Food, and Gold. Econ. Model. 2013, 32, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Wesseh, P.K., Jr.; Appiah, M.O. Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness. Energy Econ. 2014, 42, 172–182. [Google Scholar] [CrossRef]
- Silvennoinen, A.; Thorp, S. Financialization, crisis and commodity correlation dynamics. J. Int. Financ. Mark. Inst. Money 2013, 24, 42–65. [Google Scholar] [CrossRef] [Green Version]
- Belousova, J.; Dorfleitner, G. On the diversification benefits of commodities from the perspective of euro investors. J. Bank. Financ. 2012, 36, 2455–2472. [Google Scholar] [CrossRef]
- Creti, A.; Jots, M.; Mignon, V. On the Links between Stock and Commodity Markets’ Volatility. Energy Econ. 2013, 37, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, M.J.; Ravazzolo, F. On the correlation between commodity and equity returns: Implications for portfolio allocation. J. Commod. Mark. 2016, 2, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Greer, R. The nature of commodity index returns. J. Altern. Invest. 2000, 3, 45–52. [Google Scholar] [CrossRef]
- Gorton, G.; Rouwenhorst, K.G. Facts and fantasies about commodity futures. Financ. Anal. J. 2006, 62, 47–68. [Google Scholar] [CrossRef]
- Tang, K.; Xiong, W. Index investment and the financialization of commodities. Financ. Anal. J. 2012, 68, 54–74. [Google Scholar] [CrossRef]
- Öztek, M.F.; Öcal, N. Financial Crises and the Nature of Correlation between Commodity and Stock Markets. Int. Rev. Econ. Financ. 2017, 48, 56–68. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Chevallier, J.; Guesmi, K. “De-Financialization” of Commodities? Evidence from Stock, Crude Oil and Natural Gas Markets. Energy Econ. 2017, 68, 228–239. [Google Scholar] [CrossRef]
- Aït-Youcef, C. How index investment impacts commodities: A story about the financialization of agricultural commodities. Econ. Model. 2019, 80, 23–33. [Google Scholar] [CrossRef]
- Ali, S.; Bouri, E.; Czudaj, L.R.; Shahzad, H.J.S. Revisiting the valuable roles of commodities for international stock markets. Resour. Policy 2020, 66, 101603. [Google Scholar] [CrossRef]
- Batten, J.; Kinateder, H.; Szilagyi, P.; Wagneral, N. Hedging stocks with oil. Energy Econ. 2019, 93, 104422. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Lai, J.-L.; Chuang, I.-Y. Futures hedging effectiveness under the segmentation of bull/bull energy markets. Energy Econ. 2010, 32, 442–449. [Google Scholar] [CrossRef]
- Chkili, W. Dynamic correlations and hedging effectiveness between gold and stock markets: Evidence for BRICS countries. Res. Int. Bus. Financ. 2016, 38, 22–34. [Google Scholar] [CrossRef]
- Ahmad, W.; Sadorsky, P.; Sharma, A. Optimal hedge ratios for clean energy equities. Econ. Model. 2018, 72, 278–295. [Google Scholar] [CrossRef]
- Sadorsky, P. Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. Energy Econ. 2014, 43, 72–81. [Google Scholar] [CrossRef]
- Basher, A.S.; Sadorsky, P. Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH. Energy Econ. 2016, 54, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Raza, N.; Ali, S.; Shahzad, S.J.H.; Rehman, M.U.; Salman, A. Can alternative hedging assets add value to Islamic-conventional portfolio mix: Evidence from MGARCH models. Resour. Policy 2019, 61, 210–230. [Google Scholar] [CrossRef]
