Streamflow Estimation through Coupling of Hieararchical Clustering Analysis and Regression Analysis—A Case Study in Euphrates-Tigris Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset Derivation
2.2. Cluster Analysis
2.3. Regression Analysis
3. Results and Discussion
3.1. Clustering Results
3.2. Regression Analysis Results
3.2.1. Cluster 2
3.2.2. Global Model
3.3. CORDEX-EURO RCA4 Regression Analysis Results
3.3.1. Cluster 1
3.3.2. RCA4 Cluster 2
3.3.3. RCA4 Global Model
3.4. CORDEX-MENA RCA 4 Regression Analysis Results
3.4.1. MENA RCA4 Cluster 1
3.4.2. MENA Global Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Li, H.; Reggiani, P. Climate Variability and Climate Change Impacts on Land Surface, Hydrological Processes and Water Management. Water 2019, 11, 1492. [Google Scholar] [CrossRef] [Green Version]
- Bergström, S.; Lindström, G. Interpretation of runoff processes in hydrological modelling-experience from the HBV approach. Hydrol. Process. 2015, 29, 3535–3545. [Google Scholar] [CrossRef]
- Beck, H.; Van Dick, A. Global-Scale Regionalization of Hydrologic Model Parameters. 2016. Available online: https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2015WR018247 (accessed on 12 March 2022).
- Rezaeianzadeh, M.; Tabari, H.; Yazdi, A.A.; Isik, S.; Kalin, L. Flood flow forecasting using ANN, ANFIS and regression models. Neural Comput. Appl. 2013, 25, 25–37. [Google Scholar] [CrossRef]
- Alivi, A.; Yildiz, O.; Aktürk, G. Investigating the climate change effects on annual average streamflows in the Euphrates-Tigris basin using the climate elasticity method. J. Fac. Eng. Archit. Gazi Univ. 2021, 36, 1449–1465. [Google Scholar] [CrossRef]
- Laimighofer, J.; Melcher, M.; Laaha, G. Parsimonious statistical learning models for low-flow estimation. Hydrol. Earth Syst. Sci. 2022, 26, 129–148. [Google Scholar] [CrossRef]
- Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.; Fournet, S.; Krysanova, V.; Müller, E.N.; et al. Comparing impacts of climate change on streamflow in four large African river basins. Hydrol. Earth Syst. Sci. 2014, 18, 1305–1321. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Villarini, G.; Scoccimarro, E. Evaluation of the capability of regional climate models in reproducing the temporal clustering in heavy precipitation over Europe. Atmospheric Res. 2022, 269, 106027. [Google Scholar] [CrossRef]
- Belvederesi, C.; Zaghloul, M.S.; Achari, G.; Gupta, A.; Hassan, Q.K. Modelling river flow in cold and ungauged regions: A review of the purposes, methods, and challenges. Environ. Rev. 2022, 30, 159–173. [Google Scholar] [CrossRef]
- Liu, X.; Tang, Q.; Voisin, N.; Cui, H. Projected impacts of climate change on hydropower potential in China. Hydrol. Earth Syst. Sci. 2016, 20, 3343–3359. [Google Scholar] [CrossRef] [Green Version]
- Önöz, B.; Ve Bulu, A. Frequency Analysis of Low Flows by the PPCC Test in Turkey; FRIEND-97, 1-4 Ekim; IAHS: Postojna, Slovenia, 1997. [Google Scholar]
- Rossi, G.; Caporali, E. Regional Estimation Method Of Rivers Low Flow from River Basin Characteristics; Department of Civil and Environmental Engineering, University of Firenze: Firenze, Italy, 2017. [Google Scholar]
