A Bounded Sine Skewed Model for Hydrological Data Analysis
Abstract
1. Introduction
Derivation of the Proposed Model
- The first step in this direction is choice of the odd link function , defined , which satisfies the conditions such as (i) is differentiable and monotonically non-decreasing, (ii) as and as where is the baseline cumulative distribution function (CDF).
- Now, take the CDF of log-logistic distribution as a baseline function with parameters , which is defined on the interval as .
- On incorporating the baseline distribution function into , we get .
- Finally, a new class of exponentiated Sin- class is proposed by first substituting into and implementing necessary domain constraints to guarantee the function’s validity as a CDF for this new family as
2. Exploring Mathematical and Statistical Features
2.1. Shape of the PDF and HRF Curves
2.2. Percentile Function
- Step 1:
- Set the CDF equal to u
- Step 2:
- Take the β-th root of both sides
- Step 3:
- Isolate the sine term
- Step 4:
- Take the inverse Sine (ArcSine) of both sides
- Step 5:
- Solve for
- Step 6:
- Take the -th root of both sides
- Step 7:
- Solve for x to obtain the percentile function
- Step 8:
- Final Percentile Function
2.3. Moments and Moment-Generating Function
2.4. Conditional Moments
2.4.1. Mean Deviation
2.4.2. Bonferroni and Lorenz Curves
2.5. Order Statistics
3. Methods of Parameter Estimation and Simulation Study
3.1. Method of Maximum Likelihood
Performance Summary of MLEs
- approaches zero (numerical instability);
- is very small (optimization challenges);
- Multiple parameters are large (slower convergence).
3.2. Simulation Study
- Generate 1000 samples of size n = 15, 25, 50, 75, 100, 150 from the given distribution.
- Compute the MLE for and using the log-likelihood function.
- Calculate bias and MSE .
- Repeat for all values of
4. Discussion to Flood Data Application
4.1. Flood Frequency Analysis
4.2. Data Sources and Competing Models
4.3. Goodness of Fit Measure
- 1.
- Kolmogorov–Smirnov (K-S) Test
- 2.
- Cramér–von Mises (CvM) Test
- 3.
- Anderson–Darling (A-D) Test
4.4. Information Criteria for Model Selection
- 1.
- Akaike Information Criterion (AIC)
- 2.
- Corrected AIC (AICc)
- 3.
- Bayesian Information Criterion (BIC)
- 4.
- Hannan–Quinn Information Criterion (HQIC)
- 5.
- Consistent AIC (CAIC)
Summary Table
4.5. Real Data Examples
4.6. Data Assumptions and Specific Concerns
4.7. Hydrological Parameters
Return Period
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alkhairy, I.; Nagy, M.; Muse, A.H.; Hussam, E. The Arctan-X Family of Distributions: Properties, Simulation, and Applications to Actuarial Sciences. Complexity 2021, 2021, 4689010. [Google Scholar] [CrossRef]