- Pal, D.; Mitra, S. Hedging bitcoin with other financial assets. Financ. Res. Lett. 2019, 30, 30–36. [Google Scholar] [CrossRef]
- Abdallah, A.; Ghorbel, A. Can alternative hedging assets add value to clean energy portfolio? Evidence from MGARCH models. Int. J. Sci. Res. Eng. Technol. 2020, 14, 48–67. [Google Scholar]
- Hachicha, N.; Ghorbel, A.; Feki, M.C.; Tahi, S.; Dammak, F.A. Hedging Dow Jones Islamic and conventional emerging market indices with CDS, oil, gold and the VSTOXX: A comparison between DCC, ADCC and GO-GARCH models. Borsa Istanb. Rev. 2022, 22, 209–225. [Google Scholar] [CrossRef]
- Baba, Y.; Engle, R.; Kraft, D.; Kroner, K. Multivariate Simultaneous Generalized ARCH; Unpublished Manuscript; University of California: San Diego, CA, USA, 1990. [Google Scholar]
- Bollerslev, T. Modelling the coherence in short-run nominal exchange rate: A multivariate generalized ARCH approach. Rev. Econ. Stat. 1990, 72, 498–505. [Google Scholar] [CrossRef]
- Engle, R.F. Dynamic conditional correlation: A simple class of multivariate generalized. J. Bus. Econ. Stat. 2002, 20, 339–350. [Google Scholar] [CrossRef]
- Cappiello, L.; Engle, R.F.; Sheppard, K. Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns. J. Financ. Econom. 2006, 4, 537–572. [Google Scholar] [CrossRef]
- Bauwens, L.; Laurent, S.; Rombouts, J.V.K. Multivariate GARCH models: A survey. J. Appl. Econom. 2006, 21, 79–109. [Google Scholar] [CrossRef] [Green Version]
- Alexander, C. Market Models: A Guide to Financial Data Analysis; John Wiley: Hoboken, NJ, USA, 2001; Volume 1. [Google Scholar]
- Van der Weide, R. Go-Garch: A Multivariate Generalized Orthogonal Garch Model. J. Appl. Econom. 2002, 17, 549–564. [Google Scholar] [CrossRef]
- Lu, R.; Xu, W.; Zeng, H.; Zhou, X. Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario. Econ. Anal. Policy 2023, 78, 1465–1481. [Google Scholar] [CrossRef]
- Guru, B.K.; Pradhan, A.K.; Bandaru, R. Volatility contagion between oil and the stock markets of G7 countries plus India and China. Resour. Policy 2023, 81, 103377. [Google Scholar] [CrossRef]
- Mroua, M.; Bouattour, H. Connectedness among various financial markets classes under COVID-19 pandemic and 2022 Russo-Ukrainian war: Evidence from TVP-VAR approach. J. Financ. Econ. Policy 2023, 15, 140–163. [Google Scholar] [CrossRef]
- Qi, H.; Ma, L.; Peng, P.; Chen, H.; Li, K. Dynamic connectedness between clean energy stock markets and energy commodity markets during times of COVID-19: Empirical evidence from China. Resour. Policy 2022, 79, 103094. [Google Scholar] [CrossRef]
- Bessler, W.; Wolff, D. Do commodities add value in multi-asset portfolios? An out of-sample analysis for different investment strategies. J. Bank. Financ. 2015, 60, 1–20. [Google Scholar] [CrossRef]
- Chunhachinda, P.; De Boyrie, M.E.; Pavlova, I. Measuring the hedging effectiveness of commodities. Financ. Res. Lett. 2019, 30, 201–207. [Google Scholar] [CrossRef]
- Zghal, R.; Melki, A.; Ghorbel, A. Do commodities hedge regional stock markets at the same effectiveness level? Evidence from MGARCH models. Int. J. Emerg. Mark. 2022; ahead-of-print. [Google Scholar]
