Untangling Energy Consumption Dynamics with Renewable Energy Using Recurrent Neural Network
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Source and Workflow
2.2. Multivariate Exploratory Data Analysis
2.3. Feature Engineering
2.4. Recurrent Neural Network (RNN)
2.5. Model Evaluation
3. Results and Discussion
Model Evaluation Metrics and Improvement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Atholia, T.; Flannigan, G.; Lai, S. Renewable Energy Investment in Australia. Bull. Reserve Bank Aust. 2020, 36–46. Available online: https://www.rba.gov.au/publications/bulletin/2020/mar/renewable-energy-investment-in-australia.html (accessed on 21 September 2021).
- Adebayo, T.S.; Awosusi, A.A.; Rjoub, H.; Agyekum, E.B.; Kirikkaleli, D. The Influence of Renewable Energy Usage on Consumption-Based Carbon Emissions in MINT Economies. Heliyon 2022, 8, e08941. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The Effect of Renewable Energy Consumption on Economic Growth: Evidence from Top 38 Countries. Appl. Energy 2016, 162, 733–741. [Google Scholar] [CrossRef]
- Samour, A.; Baskaya, M.M.; Tursoy, T. The Impact of Financial Development and FDI on Renewable Energy in the UAE: A Path towards Sustainable Development. Sustainability 2022, 14, 1208. [Google Scholar] [CrossRef]
- Baloch, Z.A.; Tan, Q.; Kamran, H.W.; Nawaz, M.A.; Albashar, G.; Hameed, J. A Multi-Perspective Assessment Approach of Renewable Energy Production: Policy Perspective Analysis. Environ. Dev. Sustain. 2022, 24, 2164–2192. [Google Scholar] [CrossRef]
- Pérez-García, J.M.; Morant, J.; Arrondo, E.; Sebastián-González, E.; Lambertucci, S.A.; Santangeli, A.; Margalida, A.; Sánchez-Zapata, J.A.; Blanco, G.; Donázar, J.A.; et al. Priority Areas for Conservation Alone Are Not a Good Proxy for Predicting the Impact of Renewable Energy Expansion. Proc. Natl. Acad. Sci. USA 2022, 119, e2204505119. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Renewable Energy Consumption in Economic Sectors in the EU-27. The Impact on Economics, Environment and Conventional Energy Sources. A 20-Year Perspective. J. Clean. Prod. 2022, 345, 131076. [Google Scholar] [CrossRef]
- Cook, D.; Karlsdóttir, I.; Minelgaite, I. Enjoying the Heat? Co-Creation of Stakeholder Benefits and Sustainable Energy Development within Projects in the Geothermal Sector. Energies 2022, 15, 1029. [Google Scholar] [CrossRef]
- Schulte, E.; Scheller, F.; Sloot, D.; Bruckner, T. A Meta-Analysis of Residential PV Adoption: The Important Role of Perceived Benefits, Intentions and Antecedents in Solar Energy Acceptance. Energy Res. Soc. Sci. 2022, 84, 102339. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding Farmers’ Intention and Willingness to Install Renewable Energy Technology: A Solution to Reduce the Environmental Emissions of Agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Ahmad, U.S.; Usman, M.; Hussain, S.; Jahanger, A.; Abrar, M. Determinants of Renewable Energy Sources in Pakistan: An Overview. Environ. Sci. Pollut. Res. 2022, 29, 29183–29201. [Google Scholar] [CrossRef]
- Sohag, K.; Chukavina, K.; Samargandi, N. Renewable Energy and Total Factor Productivity in OECD Member Countries. J. Clean. Prod. 2021, 296, 126499. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Overland, I.; Sandalow, D. The Geopolitics of Renewable Energy. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Igliński, B.; Iglińska, A.; Cichosz, M.; Kujawski, W.; Buczkowski, R. Renewable Energy Production in the Łódzkie Voivodeship. The PEST Analysis of the RES in the Voivodeship and in Poland. Renew. Sustain. Energy Rev. 2016, 58, 737–750. [Google Scholar] [CrossRef]