- Nguyen, T.; Lee, S. Application of advanced heavy-tailed distributions in flood frequency analysis with climate change considerations. Stoch. Environ. Res. Risk Assess. 2023, 37, 987–1004. [Google Scholar]
- Al-Babtain, A.A.; Shakhatreh, M.K.; Nassar, M.; Afify, A.Z. A new modified Kies family: Properties, estimation under complete and type-II censored samples, and engineering applications. Mathematics 2020, 8, 1345. [Google Scholar] [CrossRef]
- Allouche, M.; Girard, S.; Gobet, E. Estimation of extreme quantiles from heavy-tailed distributions with neural networks. Stat. Comput. 2024, 34, 12. [Google Scholar] [CrossRef]
- Kim, T.J.; Kwon, H.H.; Shin, Y.S. Frequency analysis of storm surge using Poisson-Generalized Pareto distribution. J. Korea Water Resour. Assoc. 2019, 52, 173–185. [Google Scholar]
- Korkmaz, M.Ç. A new heavy-tailed distribution defined on the bounded interval: The logit slash distribution and its application. J. Appl. Stat. 2020, 47, 2097–2119. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, S.; Hu, Y.; Liang, Y.; Lin, H.; Guo, Y. Analysis of precipitation extremes in the Taihu Basin of China based on the regional L-moment method. Hydrol. Res. 2017, 48, 468–479. [Google Scholar] [CrossRef]
- Ahmad, Z.; Mahmoudi, E.; Dey, S. A new family of heavy tailed distributions with an application to the heavy tailed insurance loss data. Commun.-Stat.-Simul. Comput. 2022, 51, 4372–4395. [Google Scholar] [CrossRef]
- Lyu, H.M.; Sun, W.J.; Shen, S.L.; Arulrajah, A. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Sci. Total Environ. 2018, 626, 1012–1025. [Google Scholar] [CrossRef]
- Hamed, K.; Rao, A.R. Flood Frequency Analysis; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Zhang, Q.; Gu, X.; Singh, V.P.; Xiao, M. Flood frequency analysis with consideration of hydrological alterations: Changing properties, causes and implications. J. Hydrol. 2014, 519, 803–813. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Zhang, Q. Advances in flood frequency analysis: Incorporating machine learning and heavy-tailed models. Water Resour. Res. 2024, 60, e2023WR030233. [Google Scholar]
- Li, C.; Sun, N.; Lu, Y.; Guo, B.; Wang, Y.; Sun, X.; Yao, Y. Review on urban flood risk assessment. Sustainability 2022, 15, 765. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S.; Xu, C.Y.; Xiong, L.; Chen, H.; Ngongondo, C.; Li, L. Probabilistic interval estimation of design floods under non-stationary conditions by an integrated approach. Hydrol. Res. 2022, 53, 259–278. [Google Scholar] [CrossRef]
- Deng, J. Maximum entropy method for flood frequency analysis: A case study of the Grand River in Ontario, Canada. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 344, p. 012002. [Google Scholar]
- Griffis, V.W.; Stedinger, J.R. Log-Pearson type 3 distribution and its application in flood frequency analysis. I: Distribution characteristics. J. Hydrol. Eng. 2007, 12, 482–491. [Google Scholar] [CrossRef]