- Boyrie, M.E.; Pavlova, I. Equities and Commodities Comovements: Evidence from Emerging Markets. Glob. Econ. J. 2018, 18, 20170075. [Google Scholar] [CrossRef]
- Arouri, M.; Jouini, J.; Nguyen, D.K. Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management. J. Int. Money Financ. 2011, 30, 1387–1405. [Google Scholar] [CrossRef]
- Hamma, W.; Ghorbel, A.; Jarboui, A. Hedging Islamic and conventional stock markets with other financial assets: Comparison between competing DCC models on hedging effectiveness. J. Asset Manag. 2021, 22, 179–199. [Google Scholar] [CrossRef]
- Fakhfakh, M.; Jeribi, A.; Ghorbel, A.; Hachicha, N. Hedging stock market prices with WTI, Gold, VIX and cryptocurrencies: A comparison between ADCC and GO-GARCH models. Int. J. Emerg. Mark. 2021; ahead-of-print. [Google Scholar]
- Chemkha, R.; BenSaïda, A.; Ghorbel, A.; Tayachi, T. Hedge and safe haven properties during COVID-19: Evidence from Bitcoin and gold. Q. Rev. Econ. Financ. 2021, 82, 71–85. [Google Scholar] [CrossRef]
- Zghal, R.; Ghorbel, A. Bitcoin, VIX futures and CDS: A triangle for hedging the international equity portfolios. Int. J. Emerg. Mark. 2022, 17, 71–79. [Google Scholar] [CrossRef]
- Khalifa, F.; Dhaoui, A.; Nakhli, M.S.; Bourouis, S.; Benammou, S. Do oil prices predict the dynamics of equity market? Fresh evidence from DCC, ADCC and Go-GARCH models. Int. J. Glob. Energy Issues 2023, 45, 66–85. [Google Scholar] [CrossRef]
- Kang, S.H.; Mciver, R.; Yoon, S.-M. Modeling time-varying correlations in volatility between BRICS and commodity markets. Emerg. Mark. Financ. Trade 2016, 52, 1698–1723. [Google Scholar] [CrossRef]
- Yousfi, M.; Dhaoui, A.; Bouzgarrou, H. Risk spillover during the COVID-19 global pandemic and portfolio management. J. Risk Financ. Manag. 2021, 14, 222. [Google Scholar] [CrossRef]
- Broda, S.A.; Paolella, M.S. Chicago: A fast and accurate method for portfolio risk calculation. J. Financ. Econom. 2009, 7, 412–436. [Google Scholar] [CrossRef]
- Baillie, R.T.; Myers, R.J. Bivariate GARCH estimation of the optimal commodity futures hedge. J. Appl. Econom. 1991, 6, 109–124. [Google Scholar] [CrossRef]
- Kroner, K.F.; Sultan, J. Time-varying distributions and dynamic hedging with foreign currency futures. J. Financ. Quant. Anal. 1993, 28, 535–551. [Google Scholar] [CrossRef]
- Ku, Y.H.; Chen, H.C.; Chen, K.H. On the application of the dynamic conditional correlation model in estimating optimal time-varying hedge ratios. Appl. Econ. Lett. 2007, 14, 503–509. [Google Scholar] [CrossRef]
EM Eastern Europe | Energy | Precious Metal | Industrial Metals | Livestock | Agriculture | |
---|---|---|---|---|---|---|
Mean | −0.0142 | 0.0117 | 0.0211 | 0.0115 | −0.0117 | −0.0072 |
Median | 0.0783 | 0.0164 | 0.0211 | 0.0115 | −0.0117 | 0.0000 |
Max | 19.1190 | 15.9825 | 8.7625 | 7.5883 | 5.3018 | 7.1568 |
Min | −80.6484 | −30.1688 | −10.1046 | −9.0150 | −6.2366 | −7.4752 |
Std. dev. | 2.1940 | 2.0574 | 1.0808 | 1.2794 | 0.9199 | 1.1658 |
Skewness | −8.0904 | −0.7955 | −0.2730 | −0.2323 | −0.2346 | −0.0655 |
Kurtosis | 273.5993 | 12.9070 | 6.9961 | 3.4425 | 1.9837 | 2.7906 |
