A Parallel Implementation of the Differential Evolution Method
Abstract
:1. Introduction
2. Method Description
2.1. The Original DE Method
Algorithm 1: The steps of the base DE method |
|
2.2. Proposed Modifications
Algorithm 2: The steps of the proposed method |
|
2.3. Propagation Mechanism
- 1.
- One to one. In this case, a random island will send to another randomly selected island its best value.
- 2.
- One to N. In this case, a random island will send its best value to all other islands.
- 3.
- N to one. In this case, all islands will inform a randomly selected island about their best value.
- 4.
- N to N. All islands will inform all the other islands about their best value.
2.4. Termination Rule
3. Experiments
3.1. Test Functions
- Bent-cigar function. The function is
- Bf1 function. The function Bohachevsky 1 is given by the equation
- Bf2 function. The function Bohachevsky 2 is given by the equation
- Branin function. The function is defined by with . The value of the global minimum is 0.397887 with .
- CM function. The cosine mixture function is given by the equation
- Discus function. The function is defined as
- Easom function. The function is given by the equation
- Exponential function. The function is given byThe global minimum is located at with a value of . In our experiments, we used this function with and the corresponding functions are denoted by the labels EXP4, EXP16 and EXP64.
- Griewank2 function. The function is given byThe global minimum is located at the with a value of 0.
- Gkls function. is a function with w local minima, described in [56] with and n a positive integer between 2 and 100. The value of the global minimum is −1 and in our experiments, we used and .
- Hansen function. , . The global minimum of the function is −176.541793.
- Hartman 3 function. The function is given byThe value of the global minimum is −3.862782.
- Hartman 6 function.The value of the global minimum is −3.322368.
- High conditioned elliptic function, defined as
- Potential function. The molecular conformation corresponding to the global minimum of the energy of N atoms interacting via the Lennard–Jones potential [57] was used as a test case here. The function to be minimized is given by:In the experiments, two different cases were studied:
- Rastrigin function. The function is given by
- Shekel 7 function.
- Shekel 5 function.
- Shekel 10 function.
- Sinusoidal function. The function is given byThe global minimum is located at with . For the conducted experiments, the cases of and were studied. The parameter z was used to shift the location of the global minimum [58].
- Test2N function. This function is given by the equationThe function has in the specified range and in our experiments, we used .
- Test30N function. This function is given by
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Honda, M. Application of genetic algorithms to modelings of fusion plasma physics. Comput. Phys. Commun. 2018, 231, 94–106. [Google Scholar] [CrossRef]
- Luo, X.L.; Feng, J.; Zhang, H.H. A genetic algorithm for astroparticle physics studies. Comput. Phys. Commun. 2020, 250, 106818. [Google Scholar] [CrossRef] [Green Version]
- Aljohani, T.M.; Ebrahim, A.F.; Mohammed, O. Single and Multiobjective Optimal Reactive Power Dispatch Based on Hybrid Artificial Physics–Particle Swarm Optimization. Energies 2019, 12, 2333. [Google Scholar] [CrossRef] [Green Version]
- Pardalos, P.M.; Shalloway, D.; Xue, G. Optimization methods for computing global minima of nonconvex potential energy functions. J. Glob. Optim. 1994, 4, 117–133. [Google Scholar] [CrossRef]
- Liwo, A.; Lee, J.; Ripoll, D.R.; Pillardy, J.; Scheraga, H.A. Protein structure prediction by global optimization of a potential energy function. Biophysics 1999, 96, 5482–5485. [Google Scholar] [CrossRef] [Green Version]
- An, J.; He, G.; Qin, F.; Li, R.; Huang, Z. A new framework of global sensitivity analysis for the chemical kinetic model using PSO-BPNN. Comput. Chem. Eng. 2018, 112, 154–164. [Google Scholar] [CrossRef]