- Hasan, I.F. Flood Frequency Analysis of Annual Maximum Streamflows at Selected Rivers in Iraq. Jordan J. Civ. Eng. 2020, 14, 573–586. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R. Some statistics useful in regional frequency analysis. Water Resour. Res. 1993, 29, 271–281. [Google Scholar] [CrossRef]
- McCuen, R.H. Modeling Hydrologic Change: Statistical Methods; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Nouri Gheidari, M.H. Comparisons of the L-and LH-moments in the selection of the best distribution for regional flood frequency analysis in Lake Urmia Basin. Civ. Eng. Environ. Syst. 2013, 30, 72–84. [Google Scholar] [CrossRef]
- Sagrillo, M.; Guerra, R.R.; Bayer, F.M. Modified Kumaraswamy distributions for double bounded hydro-environmental data. J. Hydrol. 2021, 603, 127021. [Google Scholar] [CrossRef]
- Boorman, D.B. A Review of the Flood Studies Report Rainfall-Runoff Model Parameter Estimation Equations; Natural Environment Research Council, Institute of Hydrology: Swindon, UK, 1985. [Google Scholar]
- Cunnane, C. Statistical distribution for flood frequency analysis. In WMO Operational Hydrology; Report No. 33, WMO-No. 718; Operational Hydrology Report (WMO): Geneva, Switzerland, 1989. [Google Scholar]
- Millington, N.; Das, S.; Simonovic, S.P. The Comparison of GEV, Log-Pearson Type 3 and Gumbel Distributions in the Upper Thames River Watershed Under Global Climate Models; Department of Civil and Environmental Engineering, the University of Western: London, ON, Canada, 2011. [Google Scholar]
- Rowinski, P.M.; Strupczewski, W.G.; Singh, V.P. A note on the applicability of log-Gumbel and log-logistic probability distributions in hydrological analyses: I. Known pdf. Hydrol. Sci. J. 2002, 47, 107–122. [Google Scholar] [CrossRef]
- Wang, W.C.; Xu, D.M.; Chau, K.W.; Chen, S. Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD. J. Hydroinformatics 2013, 15, 1377–1390. [Google Scholar] [CrossRef]
- Sapkota, L.P.; Kumar, P.; Kumar, V. A new class of sin-g family of distributions with applications to medical data. Reliab. Theory Appl. 2023, 18, 734–750. [Google Scholar]
- Faruk, M.U.; Isa, A.M.; Kaigama, A. Sine-Weibull Distribution: Mathematical Properties and Application to Real Datasets. Reliab. Theory Appl. 2024, 19, 65–72. [Google Scholar]
- Isa, A.M.; Bashiru, S.O.; Ali, B.A.; Adepoju, A.A.; Itopa, I.I. Sine-exponential distribution: Its mathematical properties and application to real dataset. UMYU Sci. 2022, 1, 127–131. [Google Scholar] [CrossRef]
- Isa, A.M.; Ali, B.A.; Zannah, U. Sine burr xii distribution: Properties and application to real data sets. Arid. Zone J. Basic Appl. Res. 2022, 1, 48–58. [Google Scholar] [CrossRef]