JB test | 22,463,660 *** | 50,582 *** | 14,730 *** | 3610.2 *** | 1243.6 *** | 2335.4 *** |
Q(12) | 214.09 *** | 27.967 ** | 30.889 *** | 22.546 ** | 39.864 *** | 11.921 |
Q2(12) | 413.18 *** | 1395.3 *** | 781.27 *** | 2988.3 *** | 4617.3 *** | 1706 *** |
EM Eastern Europe | Energy | Precious Metal | Industrial Metals | Livestock | Agriculture | |
---|---|---|---|---|---|---|
EM Eastern Europe | 1.0000 | 0.2645 | 0.1427 | 0.2976 | 0.1026 | 0.1653 |
Energy | 0.2645 | 1.0000 | 0.1975 | 0.2932 | 0.1149 | 0.2641 |
Precious metal | 0.1427 | 0.1975 | 1.0000 | 0.3144 | 0.0384 | 0.2169 |
Industrial metals | 0.2976 | 0.2932 | 0.3144 | 1.0000 | 0.1153 | 0.2702 |
Livestock | 0.1026 | 0.1149 | 0.0384 | 0.1153 | 1.0000 | 0.1195 |
Agriculture | 0.1653 | 0.2641 | 0.2169 | 0.2702 | 0.1195 | 1.0000 |
Eastern European Markets and Energy | Eastern European Markets and Precious Metal | Eastern European Markets and Industrial Metals | Eastern European Markets and Livestock | Eastern European Markets and Agriculture | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Coeff | p-Value | Coeff | p-Value | Coeff | p-Value | Coeff | p-Value | Coeff | p-Value | |
0.0588 | 0.0731 | 0.0588 | 0.0731 | 0.0588 | 0.0731 | 0.0588 | 0.0730 | 0.0588 | 0.0733 | |
0.1584 | 0.0000 | 0.1584 | 0.0000 | 0.1584 | 0.0000 | 0.1584 | 0.0000 | 0.1584 | 0.0000 | |
0.0270 | 0.2999 | 0.0270 | 0.3000 | 0.0270 | 0.3002 | 0.0270 | 0.3004 | 0.0270 | 0.2999 | |
0.1195 | 0.0858 | 0.1195 | 0.0859 | 0.1195 | 0.0862 | 0.1195 | 0.0863 | 0.1195 | 0.0857 | |
0.8794 | 0.0000 | 0.8794 | 0.0000 | 0.8794 | 0.0000 | 0.8794 | 0.0000 | 0.8794 | 0.0000 | |
5.4784 | 0.0000 | 5.4784 | 0.0000 | 5.4784 | 0.0000 | 5.4784 | 0.0000 | 5.4784 | 0.0000 | |
0.0812 | 0.0483 | −0.0183 | 0.1412 | 0.0062 | 0.7878 | 0.0001 | 0.9920 | −0.0132 | 0.5547 | |
0.0173 | 0.4972 | −0.0262 | 0.3017 | 0.0567 | 0.0324 | 0.0071 | 0.7887 | 0.0389 | 0.1111 | |
0.0230 | 0.0278 | 0.0057 | 0.1442 | 0.0663 | 0.0051 | 0.0123 | 0.0449 | 0.0208 | 0.0142 | |
0.0359 | 0.0000 | 0.0545 | 0.0202 | 0.0488 | 0.0020 | 0.0508 | 0.0000 | 0.0528 | 0.0000 | |
0.9584 | 0.0000 | 0.9406 | 0.0000 | 0.8727 | 0.0000 | 0.9303 | 0.0000 | 0.9225 | 0.0000 | |
6.3685 | 0.0000 | 3.4819 | 0.0000 | 8.5866 | 0.0000 | 20.5696 | 0.0426 | 12.7332 | 0.0008 | |
0.0000 | 0.9996 | 0.0041 | 0.5071 | 0.0106 | 0.3059 | 0.0028 | 0.4914 | 0.0180 | 0.2277 | |
0.9280 | 0.0076 | 0.9594 | 0.0000 | 0.9645 | 0.0000 | 0.9843 | 0.0000 | 0.8385 | 0.0000 | |
22.031 | 0.0371 | 21.793 | 0.0399 | 21.953 | 0.0380 | 22.051 | 0.0369 | 21.807 | 0.0397 | |
13.331 | 0.3454 | 15.058 | 0.2383 | 27.538 | 0.0064 | 26.742 | 0.0084 | 14.061 | 0.2969 | |
14.778 | 0.2538 | 14.289 | 0.2827 | 14.486 | 0.2707 | 14.82 | 0.2514 | 15.004 | 0.2412 | |
22.874 | 0.0288 | 7.1733 | 0.846 | 14.055 | 0.2972 | 13.531 | 0.3316 | 16.055 | 0.1887 | |
AIC | 7.4461 | 5.5549 | 6.1970 | 5.9435 | 6.1650 | |||||
BIC | 7.5028 | 5.6115 | 6.2537 | 6.0002 | 6.2217 | |||||
Shibata | 7.4459 | 5.5546 | 6.1968 | 5.9433 | 6.1648 | |||||
Max likelihood | −5568.566 | −4150.149 | −4631.785 | −4441.614 | −4607.785 |