- Gaing, Z.-L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195. [Google Scholar] [CrossRef]
- Basu, M. A simulated annealing-based goal-attainment method for economic emission load dispatch of fixed head hydrothermal power systems. Int. J. Electr. Power Energy Syst. 2005, 27, 147–153. [Google Scholar] [CrossRef]
- Cherruault, Y. Global optimization in biology and medicine. Math. Comput. Model. 1994, 20, 119–132. [Google Scholar] [CrossRef]
- Lee, E.K. Large-Scale Optimization-Based Classification Models in Medicine and Biology. Ann. Biomed. Eng. 2007, 35, 1095–1109. [Google Scholar] [CrossRef]
- Price, W.L. Global optimization by controlled random search. J. Optim. Theory Appl. 1983, 40, 333–348. [Google Scholar] [CrossRef]
- Křivý, I.; Tvrdík, J. The controlled random search algorithm in optimizing regression models. Comput. Stat. Data Anal. 1995, 20, 229–234. [Google Scholar] [CrossRef]
- Ali, M.M.; Törn, A.; Viitanen, S. A Numerical Comparison of Some Modified Controlled Random Search Algorithms. J. Glob. 1997, 11, 377–385. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Ingber, L. Very fast simulated re-annealing. Math. Comput. Model. 1989, 12, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Eglese, R.W. Simulated annealing: A tool for operational research. Simulated Annealing Tool Oper. Res. 1990, 46, 271–281. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Liu, J.; Lampinen, J. A Fuzzy Adaptive Differential Evolution Algorithm. Soft Comput. 2005, 9, 448–462. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.K.; Blackwell, T. Particle swarm optimization An Overview. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 2003, 85, 317–325. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning, Addison; Wesley Publishing Company: Reading, MA, USA, 1989. [Google Scholar]
- Michaelewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30, 259–270. [Google Scholar] [CrossRef]
- Pardalos, P.M.; Romeijn, H.E.; Tuy, H. Recent developments and trends in global optimization. J. Comput. Appl. Math. 2000, 124, 209–228. [Google Scholar] [CrossRef] [Green Version]
- Fouskakis, D.; Draper, D. Stochastic Optimization: A Review. Int. Stat. Rev. 2002, 70, 315–349. [Google Scholar] [CrossRef]
- Rocca, P.; Oliveri, G.; Massa, A. Differential Evolution as Applied to Electromagnetics. IEEE Antennas Propag. Mag. 2011, 53, 38–49. [Google Scholar] [CrossRef]
- Lee, W.S.; Chen, Y.T.; Kao, Y. Optimal chiller loading by differential evolution algorithm for reducing energy consumption. Energy Build. 2011, 43, 599–604. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, H. Flexible job shop scheduling using hybrid differential evolution algorithms. Comput. Ind. 2013, 65, 246–260. [Google Scholar] [CrossRef]
- Xu, L.; Jia, H.; Lang, C.; Peng, X.; Sun, K. A Novel Method for Multilevel Color Image Segmentation Based on Dragonfly Algorithm and Differential Evolution. IEEE Access 2019, 7, 19502–19538. [Google Scholar] [CrossRef]
- Schutte, J.F.; Reinbolt, J.A.; Fregly, B.J.; Haftka, R.; George, A.D. Parallel global optimization with the particle swarm algorithm. Int. J. Numer. Methods Eng. 2004, 61, 2296–2315. [Google Scholar] [CrossRef]
- Larson, J.; Wild, S.M. Asynchronously parallel optimization solver for finding multiple minima. Math. Comput. 2018, 10, 303–332. [Google Scholar] [CrossRef]
- Tsoulos, I.G.; Tzallas, A.; Tsalikakis, D. PDoublePop: An implementation of parallel genetic algorithm for function optimization. Comput. Phys. Commun. 2016, 209, 183–189. [Google Scholar] [CrossRef]
- Kamil, R.; Reiji, S. An Efficient GPU Implementation of a Multi-Start TSP Solver for Large Problem Instances. In Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012; pp. 1441–1442. [Google Scholar]
- Van Luong, T.; Melab, N.; Talbi, E.G. GPU-Based Multi-start Local Search Algorithms. In Learning and Intelligent Optimization; Coello, C.A.C., Ed.; LION 2011. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6683. [Google Scholar] [CrossRef] [Green Version]