- Mustapha, B.A.; Isa, A.M.; Sule, O.B.; Itopa, I.I. Sine-Lomax distribution: Properties and applications to real data sets. FUDMA J. Sci. 2023, 7, 60–66. [Google Scholar] [CrossRef]
- Bakouch, H.S.; Hussain, T.; Chesneau, C.; Jónás, T. A notable bounded probability distribution for environmental and lifetime data. Earth Sci. Inform. 2022, 15, 1607–1620. [Google Scholar] [CrossRef]
- Merz, B.; Basso, S.; Fischer, S.; Lun, D.; Blöschl, G.; Merz, R.; Schumann, A. Understanding heavy tails of flood peak distributions. Water Resour. Res. 2022, 58, e2021WR030506. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, U.; Singh, S.K. A New Distribution Using Sine Function Its Application to Bladder Cancer Patients Data. J. Stat. Appl. Pro. 2015, 4, 417–427. [Google Scholar]
- England, J.F., Jr.; Cohn, T.A.; Faber, B.A.; Stedinger, J.R.; Thomas, W.O., Jr.; Veilleux, A.G.; Kiang, J.E.; Mason, R.R., Jr. Guidelines for Determining Flood Flow Frequency—Bulletin 17C, Techniques and Methods 4-B5; US Geological Survey: Reston, VA, USA, 2018; Chapter B5; 148p. [Google Scholar] [CrossRef]
- An, K. Sulla determinazione empirica di una legge didistribuzione. Giorn Dell’inst Ital Degli Att 1933, 4, 89–91. [Google Scholar]
- Smirnov, N. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 1948, 19, 279–281. [Google Scholar] [CrossRef]
- Cramar, H. On the composition of elementary errors. Skand. Aktuarietids 1928, 11, 13–74. [Google Scholar]
- Von Mises, R. Wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik und Theoretischen. In Physik; Mary S. Rosenberg: New York, NY, USA, 1945. [Google Scholar]
- Anderson, T.W.; Darling, D.A. Asymptotic theory of certain goodness of fit criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Hussain, T.; Bakoush, S.H.; Rehman, U.Z.; Shan, Q. A Flexible Discrete Probability Model for Partly Cloudy Days. Colomb. J. Stat. 1997, 48, 1–21. [Google Scholar]
- Hussain, T.; Bakouch, H.S.; Gharari, F. Environmental Data Analysis with a Versatile Model on Time Scales. Iran. J. Sci. 2025, 1–15. [Google Scholar] [CrossRef]
- Biçer, C.; Bakouch, H.S.; Biçer, H.D.; Alomair, G.; Hussain, T.; Almohisen, A. Unit Maxwell-Boltzmann Distribution and Its Application to Concentrations Pollutant Data. Axioms 2024, 13, 226. [Google Scholar] [CrossRef]
- Hannan, E.J.; Quinn, B.G. The determination of the order of an autoregression. J. R. Stat. Soc. Ser. B (Methodol.) 1979, 41, 190–195. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Akaike, H. A new l ook at the statistical model identification. IEEE Trans. Autom. Control 2003, 19, 716–723. [Google Scholar] [CrossRef]
0.5 | 1.00 | 1.00 | 0.729332 | 1.458663 |
0.5 | 1.00 | 1.25 | 0.692820 | 1.385640 |
0.5 | 1.00 | 1.50 | 0.666296 | 1.332592 |
0.5 | 1.00 | 1.75 | 0.646167 | 1.292333 |
0.5 | 1.25 | 2.00 | 0.682479 | 1.364958 |