Eastern European Markets and Energy | Eastern European Markets and Precious Metal | Eastern European Markets and Industrial Metals | Eastern European Markets and Livestock | Eastern European Markets and Agriculture | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Coeff | p-Value | Coeff | p-Value | Coeff | p-Value | Coeff | p-Value | Coeff | p-Value | |
0.0336 | 0.2958 | 0.0336 | 0.2950 | 0.0336 | 0.2952 | 0.0336 | 0.2952 | 0.0336 | 0.2955 | |
0.1635 | 0.0000 | 0.1635 | 0.0000 | 0.1635 | 0.0000 | 0.1635 | 0.0000 | 0.1635 | 0.0000 | |
0.0210 | 0.2125 | 0.0210 | 0.2111 | 0.0210 | 0.2115 | 0.0210 | 0.2113 | 0.0210 | 0.2120 | |
0.1283 | 0.0162 | 0.1283 | 0.0160 | 0.1283 | 0.0160 | 0.1283 | 0.0159 | 0.1283 | 0.0161 | |
0.8930 | 0.0000 | 0.8930 | 0.0000 | 0.8930 | 0.0000 | 0.8930 | 0.0000 | 0.8930 | 0.0000 | |
0.1409 | 0.0825 | 0.1409 | 0.0821 | 0.1409 | 0.0824 | 0.1409 | 0.0827 | 0.1409 | 0.0829 | |
5.3018 | 0.0000 | 5.3018 | 0.0000 | 5.3018 | 0.0000 | 5.3018 | 0.0000 | 5.3018 | 0.0000 | |
0.0791 | 0.0573 | −0.0106 | 0.3640 | −0.0095 | 0.6943 | −0.0186 | 0.3654 | −0.0093 | 0.6316 | |
0.0167 | 0.5266 | −0.0271 | 0.1756 | 0.0607 | 0.0235 | 0.0136 | 0.6084 | 0.0429 | 0.0068 | |
0.0144 | 0.0095 | 0.0089 | 0.1281 | 0.0851 | 0.0052 | 0.0084 | 0.0000 | 0.0240 | 0.0178 | |
0.0374 | 0.0000 | 0.0741 | 0.0004 | 0.0417 | 0.0087 | 0.0303 | 0.0000 | 0.0586 | 0.0000 | |
0.9643 | 0.0000 | 0.9377 | 0.0000 | 0.8749 | 0.0000 | 0.9662 | 0.0000 | 0.9280 | 0.0000 | |
−0.1617 | 0.3015 | −0.3723 | 0.0078 | 0.8453 | 0.0276 | 1.0000 | 0.0000 | −0.2121 | 0.1223 | |
6.3895 | 0.0000 | 3.5581 | 0.0000 | 9.3481 | 0.0000 | 99.9996 | 0.2810 | 13.0833 | 0.0012 | |
0.0000 | 0.9999 | 0.0040 | 0.5496 | 0.0106 | 0.4527 | 0.0030 | 0.6642 | 0.0116 | 0.6585 | |
0.9340 | 0.0000 | 0.9624 | 0.0000 | 0.9537 | 0.0000 | 0.9850 | 0.0000 | 0.8678 | 0.0000 | |
0.0000 | 0.9999 | 0.0000 | 0.9999 | 0.0000 | 0.9999 | 0.0000 | 0.9998 | 0.0117 | 0.5543 | |
23.665 | 0.0225 | 23.446 | 0.0241 | 23.558 | 0.0233 | 23.635 | 0.0228 | 23.276 | 0.0254 | |
12.191 | 0.4305 | 16.671 | 0.1624 | 25.365 | 0.0131 | 28.277 | 0.0050 | 13.893 | 0.3076 | |
24.957 | 0.0150 | 24.556 | 0.0170 | 24.758 | 0.0160 | 25.026 | 0.0147 | 25.176 | 0.0140 | |
23.58 | 0.0231 | 11.598 | 0.4785 | 15.47 | 14.57 | 0.2658 | ||||
AIC | 7.4544 | 5.5573 | 6.2010 | 5.9395 | 6.1702 | |||||
BIC | 7.5217 | 5.6246 | 6.2683 | 6.0069 | 6.2375 | |||||
Shibata | 7.4540 | 5.5570 | 6.2007 | 5.9392 | 6.1699 | |||||
Max likelihood | −5571.772 | −4148.99 | −4631.762 | −4435.662 | −4608.664 |
Eastern European Markets and Energy | Eastern European Markets and Precious Metal | Eastern European Markets and Industrial Metals | Eastern European Markets and Livestock | Eastern European Markets and Agriculture | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rotation matrix U | ||||||||||
U(1) | U(2) | U(1) | U(2) | U(1) | U(2) | U(1) | U(2) | U(1) | U(2) | |
U(1) | −0.6037 | −0.7971 | −0.9920 | 0.1258 | −0.3722 | −0.92812 | −0.0865 | −0.9963 | −0.9879 | 0.1545 |
U(2) | −0.7971 | 0.6037 | 0.1258 | 0.9920 | −0.92812 | 0.3722 | −0.9963 | 0.0865 | 0.1545 | 0.9879 |
Mixing matrix A | ||||||||||
A(1) | A(2) | A(1) | A(2) | A(1) | A(2) | A(1) | A(2) | A(1) | A(2) | |
A(1) | 0.2451 | 2.1799 | 2.1864 | −0.1790 | 0.5418 | 2.1257 | 0.1426 | 2.1890 | 2.1842 | −0.2038 |
A(2) | 2.0315 | 0.3215 | 0.0659 | −1.0787 | 1.2764 | 0.0715 | 0.9187 | 0.0340 | 0.0839 | −1.1625 |