- Li, H.; Huang, G.; Li, Y.; Sun, J.; Gao, P. A C-Vine Copula-Based Quantile Regression Method for Streamflow Forecasting in Xiangxi River Basin, China. Sustainability 2021, 13, 4627. [Google Scholar] [CrossRef]
- Sengupta, A.; Adams, S.K.; Bledsoe, B.P.; Stein, E.D.; McCune, K.S.; Mazor, R.D. Tools for managing hydrologic alteration on a regional scale: Estimating changes in flow characteristics at ungauged sites. Freshw. Biol. 2018, 63, 769–785. [Google Scholar] [CrossRef]
- Gustard, A.; Marshall, D.C.W.; Sutcliffe, M.F. Low Flow Estimation in Scotland; Report No. 101; Institute of Hydrology: Wallingford, WA, USA, 1987. [Google Scholar]
- Supriya, P.; Krishnaveni, M.; Subbulakshmi, M. Regression Analysis of Annual Maximum Daily Rainfall and Stream Flow for Flood Forecasting in Vellar River Basin. Aquat. Procedia 2015, 4, 957–963. [Google Scholar] [CrossRef]
- Needhidasan, S.; Chenchu Babu, K.; Natrayan, M.; Naveen, D.C.; Vinothkumar, S. Preserving the Environment Due to the Flash Floods in Vellar River at TV Puthur, Virudhachalam Taluk, Tamil Nadu: A Case Study. Int. J. Struct. Civ. Eng. Res. 2013, 2, 104–114. [Google Scholar]
- Roland, M.A.; Stuckey, M.H. Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania; U.S. Geological Survey Scientific Investigations Report 2008-5102; U.S. Geological Survey: Reston, VA, USA, 2008; 57p. [Google Scholar]
- Waltemeyer, S.D. Analysis of the Magnitude and Frequency of the 4-Day Annual Low Flow and Regression Equations for Estimating the 4-Day, 3-Year Low-Flow Frequency at Ngagged Sites on Unregulated Streams in New Mexico; U.S. Geological Survey Water-Resources Investigations Report 01–4271; U.S. Geological Survey: Reston, VA, USA, 2002; 22p. [Google Scholar] [CrossRef]
- Shi, P.; Chen, X.; Qu, S.M.; Zhang, Z.C.; Ma, J.L. Regional Frequency Analysis of Low Flow Based On L Moments: Case Study İn Karst Area, Southwest China. J. Hydrol. Eng. 2010, 15, 370–377. [Google Scholar] [CrossRef]
- Evans, J.P.; Smith, R.B.; Oglesby, R.J. Middle East climate simulation and dominant precipitation processes. Int. J. Clim. 2004, 24, 1671–1694. [Google Scholar] [CrossRef]
- Leavesley, G.H. Modeling the effects of climate change on water resources—A review. Clim. Chang. 1994, 28, 159–177. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.X.; Zhao, Y.; Chu, H.B.; Yang, L.L. The analysis of groundwater levels influenced by dual factors in western Jilin Province by using time series analysis method. Appl. Water Sci. 2013, 4, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Vicuna, S.; Dracup, J.A. The evolution of climate change impact studies on hydrology and water resources in California. Clim. Chang. 2007, 82, 327–350. [Google Scholar] [CrossRef]
- Stedinger, J.R.; Thomas, W.O. Low-Flow Frequency Estimation Using Base-Flow Measurements; Open-File Report 85-95; U.S. Geological Survey: Reston, VA, USA, 1985; pp. 85–95. [Google Scholar]
- USGS. Estimation Of Minimum 7-Day, 2-Year Discharge for Selected Stream Sites, and Associated Low-Flow Water-Quality Data, Southeast Texas, 1997–1998. 2013. Available online: http://pubs.usgs.gov/fs/fs-122-99/pdf/ (accessed on 12 March 2022).