0.5 | 1.25 | 2.25 | 0.663688 | 1.327376 |
0.5 | 1.25 | 2.50 | 0.648399 | 1.296797 |
0.5 | 1.25 | 2.75 | 0.635717 | 1.271435 |
0.5 | 1.50 | 3.00 | 0.655265 | 1.310531 |
0.5 | 1.50 | 3.25 | 0.643580 | 1.287160 |
0.5 | 1.50 | 3.50 | 0.633528 | 1.267056 |
0.5 | 1.50 | 3.75 | 0.624789 | 1.249578 |
0.5 | 1.75 | 4.00 | 0.636909 | 1.273818 |
0.5 | 1.75 | 4.25 | 0.628827 | 1.257653 |
0.5 | 1.75 | 4.50 | 0.621644 | 1.243288 |
0.5 | 1.75 | 4.75 | 0.615219 | 1.230437 |
0.5 | 2.00 | 5.00 | 0.623408 | 1.246816 |
0.5 | 2.00 | 5.25 | 0.617429 | 1.234858 |
0.5 | 2.00 | 5.50 | 0.612001 | 1.224003 |
0.5 | 2.00 | 5.75 | 0.607053 | 1.214105 |
1.0 | 1.00 | 1.25 | 1.385641 | 1.385641 |
1.0 | 1.00 | 1.50 | 1.332592 | 1.332592 |
1.0 | 1.00 | 1.75 | 1.292334 | 1.292334 |
1.0 | 1.00 | 2.00 | 1.260749 | 1.260749 |
1.0 | 1.25 | 2.25 | 1.327376 | 1.327376 |
1.0 | 1.25 | 2.50 | 1.296798 | 1.296798 |
1.0 | 1.25 | 2.75 | 1.271435 | 1.271435 |
1.0 | 1.25 | 3.00 | 1.250060 | 1.250060 |
Mean | Variance | Skewness | Kurtosis | |||
---|---|---|---|---|---|---|
0.5 | 1.0 | 1.0 | 1.2337 | 0.4516 | 0.6396 | 0.4067 |
0.5 | 1.0 | 1.25 | 1.2337 | 0.4516 | 0.6396 | 0.4067 |
0.5 | 1.0 | 1.5 | 1.2337 | 0.4516 | 0.6396 | 0.4067 |
0.5 | 1.0 | 2.0 | 1.2337 | 0.4516 | 0.6396 | 0.4067 |
0.5 | 1.25 | 1.0 | 1.1272 | 0.5379 | 0.7685 | 0.5886 |
0.5 | 1.25 | 1.25 | 1.1272 | 0.5379 | 0.7685 | 0.5886 |
0.5 | 1.25 | 1.5 | 1.1272 | 0.5379 | 0.7685 | 0.5886 |
0.5 | 1.25 | 2.0 | 1.1272 | 0.5379 | 0.7685 | 0.5886 |
0.5 | 1.5 | 1.0 | 1.0613 | 0.5906 | 0.8535 | 0.7289 |
0.5 | 1.5 | 1.25 | 1.0613 | 0.5906 | 0.8535 | 0.7289 |
0.5 | 1.5 | 1.5 | 1.0613 | 0.5906 | 0.8535 | 0.7289 |
0.5 | 1.5 | 2.0 | 1.0613 | 0.5906 | 0.8535 | 0.7289 |
0.5 | 2.0 | 1.0 | 0.9844 | 0.6479 | 0.9575 | 0.9148 |
0.5 | 2.0 | 1.25 | 0.9844 | 0.6479 | 0.9575 | 0.9148 |
0.5 | 2.0 | 1.5 | 0.9844 | 0.6479 | 0.9575 | 0.9148 |
0.5 | 2.0 | 2.0 | 0.9844 | 0.6479 | 0.9575 | 0.9148 |
1.0 | 1.0 | 1.0 | 2.4674 | 2.7899 | 1.8071 | 4.4036 |
1.0 | 1.0 | 1.25 | 2.4674 | 2.7899 | 1.8071 | 4.4036 |
1.0 | 1.0 | 1.5 | 2.4674 | 2.7899 | 1.8071 | 4.4036 |
1.0 | 1.0 | 2.0 | 2.4674 | 2.7899 | 1.8071 | 4.4036 |
1.0 | 1.25 | 1.0 | 2.2543 | 2.1537 | 1.6078 | 3.6193 |
1.0 | 1.25 | 1.25 | 2.2543 | 2.1537 | 1.6078 | 3.6193 |
1.0 | 1.25 | 1.5 | 2.2543 | 2.1537 | 1.6078 | 3.6193 |
1.0 | 1.25 | 2.0 | 2.2543 | 2.1537 | 1.6078 | 3.6193 |
1.0 | 1.5 | 1.0 | 2.1226 | 1.7629 | 1.4688 | 3.1402 |
1.0 | 1.5 | 1.25 | 2.1226 | 1.7629 | 1.4688 | 3.1402 |
1.0 | 1.5 | 1.5 | 2.1226 | 1.7629 | 1.4688 | 3.1402 |
1.0 | 1.5 | 2.0 | 2.1226 | 1.7629 | 1.4688 | 3.1402 |
1.0 | 2.0 | 1.0 | 1.9687 | 1.5916 | 1.3525 | 2.7537 |
1.0 | 2.0 | 1.25 | 1.9687 | 1.5916 | 1.3525 | 2.7537 |
1.0 | 2.0 | 1.5 | 1.9687 | 1.5916 | 1.3525 | 2.7537 |
1.0 | 2.0 | 2.0 | 1.9687 | 1.5916 | 1.3525 | 2.7537 |