GO-GARCH parameter estimates | ||||||||||
F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | |
0.0065 | 0.0099 | 0.0099 | 0.0026 | 0.0052 | 0.0121 | 0.0120 | 0.0096 | 0.0098 | 0.0091 | |
0.0609 | 0.1032 | 0.1077 | 0.0375 | 0.0381 | 0.1086 | 0.0478 | 0.1029 | 0.1040 | 0.0520 | |
0.9345 | 0.8847 | 0.8808 | 0.9614 | 0.9563 | 0.8753 | 0.9401 | 0.8856 | 0.8845 | 0.9392 | |
Skew | −0.0880 | −0.1560 | −0.1572 | 0.0355 | −0.0490 | −0.1393 | −0.0887 | −0.1652 | −0.1671 | −0.0447 |
Shape | 1.6671 | 1.6516 | 1.6462 | 0.8045 | 2.4167 | 1.7575 | 4.5836 | 1.7182 | 1.6809 | 2.6277 |
Eastern European Markets and Energy | Eastern European Markets and Precious Metal | Eastern European Markets and Industrial Metals | Eastern European Markets and Livestock | Eastern European Markets and Agriculture | |
---|---|---|---|---|---|
DCC/ADCC | 0.9990 | 0.9965 | 0.9978 | 0.9908 | 0.9921 |
DCC/GO-GARCH | 0.6290 | 0.46571 | 0.5859 | 0.3113 | 0.6417 |
ADCC/GO-GARCH | 0.6417 | 0.4664 | 0.6013 | 0.4585 | 0.3324 |
Eastern European Markets and Energy | Eastern European Markets and Precious Metal | Eastern European Markets and Industrial Metals | Eastern European Markets and Livestock | Eastern European Markets and Agriculture | |
---|---|---|---|---|---|
DCC/ADCC | 0.9900 | 0.9583 | 0.9849 | 0.9593 | 0.9836 |
DCC/GO-GARCH | 0.6535 | 0.1332 | 0.8194 | 0.3626 | 0.6421 |
ADCC/GO-GARCH | 0.6371 | 0.1908 | 0.7799 | 0.4036 | 0.6401 |
R = 20 | R = 40 | R = 60 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | HE | Mean | Min | Max | HE | Mean | Min | Max | HE | |
Eastern European markets/energy | ||||||||||||
DCC | 0.2167 | −0.1182 | 1.2758 | 0.0997 | 0.2161 | −0.1112 | 1.2690 | 0.0995 | 0.2157 | −0.1182 | 1.2690 | 0.0993 |
ADCC | 0.2257 | 0.0876 | 1.2118 | 0.1032 | 0.2253 | −0.0403 | 1.2056 | 0.1031 | 0.2253 | −0.0353 | 1.2056 | 0.1029 |
GO-GARCH | 0.1824 | −0.1766 | 4.8658 | 0.0436 | 0.1461 | −0.4646 | 1.7492 | 0.0431 | 0.1789 | −0.1871 | 4.8550 | 0.0420 |
Eastern European markets/precious metal | ||||||||||||
DCC | 0.2187 | −2.4259 | 1.5624 | 0.0335 | 0.2187 | −2.3736 | 1.5624 | 0.0333 | 0.2179 | −2.3802 | 1.4437 | 0.0330 |
ADCC | 0.2190 | −1.7676 | 1.8555 | 0.0340 | 0.2194 | −1.7249 | 1.8555 | 0.0338 | 0.2175 | −1.7347 | 1.6327 | 0.0334 |
GO-GARCH | 0.1181 | −6.3530 | 3.0662 | 0.0445 | 0.1180 | −6.3168 | 3.0663 | 0.0444 | 0.2191 | −0.9030 | 2.0137 | 0.0446 |
Eastern European markets/industrial metals | ||||||||||||
DCC | 0.3745 | −0.3321 | 2.7785 | 0.1077 | 0.3724 | −0.3321 | 2.7970 | 0.1071 | 0.3723 | −0.3321 | 2.7785 | 0.1071 |
ADCC | 0.3830 | −0.2943 | 2.6705 | 0.1132 | 0.3813 | −0.2943 | 2.7013 | 0.1126 | 0.3812 | −0.2943 | 2.6705 | 0.1127 |
GO-GARCH | 0.2334 | −1.1252 | 3.7086 | 0.0696 | 0.2337 | −0.2182 | 0.8940 | 0.0691 | 0.2319 | −0.2184 | 0.8931 | 0.0684 |
Eastern European markets/livestock | ||||||||||||
DCC | 0.1533 | −0.4636 | 3.6635 | 0.0083 | 0.1533 | −0.4636 | 3.6833 | 0.0083 | 0.1519 | −0.1838 | 3.6531 | 0.0081 |
ADCC | 0.1489 | −0.6230 | 2.6433 | 0.0087 | 0.1495 | −0.6230 | 2.6523 | 0.0087 | 0.1487 | −0.2376 | 2.6320 | 0.0086 |
GO-GARCH | 0.0194 | −0.4424 | 0.5042 | 0.0081 | 0.0183 | −0.4557 | 0.5002 | 0.0077 | 0.0523 | −1.5749 | 6.0137 | 0.0074 |