- Sadik, A.K.; Barghouti, S. The Water Problems of the Arab World: Management of Scarce Water Resources. In Water in the Arab World; Rogers, P., Lydon, P., Eds.; Harvard University Press: Cambridge, MA, USA, 1994; pp. 4–37. [Google Scholar]
- Li, L.-J.; Zhang, L.; Wang, H.; Wang, J.; Yang, J.-W.; Jiang, D.-J.; Li, J.-Y.; Qin, D.-Y. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrol. Process. 2007, 21, 3485–3491. [Google Scholar] [CrossRef]
- Li, X.; Meshgi, A.; Wang, X.; Zhang, J.; Tay, S.H.X.; Pijcke, G.; Manocha, N.; Ong, M.; Nguyen, M.T.; Babovic, V. Three resampling approaches based on method of fragments for daily-to-subdaily precipitation disaggregation. Int. J. Clim. 2018, 38, e1119–e1138. [Google Scholar] [CrossRef]
- Joo, H.; Lee, M.; Kim, J.; Jung, J.; Kwak, J.; Kim, H.S. Stream gauge network grouping analysis using community detection. Stoch. Environ. Res. Risk Assess. 2021, 35, 781–795. [Google Scholar] [CrossRef]
- Immerzeel, W.; Pellicciotti, F.; Bierkens, M. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 2013, 6, 742–745. [Google Scholar] [CrossRef]
- Tangborn, W.V.; Rasmussen, L.A. Hydrology of the North Cascades Region, Washington: 2. A proposed hydrometeorological streamflow prediction method. Water Resour. Res. 1976, 12, 203–216. [Google Scholar] [CrossRef]
- Yıldız, D. Natural Diminishing Trend of the Tigris and Euphrates Streamflows is Alarming for the Middle East Future. World Sci. News 2016, 47, 279–297. [Google Scholar]
- Türkeş, M.; Sümer, U.M.; Kiliç, G. Variations and trends in annual mean air temperatures in Turkey with respect to climatic variability. Int. J. Clim. 1995, 15, 557–569. [Google Scholar] [CrossRef]
- Li, J.; Feng, P.; Wei, Z. Incorporating the data of different watersheds to estimate the effects of land use change on flood peak and volume using multi-linear regression. Mitig. Adapt. Strat. Glob. Chang. 2013, 18, 1183–1196. [Google Scholar] [CrossRef]
- Demircan, M.; Gürkan, H.; Eskioğlu, O.; Arabacı, H.; Coşkun, M. Climate Change Projections for Turkey: Three Models and Two Scenarios. Turk. J. Water Sci. Manag. 2017, 1, 22–43. [Google Scholar] [CrossRef]
- Kilinc, H.C.; Haznedar, B. A Hybrid Model for Streamflow Forecasting in the Basin of Euphrates. Water 2022, 14, 80. [Google Scholar] [CrossRef]
- Lombard, P.J.; Holtschlag, D.J. Estimating Lag to Peak between Rainfall and Peak Streamflow with a Mixed-Effects Model. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 949–961. [Google Scholar] [CrossRef]
- Nielsen, N.M.; Smink, W.A.C.; Fox, J.-P. Small and negative correlations among clustered observations: Limitations of the linear mixed effects model. Behaviormetrika 2021, 48, 51–77. [Google Scholar] [CrossRef]
- Helsel, D.R.; Ve Hirsch, R.M. Studies İn Environmental Science 49. Statistical Methods İn Water Resources; Elsevier: Amsterdam, The Netherlands, 1992; 522p. [Google Scholar]
- Sergienko, O.V.; Bindschadler, R.A.; Vornberger, P.L.; MacAyeal, D.R. Ice stream basal conditions from block-wise surface data inversion and simple regression models of ice stream flow: Application to Bindschadler Ice Stream. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
CORDEX Meteorological Parameter | Abbreviation | Unit |
---|---|---|
Near Surface Air Temperature | T | Kelvin |