1.25 | 1.0 | 1.0 | 3.0843 | 5.5426 | 2.2568 | 6.8014 |
1.25 | 1.0 | 1.25 | 3.0843 | 5.5426 | 2.2568 | 6.8014 |
1.25 | 1.0 | 1.5 | 3.0843 | 5.5426 | 2.2568 | 6.8014 |
1.25 | 1.0 | 2.0 | 3.0843 | 5.5426 | 2.2568 | 6.8014 |
1.25 | 1.25 | 1.0 | 2.8179 | 4.2149 | 2.0079 | 5.7171 |
1.25 | 1.25 | 1.25 | 2.8179 | 4.2149 | 2.0079 | 5.7171 |
1.25 | 1.25 | 1.5 | 2.8179 | 4.2149 | 2.0079 | 5.7171 |
1.25 | 1.25 | 2.0 | 2.8179 | 4.2149 | 2.0079 | 5.7171 |
1.25 | 1.5 | 1.0 | 2.6532 | 3.4423 | 1.8358 | 5.0376 |
1.25 | 1.5 | 1.25 | 2.6532 | 3.4423 | 1.8358 | 5.0376 |
1.25 | 1.5 | 1.5 | 2.6532 | 3.4423 | 1.8358 | 5.0376 |
1.25 | 1.5 | 2.0 | 2.6532 | 3.4423 | 1.8358 | 5.0376 |
1.25 | 2.0 | 1.0 | 2.4609 | 2.8008 | 1.6909 | 4.4275 |
1.25 | 2.0 | 1.25 | 2.4609 | 2.8008 | 1.6909 | 4.4275 |
1.25 | 2.0 | 1.5 | 2.4609 | 2.8008 | 1.6909 | 4.4275 |
1.25 | 2.0 | 2.0 | 2.4609 | 2.8008 | 1.6909 | 4.4275 |
Set | n | Bias() | Bias() | Bias() | MSE() | MSE() | MSE() |
---|---|---|---|---|---|---|---|
I | 15 | −0.0223 | 0.0037 | 0.1477 | 0.1002 | 0.4651 | 4.0309 |
25 | −0.0114 | 0.0015 | 0.0961 | 0.0377 | 0.1462 | 1.1923 | |
50 | −0.0035 | 0.0001 | 0.0801 | 0.0190 | −0.0021 | 0.1015 | |
75 | −0.0021 | 0.0000 | 0.0737 | 0.0114 | −0.0190 | 0.0024 | |
100 | −0.0015 | 0.0000 | 0.0677 | 0.0086 | −0.0236 | 0.0019 | |
150 | −0.0011 | 0.0000 | 0.0628 | 0.0066 | −0.0260 | 0.0015 | |
II | 15 | 0.0113 | 0.0141 | −0.0621 | 0.1599 | 1.4054 | 14.8283 |
25 | −0.0086 | 0.0116 | −0.0119 | 0.1192 | 1.7738 | 16.6767 | |
50 | −0.0233 | 0.0082 | 0.0163 | 0.0656 | 1.6010 | 13.6349 | |
75 | −0.0243 | 0.0060 | 0.0359 | 0.0501 | 1.2596 | 9.7074 | |
100 | −0.0234 | 0.0051 | 0.0343 | 0.0388 | 1.0495 | 7.5112 | |
150 | −0.0199 | 0.0040 | 0.0295 | 0.0303 | 0.7834 | 5.0098 | |
III | 15 | −0.0063 | 0.0010 | 7.7915 | 66.5011 | 0.1368 | 0.0201 |
25 | −0.0002 | 0.0001 | 8.5028 | 73.6786 | 0.1358 | 0.0190 | |
50 | −0.0000 | 0.0000 | 8.4553 | 72.7072 | 0.1379 | 0.0195 | |
75 | 0.0000 | 0.0000 | 8.6431 | 75.99999 | 0.1360 | 0.0188 | |
100 | 0.0000 | 0.0000 | 8.6678 | 75.3438 | 0.1355 | 0.0185 | |
150 | −0.0001 | 0.0000 | 8.6595 | 75.2051 | 0.1365 | 0.0189 | |
IV | 15 | −0.0041 | 0.0005 | 9.2769 | 91.0090 | −1.0936 | 1.1965 |
25 | −0.0112 | 0.0018 | 9.2276 | 90.4614 | −1.0805 | 1.1694 | |
50 | 0.0007 | 0.0000 | 9.8235 | 97.1826 | −1.0895 | 1.1872 | |
75 | 0.0007 | 0.0000 | 9.8791 | 97.9300 | −1.0894 | 1.1869 | |
100 | 0.0008 | 0.0000 | 9.9400 | 98.9089 | −1.0896 | 1.1874 | |
150 | 0.0008 | 0.0000 | 9.9436 | 98.9663 | −1.0894 | 1.1869 | |
V | 15 | −0.0694 | 0.1861 | −0.0145 | 0.2764 | 1.9429 | 18.6212 |
25 | −0.0970 | 0.1507 | 0.0001 | 0.1944 | 1.9350 | 17.7271 | |
50 | −0.1005 | 0.1117 | 0.0326 | 0.1124 | 1.5730 | 13.0220 | |
75 | −0.1269 | 0.1036 | 0.0680 | 0.0950 | 1.6428 | 12.7965 | |
100 | −0.0796 | 0.0702 | 0.0361 | 0.0650 | 0.9820 | 6.9775 | |