- Zheng, X.F.; Liu, C.X.; Yan, Y.Y.; Wang, Q. A Review of Thermoelectrics Research—Recent Developments and Potentials for Sustainable and Renewable Energy Applications. Renew. Sustain. Energy Rev. 2014, 32, 486–503. [Google Scholar] [CrossRef]
- Mehedi, M.A.A.; Yazdan, M.M.S.; Ahad, M.T.; Akatu, W.; Kumar, R.; Rahman, A. Quantifying Small-Scale Hyporheic Streamlines and Resident Time under Gravel-Sand Streambed Using a Coupled HEC-RAS and MIN3P Model. Eng 2022, 3, 276–300. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Abdullah Al Mehedi, M.; Reichert, N.; Molkenthin, F. Sensitivity Analysis of Hyporheic Exchange to Small Scale Changes in Gravel-Sand Flumebed Using a Coupled Groundwater-Surface Water Model. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020; p. 20319. [Google Scholar] [CrossRef]
- Omri, A.; Nguyen, D.K. On the Determinants of Renewable Energy Consumption: International Evidence. Energy 2014, 72, 554–560. [Google Scholar] [CrossRef]
- Heras-Saizarbitoria, I.; Sáez, L.; Allur, E.; Morandeira, J. The Emergence of Renewable Energy Cooperatives in Spain: A Review. Renew. Sustain. Energy Rev. 2018, 94, 1036–1043. [Google Scholar] [CrossRef]
- Kumar, R.; Yazdan, M.M.S.; Mehedi, M.A.A. Demystifying the Preventive Measures for Flooding from Groundwater Triggered by the Rise in Adjacent River Stage. Preprints 2022, 2022090452. [Google Scholar] [CrossRef]
- Yazdan, M.M.S.; Ahad, M.T.; Kumar, R.; Mehedi, M.A.A. Estimating Flooding at River Spree Floodplain Using HEC-RAS Simulation. J 2022, 5, 410–426. [Google Scholar] [CrossRef]
- Mehedi, M.A.A.; Khosravi, M.; Yazdan, M.M.S.; Shabanian, H. Exploring Temporal Dynamics of River Discharge Using Univariate Long Short-Term Memory (LSTM) Recurrent Neural Network at East Branch of Delaware River. Hydrology 2022, 9, 202. [Google Scholar] [CrossRef]
- Aktar, N.; Hossain, B.M.T.A.; Ahmed, T.; Khan, M.; Islam, A.; Yazdan, M.M.S.; Noor, F.; Rahaman, A. Climate Change Impacts on Water Availability in the Brahmaputra Basin. In Proceedings of the 5th International Conference on Water and Flood Management, Dhaka, Bangladesh, 6–8 March 2015. [Google Scholar]
- Yazdan, M.M.S.; Kumar, R.; Leung, S.W. The Environmental and Health Impacts of Steroids and Hormones in Wastewater Effluent, as Well as Existing Removal Technologies: A Review. Ecologies 2022, 3, 206–224. [Google Scholar] [CrossRef]
- Rahaman, A.; Yazdan, M.M.S.; Noor, F.; Duti, B. Establishment of Co-Relation between Remote Sensing Based Trmm Data and Ground Based Precipitation Data in North-East Region of Bangladesh. In Proceedings of the 2nd International Conference on Civil Engineering for Sustainable Development (ICCESD-2014), Khulna, Bangladesh, 14–16 February 2014. [Google Scholar]
- Yazdan, M.M.S.; Ahad, M.T.; Jahan, I.; Mazumder, M. Review on the Evaluation of the Impacts of Wastewater Disposal in Hydraulic Fracturing Industry in the United States. Technologies 2020, 8, 67. [Google Scholar] [CrossRef]