Eastern European markets/agriculture | ||||||||||||
DCC | 0.1861 | −0.4592 | 2.6393 | 0.0247 | 0.1864 | −0.5457 | 2.6393 | 0.0247 | 0.1856 | −0.5457 | 2.4592 | 0.0247 |
ADCC | 0.2063 | −0.3895 | 2.2641 | 0.0277 | 0.2076 | −0.2435 | 2.2641 | 0.0277 | 0.2053 | −0.3895 | 2.1712 | 0.0275 |
GO-GARCH | 0.0729 | −0.8797 | 0.3178 | 0.0260 | 0.0717 | −0.8804 | 0.3179 | 0.0254 | 0.0710 | −0.8814 | 0.3116 | 0.0253 |
R = 20 | R = 40 | R = 60 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | HE | Mean | Min | Max | HE | Mean | Min | Max | HE | |
Eastern European markets/energy | ||||||||||||
DCC | 0.2517 | −0.1182 | 1.2758 | 0.1171 | 0.2512 | −0.1112 | 1.2690 | 0.1170 | 0.2510 | −0.1112 | 1.2572 | 0.1169 |
ADCC | 0.2621 | −0.0876 | 1.2118 | 0.1213 | 0.2617 | −0.0403 | 1.2056 | 0.1212 | 0.2614 | −0.0876 | 1.1940 | 0.1210 |
GO-GARCH | 0.1987 | −0.0607 | 4.8658 | 0.0493 | 0.1971 | −0.0612 | 4.8683 | 0.0488 | 0.1969 | −0.0607 | 4.8672 | 0.0483 |
Eastern European markets/precious metal | ||||||||||||
DCC | 0.2265 | −2.4259 | 1.4802 | 0.0385 | 0.2266 | −2.3736 | 1.4470 | 0.0382 | 0.2270 | −2.4259 | 1.4802 | 0.0381 |
ADCC | 0.2251 | −1.7676 | 1.2032 | 0.0390 | 0.2253 | −1.7249 | 1.2192 | 0.0387 | 0.2257 | −1.7676 | 1.2162 | 0.0387 |
GO-GARCH | 0.2474 | −0.3845 | 2.0149 | 0.0497 | 0.1177 | −6.3168 | 3.0663 | 0.0496 | 0.2466 | −0.3823 | 1.9980 | 0.0499 |
Eastern European markets/industrial metals | ||||||||||||
DCC | 0.4259 | −0.3321 | 2.7785 | 0.1260 | 0.4254 | −0.3321 | 2.7970 | 0.1254 | 0.4255 | −0.3375 | 2.7970 | 0.1254 |
ADCC | 0.4351 | −0.2943 | 2.6705 | 0.1323 | 0.4347 | −0.2943 | 2.7013 | 0.1318 | 0.4351 | −0.30146 | 2.7013 | 0.1319 |
GO-GARCH | 0.2556 | −0.0303 | 3.2698 | 0.0789 | 0.2727 | −0.1175 | 0.8940 | 0.0782 | 0.2732 | −0.1119 | 0.8872 | 0.0794 |
Eastern European markets/livestock | ||||||||||||
DCC | 0.1751 | −0.1979 | 3.6635 | 0.0096 | 0.1750 | −0.1838 | 3.6833 | 0.0096 | 0.1734 | −0.1901 | 3.6635 | 0.0094 |
ADCC | 0.1702 | −0.6230 | 2.6433 | 0.0101 | 0.1708 | −0.6230 | 2.6523 | 0.0101 | 0.1696 | −0.5546 | 2.6433 | 0.0098 |
GO-GARCH | 0.0243 | −0.44242 | 0.5042 | 0.0092 | 0.0686 | −0.2454 | 6.0522 | 0.0086 | 0.0770 | −0.4324 | 6.0499 | 0.0107 |
Eastern European markets/agriculture | ||||||||||||
DCC | 0.1986 | −0.2021 | 1.3834 | 0.0284 | 0.1985 | −0.1988 | 1.3791 | 0.0283 | 0.1965 | −0.1988 | 1.3791 | 0.0278 |
ADCC | 0.2146 | −0.1874 | 1.6519 | 0.0316 | 0.2144 | −0.1730 | 1.6426 | 0.0316 | 0.2135 | −0.1874 | 1.6426 | 0.0311 |
GO-GARCH | 0.1321 | −0.1120 | 2.8540 | 0.0281 | 0.0767 | −0.8804 | 0.3179 | 0.0277 | 0.0764 | −0.8895 | 0.3178 | 0.0291 |
R = 20 | R = 40 | R = 60 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | HE | Mean | Min | Max | HE | Mean | Min | Max | HE | |
Eastern European markets/energy | ||||||||||||
DCC | 0.2748 | −0.1182 | 1.2758 | 0.1284 | 0.2745 | −0.1182 | 1.2758 | 0.1283 | 0.2739 | −0.1182 | 1.2690 | 0.1280 |
ADCC | 0.2859 | −0.0876 | 1.2118 | 0.1330 | 0.2858 | −0.0876 | 1.2118 | 0.1329 | 0.2854 | −0.0321 | 1.2056 | 0.1327 |
GO-GARCH | 0.2177 | −0.0512 | 4.8658 | 0.0538 | 0.1906 | −0.4588 | 1.7405 | 0.0530 | 0.2126 | −0.0477 | 4.8550 | 0.0516 |
Eastern European markets/precious metal | ||||||||||||