150 | −0.0667 | 0.0506 | 0.0334 | 0.0438 | 0.6870 | 4.3325 |
Criterion/Test | Use | Sensitivity | Sample Size |
---|---|---|---|
Kolmogorov–Smirnov | EDF vs. CDF | Center | Large |
Cramér–von Mises | EDF vs. CDF | Entire distribution | Moderate |
Anderson–Darling | EDF vs. CDF | Tails | All sizes |
AIC/AICc | Model fit/complexity | Fit (AICc for small n) | All |
BIC/CAIC | Simpler models | Strong penalty | Large |
HQIC | Balanced selection | Moderate penalty | Moderate+ |
Data Sets | KPSS-Test | p-Value | MK-Test | p-Value | SW-Test | p-Value |
---|---|---|---|---|---|---|
I | 0.1004 | 0.1000 | −0.7891 | 0.4300 | 0.7879 | 0.0000 |
II | 0.1688 | 0.1000 | −0.7168 | 0.4735 | 0.8652 | 0.0000 |
Data Sets | t-Test | p-Value | |
---|---|---|---|
I | −0.0762 | −0.7970 | 0.4254 |
II | 0.0388 | 0.5602 | 0.5753 |
Data Set | Sample Size | Mean | Median | S.D | SK | KU |
---|---|---|---|---|---|---|
I | 52 | 3011.73 | 2720.00 | 1363.71 | 2.1199 | 8.6042 |
II | 96 | 62.9785 | 57.134 | 14.4087 | 1.13741 | 3.53627 |
Distribution | KS | p-Value | |||||
---|---|---|---|---|---|---|---|
SSD | 1166.68 | 3.2396 | 5.5955 | 0.1742 | 0.0305 | 0.0775 | 0.9311 |
Kappa(3) | 4.4955 | 0.9577 | 2614.65 | 33.9922 | 7.3047 | 0.7408 | 0.0211 |
GD(3) | 74.8171 | 0.0024 | 0.3089 | 1.0732 | 0.1750 | 0.1326 | 0.3552 |
WD(2) | 2.3071 | 3404.18 | - | 2.6105 | 0.4431 | 0.1927 | 0.0525 |
GD(2) | 6.7968 | 443.11 | - | 1.5066 | 0.2559 | 0.1549 | 0.1903 |
EVD(2) | 2479.07 | 804.21 | - | 0.8917 | 0.1253 | 0.1016 | 0.6926 |
LLD(2) | 4.9309 | 2693.13 | - | 0.5937 | 0.0595 | 0.0683 | 0.9263 |
LND(2) | 7.9349 | 0.3668 | - | 0.9190 | 0.1479 | 0.1236 | 0.4427 |
GuD(2) | 3798.06 | 2001.99 | - | 5.9406 | 1.1005 | 0.2765 | 0.0011 |
Distribution | KS | p-Value | |||||
---|---|---|---|---|---|---|---|
SSD | 46.9895 | 4.2850 | 0.7397 | 0.6910 | 0.1038 | 0.0805 | 0.5689 |
Kappa(3) | 687.6587 | 0.0009 | 152.93 | 1.9240 | 0.2988 | 0.1061 | 0.2357 |
GD(3) | 38.8770 | 0.4668 | 0.7473 | 3.1205 | 0.5129 | 0.1482 | 0.0307 |
WD(2) | 4.3382 | 68.8192 | − | 4.4453 | 0.7276 | 0.1771 | 0.0051 |
GD(2) | 21.7629 | 2.8938 | − | 3.2649 | 0.5413 | 0.1520 | 0.0248 |
EVD(2) | 56.7169 | 9.7213 | − | 2.6260 | 0.4097 | 0.12832 | 0.0875 |
LLD(2) | 1.7122 | 51042.47 | − | 2.7160 | 0.3742 | 0.1216 | 0.1202 |
LND(2) | 4.1196 | 0.2096 | − | 2.9166 | 0.4804 | 0.1450 | 0.0368 |
GuD(2) | 70.8220 | 17.0419 | − | 6.3241 | 1.0715 | 0.2213 | 0.0002 |
Distribution | AIC | AICC | BIC | HQIC | CAIC | |
---|---|---|---|---|---|---|
429.372 | 864.743 | 865.243 | 870.597 | 866.987 | 873.597 | |
Kappa(3) | 434.2351 | 870.8700 | 871.3700 | 875.7300 | 874.6200 | 871.3700 |
GD(3) | 435.2270 | 878.4540 | 879.3050 | 886.2590 | 873.2020 | 879.3050 |
WD(2) | 444.8790 | 893.7580 | 894.0020 | 897.6600 | 892.5060 | 894.0020 |