- Hossain, B.M.T.A.; Ahmed, T.; Aktar, N.; Khan, F.; Islam, A.; Yazdan, M.M.S.; Noor, F.; Rahaman, A. Climate Change Impacts on Water Availability in the Meghna Basin. In Proceedings of the 5th International Conference on Water and Flood Management (ICWFM-2015), Dhaka, Bangladesh, 6–8 March 2015. [Google Scholar]
- Yazdan, M.M.S.; Ahad, M.T.; Mallick, Z.; Mallick, S.P.; Jahan, I.; Mazumder, M. An Overview of the Glucocorticoids’ Pathways in the Environment and Their Removal Using Conventional Wastewater Treatment Systems. Pollutants 2021, 1, 141–155. [Google Scholar] [CrossRef]
- Tilley, S.D. Recent Advances and Emerging Trends in Photo-Electrochemical Solar Energy Conversion. Adv. Energy Mater. 2019, 9, 1802877. [Google Scholar] [CrossRef]
- Gish, M.K.; Pace, N.A.; Rumbles, G.; Johnson, J.C. Emerging Design Principles for Enhanced Solar Energy Utilization with Singlet Fission. J. Phys. Chem. C 2019, 123, 3923–3934. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Y.; Han, W.; Zhu, J.; Zhang, Y.; Huang, W. Solar Energy Conversion and Utilization: Towards the Emerging Photo-Electrochemical Devices Based on Perovskite Photovoltaics. Chem. Eng. J. 2020, 393, 124766. [Google Scholar] [CrossRef]
- Homadi, A.; Hall, T.; Whitman, L. Using Solar Energy to Generate Power through a Solar Wall. J. King Saud Univ.—Eng. Sci. 2020, 32, 470–477. [Google Scholar] [CrossRef]
- Martín, L.; Zarzalejo, L.F.; Polo, J.; Navarro, A.; Marchante, R.; Cony, M. Prediction of Global Solar Irradiance Based on Time Series Analysis: Application to Solar Thermal Power Plants Energy Production Planning. Sol. Energy 2010, 84, 1772–1781. [Google Scholar] [CrossRef]
- Khosravi, M.; Arellano, D. Selection of Adequate EPS-Block Geofoam for Use in Embankments Subjected to Seismic Loads. Preprints 2022, 2022100074. [Google Scholar] [CrossRef]
- Liu, M.; Steven Tay, N.H.; Bell, S.; Belusko, M.; Jacob, R.; Will, G.; Saman, W.; Bruno, F. Review on Concentrating Solar Power Plants and New Developments in High Temperature Thermal Energy Storage Technologies. Renew. Sustain. Energy Rev. 2016, 53, 1411–1432. [Google Scholar] [CrossRef]
- Zhang, H.L.; Baeyens, J.; Degrève, J.; Cacères, G. Concentrated Solar Power Plants: Review and Design Methodology. Renew. Sustain. Energy Rev. 2013, 22, 466–481. [Google Scholar] [CrossRef]
- Publishers, E.A. Proceedings of the Estonian Academy of Sciences, Engineering; Estonian Academy Publishers: Tallinn, Estonia, 2003. [Google Scholar]
- Archer, C.L.; Jacobson, M.Z. Evaluation of Global Wind Power. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Golding, E.W. Generation of Electricity by Wind Power; U.S. Department of Energy: Washington, DC, USA, 1976. [Google Scholar]
- Nazir, M.S.; Alturise, F.; Alshmrany, S.; Nazir, H.M.J.; Bilal, M.; Abdalla, A.N.; Sanjeevikumar, P.; Ali, Z.M. Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend. Sustainability 2020, 12, 3778. [Google Scholar] [CrossRef]
- Wu, Q.; Peng, C. Wind Power Generation Forecasting Using Least Squares Support Vector Machine Combined with Ensemble Empirical Mode Decomposition, Principal Component Analysis and a Bat Algorithm. Energies 2016, 9, 261. [Google Scholar] [CrossRef]
- Khosravi, M.; Mehedi, M.A.A.; Baghalian, S.; Burns, M.; Welker, A.L.; Golub, M. Using Machine Learning to Improve Performance of a Low-Cost Real-Time Stormwater Control Measure. Preprints 2022, 2022110519. [Google Scholar] [CrossRef]