Near Surface Maximum Air Temperature | Kelvin | |
Near Surface Minimum Air Temperature | Kelvin | |
Precipitation | p | |
Convective Precipitation | ||
Shortwave Radiation | ||
Longwave Radiation | ||
Evapotranspiration | PET | |
Near Surface Specific Humidity | H | % |
Duration of Sunshine | s | |
Total Soil Moisture | kg/m2 | |
Sea Level Pressure | P | Pa |
Near Surface Windspeed | m/s |
CORDEX Domain | Resolution | Global Climate Model | Regional Climate Model |
---|---|---|---|
CORDEX-MENA | 0.22° | NOAA-GFDL CM3 | RCA4 |
CORDEX-EURO | 0.22° | CNRM-CERFACS-CNRM-CM5 | RCA4 |
CORDEX-EURO | 0.11° | MOHC-HadGEM2-ES | RegCM4 |
Month | Maximum (m−3/s) | Minimum (m−3/s) | Mean Discharge (m−3/s) | Standard Deviation (m−3/s) | Coefficience of Variation |
---|---|---|---|---|---|
October | 345 | 42.3 | 105 | 64 | 0.43 |
November | 705 | 102 | 350 | 142 | 0.53 |
December | 1332 | 165 | 562 | 302 | 0.85 |
January | 1452 | 162 | 752 | 333 | 0.52 |
February | 1252 | 142 | 741 | 420 | 0.48 |
March | 2500 | 401 | 1189 | 601 | 0.61 |
April | 3201 | 1101 | 1741 | 591 | 0.62 |
May | 2945 | 502 | 1510 | 714 | 0.39 |
June | 1422 | 305 | 540 | 325 | 0.51 |
July | 740 | 101 | 295 | 150 | 0.72 |
August | 199 | 45 | 150 | 76 | 0.6 |
September | 253 | 34 | 133 | 51 | 0.36 |
Annual | 1362 | 258 | 725 | 278 | 0.46 |
Cluster No. | 1 | 2 |
---|---|---|
2102 | 2122 | |
2135 | 2124 | |
2603 | 2131 | |
2610 | 2133 | |
21,140 | 2149 | |
21,172 | 2154 | |
21,209 | 2156 | |
21,238 | 2157 | |
21,270 | 2164 | |
2632 | 2166 | |
2652 | 2612 | |
2664 | 2620 | |
2104 | ||
2141 | ||
21,160 | ||
21,186 | ||
21,207 | ||
21,208 | ||
21,212 | ||
21,227 | ||
2616 |
CORDEXEURO | ||
---|---|---|
RegCM4 | RCA4 | |
1st Cluster | ||
2nd Cluster | ||
Global | ||
RCA4 | ||
1st Cluster | ||
2nd Cluster | ||
Global |
Domain | CORDEX-EURO | CORDEX-MENA | |||||||
---|---|---|---|---|---|---|---|---|---|
RCM | RegCM4 | RCA4 | RCA4 | ||||||
Cluster No. | 1 | 2 | Global | 1 | 2 | Global | 1 | 2 | Global |
Adj R2 | 0.762 | 0.743 | 0.678 | 0.791 | 0.766 | 0.669 | 0.859 | 0.824 | 0.742 |
R2 | 0.748 | 0.729 | 0.654 | 0.779 | 0.749 | 0.652 | 0.838 | 0.803 | 0.720 |
RMSE | 0.209 | 0.218 | 0.312 | 0.176 | 0.189 | 0.302 | 0.102 | 0.108 | 0.198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzey, G.E.; Onoz, B. Streamflow Estimation through Coupling of Hieararchical Clustering Analysis and Regression Analysis—A Case Study in Euphrates-Tigris Basin. Analytics 2023, 2, 577-591. https://doi.org/10.3390/analytics2030032
Guzey GE, Onoz B. Streamflow Estimation through Coupling of Hieararchical Clustering Analysis and Regression Analysis—A Case Study in Euphrates-Tigris Basin. Analytics. 2023; 2(3):577-591. https://doi.org/10.3390/analytics2030032
Chicago/Turabian StyleGuzey, Goksel Ezgi, and Bihrat Onoz. 2023. "Streamflow Estimation through Coupling of Hieararchical Clustering Analysis and Regression Analysis—A Case Study in Euphrates-Tigris Basin" Analytics 2, no. 3: 577-591. https://doi.org/10.3390/analytics2030032
APA StyleGuzey, G. E., & Onoz, B. (2023). Streamflow Estimation through Coupling of Hieararchical Clustering Analysis and Regression Analysis—A Case Study in Euphrates-Tigris Basin. Analytics, 2(3), 577-591. https://doi.org/10.3390/analytics2030032