GD(2) | 437.8450 | 879.6910 | 879.9360 | 883.5930 | 878.4390 | 879.9360 |
EVD(2) | 434.3140 | 872.6290 | 872.8740 | 876.5310 | 871.3770 | 872.8740 |
LLD(2) | 433.7180 | 871.4350 | 871.6800 | 875.3380 | 870.1840 | 871.6800 |
LND(2) | 434.2490 | 872.4980 | 872.7430 | 876.4000 | 871.2460 | 872.7430 |
GuD(2) | 467.7230 | 939.4460 | 939.6910 | 943.3480 | 938.1940 | 939.6910 |
Distribution | AIC | AICC | BIC | HQIC | CAIC | |
---|---|---|---|---|---|---|
362.926 | 731.852 | 732.102 | 739.667 | 735.008 | 742.667 | |
Kappa(3) | 372.448 | 750.897 | 751.158 | 758.59 | 754.007 | 761.59 |
GD(3) | 383.824 | 771.647 | 771.776 | 776.776 | 773.72 | 778.776 |
WD(2) | 397.187 | 798.374 | 798.503 | 803.503 | 800.447 | 805.503 |
GD(2) | 384.589 | 773.178 | 773.307 | 778.306 | 775.251 | 780.306 |
EVD(2) | 376.169 | 756.337 | 756.466 | 761.466 | 758.41 | 763.466 |
LLD(2) | 383.481 | 770.962 | 771.091 | 776.09 | 773.035 | 778.09 |
LND(2) | 381.702 | 767.404 | 767.533 | 772.533 | 769.477 | 774.533 |
GuD(2) | 412.409 | 828.817 | 828.946 | 833.946 | 830.891 | 835.946 |
Data Set | 5 | 10 | 20 | 25 | 30 | 40 | 50 |
---|---|---|---|---|---|---|---|
I | 3647.86 | 4584.17 | 5716.35 | 6132.04 | 6492.69 | 7103.31 | 7614.74 |
II | 71.2795 | 83.5847 | 98.0997 | 103.307 | 107.77 | 115.218 | 121.354 |
Data Set | 5000 | 5500 | 6000 | 7000 | 8000 | 9000 | 10,000 |
---|---|---|---|---|---|---|---|
I | 13.1098 | 17.6994 | 23.3262 | 38.1651 | 58.5975 | 85.6291 | 120.297 |
Data Set | 45 | 50 | 60 | 80 | 100 | 120 | 140 |
II | 1.1239 | 1.1557 | 2.3682 | 8.2659 | 21.7269 | 47.6459 | 92.3923 |
Data Set | 5 | 10 | 20 | 50 |
---|---|---|---|---|
I | 3647.86 ± 951.427 | 4584.17 ± 1308.83 | 5716.35 ± 1765.56 | 7614.74 ± 2579.83 |
II | 71.2795 ± 108.305 | 83.5847 ± 141.606 | 98.0997 ± 182.433 | 121.354 ± 252.433 |
Data Set | 5 | 10 | 20 | 50 |
---|---|---|---|---|
I | (2.1798,10.1026) | (3.6618,22.0289) | (6.3433,47.0698) | (13.399, 47.0616) |
II | (0,268.873) | (0,709.365) | (0, 1819.15) | (0, 6222.27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, T.; Shakil, M.; Ahsanullah, M.; Kibria, B.M.G. A Bounded Sine Skewed Model for Hydrological Data Analysis. Analytics 2025, 4, 19. https://doi.org/10.3390/analytics4030019
Hussain T, Shakil M, Ahsanullah M, Kibria BMG. A Bounded Sine Skewed Model for Hydrological Data Analysis. Analytics. 2025; 4(3):19. https://doi.org/10.3390/analytics4030019
Chicago/Turabian StyleHussain, Tassaddaq, Mohammad Shakil, Mohammad Ahsanullah, and Bhuiyan Mohammad Golam Kibria. 2025. "A Bounded Sine Skewed Model for Hydrological Data Analysis" Analytics 4, no. 3: 19. https://doi.org/10.3390/analytics4030019
APA StyleHussain, T., Shakil, M., Ahsanullah, M., & Kibria, B. M. G. (2025). A Bounded Sine Skewed Model for Hydrological Data Analysis. Analytics, 4(3), 19. https://doi.org/10.3390/analytics4030019