- Shi, J.; Qu, X.; Zeng, S. Short-Term Wind Power Generation Forecasting: Direct Versus Indirect Arima-Based Approaches. Int. J. Green Energy 2011, 8, 100–112. [Google Scholar] [CrossRef]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current Methods and Advances in Forecasting of Wind Power Generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef]
- Khosravi, M.; Arif, S.B.; Ghaseminejad, A.; Tohidi, H.; Shabanian, H. Performance Evaluation of Machine Learning Regressors for Estimating Real Estate House Prices. Preprints 2022, 2022090341. [Google Scholar] [CrossRef]
- Akatu, W.; Khosravi, M.; Mehedi, M.A.A.; Mantey, J.; Tohidi, H.; Shabanian, H. Demystifying the Relationship Between River Discharge and Suspended Sediment Using Exploratory Analysis and Deep Neural Network Algorithms. Preprints 2022, 2022110437. [Google Scholar] [CrossRef]
- Verma, T.; Tiwana, A.P.S.; Reddy, C.C.; Arora, V.; Devanand, P. Data Analysis to Generate Models Based on Neural Network and Regression for Solar Power Generation Forecasting. In Proceedings of the 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Bangkok, Thailand, 25–27 January 2016; pp. 97–100. [Google Scholar]
- Azadeh, A.; Babazadeh, R.; Asadzadeh, S.M. Optimum Estimation and Forecasting of Renewable Energy Consumption by Artificial Neural Networks. Renew. Sustain. Energy Rev. 2013, 27, 605–612. [Google Scholar] [CrossRef]
- Hassan, M.A.; Bailek, N.; Bouchouicha, K.; Nwokolo, S.C. Ultra-Short-Term Exogenous Forecasting of Photovoltaic Power Production Using Genetically Optimized Non-Linear Auto-Regressive Recurrent Neural Networks. Renew. Energy 2021, 171, 191–209. [Google Scholar] [CrossRef]
- Fentis, A.; Bahatti, L.; Mestari, M.; Chouri, B. Short-Term Solar Power Forecasting Using Support Vector Regression and Feed-Forward NN. In Proceedings of the 2017 15th IEEE International New Circuits and Systems Conference (NEWCAS), Strasbourg, France, 25–28 June 2017; pp. 405–408. [Google Scholar]
- Lin, K.-P.; Pai, P.-F. Solar Power Output Forecasting Using Evolutionary Seasonal Decomposition Least-Square Support Vector Regression. J. Clean. Prod. 2016, 134, 456–462. [Google Scholar] [CrossRef]
- Jawaid, F.; NazirJunejo, K. Predicting Daily Mean Solar Power Using Machine Learning Regression Techniques. In Proceedings of the 2016 Sixth International Conference on Innovative Computing Technology (INTECH), Dublin, Ireland, 24–26 August 2016; pp. 355–360. [Google Scholar]
- Ahmad, M.; Al Mehedi, M.A.; Yazdan, M.M.S.; Kumar, R. Development of Machine Learning Flood Model Using Artificial Neural Network (ANN) at Var River. Liquids 2022, 2, 147–160. [Google Scholar] [CrossRef]
- Mehedi, M.A.A.; Yazdan, M.M.S. Automated Particle Tracing & Sensitivity Analysis for Residence Time in a Saturated Subsurface Media. Liquids 2022, 2, 72–84. [Google Scholar] [CrossRef]
- Karimi, M.; Khosravi, M.; Fathollahi, R.; Khandakar, A.; Vaferi, B. Determination of the Heat Capacity of Cellulosic Biosamples Employing Diverse Machine Learning Approaches. Energy Sci. Eng. 2022, 10, 1925–1939. [Google Scholar] [CrossRef]
- Abdollahzadeh, M.; Khosravi, M.; Hajipour Khire Masjidi, B.; Samimi Behbahan, A.; Bagherzadeh, A.; Shahkar, A.; Tat Shahdost, F. Estimating the Density of Deep Eutectic Solvents Applying Supervised Machine Learning Techniques. Sci. Rep. 2022, 12, 4954. [Google Scholar] [CrossRef]
- Sachin, M.M.; Baby, M.P.; Ponraj, A.S. Analysis of Energy Consumption Using RNN-LSTM and ARIMA Model. J. Phys. Conf. Ser. 2020, 1716, 012048. [Google Scholar] [CrossRef]