DCC | 0.2452 | −2.4259 | 1.4802 | 0.0420 | 0.2458 | −2.4259 | 1.4802 | 0.0419 | 0.2448 | −2.3802 | 1.4437 | 0.0415 |
ADCC | 0.2450 | −1.7676 | 1.2032 | 0.0426 | 0.2456 | −1.7676 | 1.2032 | 0.0425 | 0.2443 | −1.7347 | 1.2192 | 0.0419 |
GOGARCH | 0.1204 | −6.3530 | 3.0662 | 0.0539 | 0.1077 | −6.3530 | 0.5842 | 0.0541 | 0.2659 | −0.3842 | 2.0137 | 0.0540 |
Eastern European markets/industrial metals | ||||||||||||
DCC | 0.4474 | −0.3321 | 2.7785 | 0.1370 | 0.4473 | −0.3375 | 2.7785 | 0.1368 | 0.4467 | −0.3321 | 2.7785 | 0.1364 |
ADCC | 0.4585 | −0.2943 | 2.6705 | 0.1442 | 0.4586 | −0.3014 | 2.6705 | 0.1441 | 0.4579 | −0.2943 | 2.6705 | 0.1436 |
GO-GARCH | 0.2949 | −0.1259 | 0.9140 | 0.0858 | 0.2936 | −0.0711 | 0.9126 | 0.0862 | 0.2678 | −0.0235 | 3.2414 | 0.0842 |
Eastern European markets/livestock | ||||||||||||
DCC | 0.1900 | −0.1145 | 3.6635 | 0.0105 | 0.1887 | −0.1139 | 3.6635 | 0.0103 | 0.1879 | −0.1139 | 3.6531 | 0.0103 |
ADCC | 0.1847 | −0.6230 | 2.6433 | 0.0109 | 0.1831 | −0.1911 | 2.6433 | 0.0107 | 0.1837 | −0.1911 | 2.6320 | 0.0108 |
GO-GARCH | 0.0803 | −0.2291 | 6.0514 | 0.0101 | 0.0835 | −0.4084 | 6.0509 | 0.0112 | 0.0249 | −0.4559 | 0.4686 | 0.0092 |
Eastern European markets/agriculture | ||||||||||||
DCC | 0.2095 | −0.2021 | 1.3834 | 0.0309 | 0.2082 | −0.2021 | 1.3834 | 0.0306 | 0.2091 | −0.2021 | 1.3834 | 0.0309 |
ADCC | 0.2239 | −0.1874 | 1.6519 | 0.0343 | 0.2231 | −0.1874 | 1.6519 | 0.0341 | 0.2222 | −0.1807 | 1.6519 | 0.0341 |
GO-GARCH | 0.1380 | −0.1120 | 2.8540 | 0.0303 | 0.1384 | −0.1135 | 2.8518 | 0.0310 | 0.0770 | −0.8814 | 0.3116 | 0.0293 |
Window | Refit | The 1st Sector According to the Maximum HE Criterion | HE | The 2nd Sector According to the Maximum HE Criterion | HE |
---|---|---|---|---|---|
500 | 20 | Industrial metals | 11.32% | Energy | 10.32% |
40 | Industrial metals | 11.26% | Energy | 10.31% | |
60 | Industrial metals | 11.27% | Energy | 10.29% | |
1500 | 20 | Industrial metals | 13.23% | Energy | 12.13% |
40 | Industrial metals | 13.18% | Energy | 12.12% | |
60 | Industrial metals | 13.19% | Energy | 12.10% | |
2000 | 20 | Industrial metals | 14.42% | Energy | 13.30% |
40 | Industrial metals | 14.41% | Energy | 13.29% | |
60 | Industrial metals | 14.36% | Energy | 13.27% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melki, A.; Ghorbel, A. Which Commodity Sectors Effectively Hedge Emerging Eastern European Stock Markets? Evidence from MGARCH Models. Commodities 2023, 2, 261-279. https://doi.org/10.3390/commodities2030016
Melki A, Ghorbel A. Which Commodity Sectors Effectively Hedge Emerging Eastern European Stock Markets? Evidence from MGARCH Models. Commodities. 2023; 2(3):261-279. https://doi.org/10.3390/commodities2030016
Chicago/Turabian StyleMelki, Amel, and Ahmed Ghorbel. 2023. "Which Commodity Sectors Effectively Hedge Emerging Eastern European Stock Markets? Evidence from MGARCH Models" Commodities 2, no. 3: 261-279. https://doi.org/10.3390/commodities2030016
APA StyleMelki, A., & Ghorbel, A. (2023). Which Commodity Sectors Effectively Hedge Emerging Eastern European Stock Markets? Evidence from MGARCH Models. Commodities, 2(3), 261-279. https://doi.org/10.3390/commodities2030016