- Xia, M.; Shao, H.; Ma, X.; de Silva, C.W. A Stacked GRU-RNN-Based Approach for Predicting Renewable Energy and Electricity Load for Smart Grid Operation. IEEE Trans. Ind. Inform. 2021, 17, 7050–7059. [Google Scholar] [CrossRef]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting. Energies 2020, 13, 391. [Google Scholar] [CrossRef]
- Yuniarti, E.; Nurmaini, N.; Suprapto, B.Y.; Naufal Rachmatullah, M. Short Term Electrical Energy Consumption Forecasting Using RNN-LSTM. In Proceedings of the 2019 International Conference on Electrical Engineering and Computer Science (ICECOS), Batam Island, 2–3 October 2019; pp. 287–292. [Google Scholar]
- Capizzi, G.; Bonanno, F.; Napoli, C. Recurrent Neural Network-Based Control Strategy for Battery Energy Storage in Generation Systems with Intermittent Renewable Energy Sources. In Proceedings of the 2011 International Conference on Clean Electrical Power (ICCEP), Ischia, Italy, 14–16 June 2011; pp. 336–340. [Google Scholar]
- Khosravi, M.; Tabasi, S.; Hossam Eldien, H.; Motahari, M.R.; Alizadeh, S.M. Evaluation and Prediction of the Rock Static and Dynamic Parameters. J. Appl. Geophys. 2022, 199, 104581. [Google Scholar] [CrossRef]
- Zhu, X.; Khosravi, M.; Vaferi, B.; Nait Amar, M.; Ghriga, M.A.; Mohammed, A.H. Application of Machine Learning Methods for Estimating and Comparing the Sulfur Dioxide Absorption Capacity of a Variety of Deep Eutectic Solvents. J. Clean. Prod. 2022, 363, 132465. [Google Scholar] [CrossRef]
- Open Power System Data—A Platform for Open Data of the European Power System. Available online: https://open-power-system-data.org/ (accessed on 12 August 2022).
- Kumar, R.; Yazdan, M.M.S. Evaluating Preventive Measures for Flooding from Groundwater: A Case Study. J 2023, 6, 1–16. [Google Scholar] [CrossRef]
Energy Consumption Variables | Unit | Descriptions |
---|---|---|
Total consumption | GWh (gigawatt hours) | Daily total energy consumption |
Wind power production | GWh | Daily wind power production |
Solar power production | GWh | Daily solar power production |
Variable | Count | Mean | Std | Min | 25% | 50% | 75% | Max |
---|---|---|---|---|---|---|---|---|
Consumption | 4383 | 1338.67 | 165.77 | 842.39 | 1217.85 | 1367.12 | 1457.76 | 1709.56 |
Wind | 2920 | 164.81 | 143.69 | 5.75 | 62.35 | 119.09 | 217.90 | 826.27 |
Solar | 2188 | 89.25 | 58.55 | 1.96 | 35.17 | 86.40 | 135.07 | 241.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazdan, M.M.S.; Saki, S.; Kumar, R. Untangling Energy Consumption Dynamics with Renewable Energy Using Recurrent Neural Network. Analytics 2023, 2, 132-145. https://doi.org/10.3390/analytics2010008
Yazdan MMS, Saki S, Kumar R. Untangling Energy Consumption Dynamics with Renewable Energy Using Recurrent Neural Network. Analytics. 2023; 2(1):132-145. https://doi.org/10.3390/analytics2010008
Chicago/Turabian StyleYazdan, Munshi Md Shafwat, Shah Saki, and Raaghul Kumar. 2023. "Untangling Energy Consumption Dynamics with Renewable Energy Using Recurrent Neural Network" Analytics 2, no. 1: 132-145. https://doi.org/10.3390/analytics2010008
APA StyleYazdan, M. M. S., Saki, S., & Kumar, R. (2023). Untangling Energy Consumption Dynamics with Renewable Energy Using Recurrent Neural Network. Analytics, 2(1), 132-145. https://doi.org/10.3390/analytics2010008