- Barkalov, K.; Gergel, V. Parallel global optimization on GPU. J. Glob. Optim. 2016, 66, 3–20. [Google Scholar] [CrossRef]
- Weber, M.; Neri, F.; Tirronen, V. Shuffle or update parallel differential evolution for large-scale optimization. Soft Comput. 2011, 15, 2089–2107. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, X.; Li, J.; Li, S.; Wang, L. PDECO: Parallel differential evolution for clusters optimization. J. Comput. Chem. 2013, 34, 1046–1059. [Google Scholar] [CrossRef]
- Penas, D.R.; Banga, J.R.; Gonzalez, P.; Doallo, R. Enhanced parallel Differential Evolution algorithm for problems in computational systems biology. Appl. Soft Comput. 2015, 33, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Sui, X.; Chu, S.C.; Pan, J.S.; Luo, H. Parallel Compact Differential Evolution for Optimization Applied to Image Segmentation. Appl. Sci. 2020, 10, 2195. [Google Scholar] [CrossRef] [Green Version]
- Skakovski, A.; Jędrzejowicz, P. An island-based differential evolution algorithm with the multi-size populations. Expert Syst. Appl. 2019, 126, 308–320. [Google Scholar] [CrossRef]
- Skakovski, A.; Jędrzejowicz, P. A Multisize no Migration Island-Based Differential Evolution Algorithm with Removal of Ineffective Islands. IEEE Access 2022, 10, 34539–34549. [Google Scholar] [CrossRef]
- Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North American Fuzzy Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523. [Google Scholar]
- F.Neri, E. Mininno, Memetic Compact Differential Evolution for Cartesian Robot Control. IEEE Comput. Intell. 2010, 5, 54–65. [Google Scholar] [CrossRef]
- Mininno, E.; Neri, F.; Cupertino, F.; Naso, D. Compact Differential Evolution. IEEE Trans. Evol. 2011, 15, 32–54. [Google Scholar] [CrossRef]
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [Google Scholar] [CrossRef]
- Hachicha, N.; Jarboui, B.; Siarry, P. A fuzzy logic control using a differential evolution algorithm aimed at modelling the financial market dynamics. Inf. Sci. 2011, 181, 79–91. [Google Scholar] [CrossRef]
- Kaelo, P.; Ali, M.M. A numerical study of some modified differential evolution algorithms. Eur. J. Oper. 2006, 169, 1176–1184. [Google Scholar] [CrossRef]
- Corcoran, A.L.; Wainwright, R.L. A parallel island model genetic algorithm for the multiprocessor scheduling problem. In Proceedings of the 1994 ACM Symposium on Applied Computing, SAC ’94, Phoenix, AZ, USA, 6–8 March 1994; pp. 483–487. [Google Scholar]
- Whitley, D.; Rana, S.; Heckendorn, R.B. Island model genetic algorithms and linearly separable problems. In Evolutionary Computing; Series Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1305, pp. 109–125. [Google Scholar]
- Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program. 1989, 45, 547–566. [Google Scholar] [CrossRef]
- Ali, M.M. Charoenchai Khompatraporn, Zelda B. Zabinsky, A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems. J. Glob. Optim. 2005, 31, 635–672. [Google Scholar] [CrossRef]
- Floudas, C.A.; Pardalos, P.M.; Adjiman, C.; Esposoto, W.; Gümüs, Z.; Harding, S.; Klepeis, J.; Meyer, C.; Schweiger, C. Handbook of Test Problems in Local and Global Optimization; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Gaviano, M.; Ksasov, D.E.; Lera, D.; Sergeyev, Y.D. Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 2003, 29, 469–480. [Google Scholar] [CrossRef]
- Lennard-Jones, J.E. On the Determination of Molecular Fields. Proc. R. Soc. Lond. A 1924, 106, 463–477. [Google Scholar]
- Zabinsky, Z.B.; Graesser, D.L.; Tuttle, M.E.; Kim, G.I. Global optimization of composite laminates using improving hit and run. In Recent Advances in Global Optimization; ACM Digital Library: New York, NY, USA, 1992; pp. 343–368. [Google Scholar]
- Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J.; Menon, R. Parallel Programming in OpenMP; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2001. [Google Scholar]
- Charilogis, V.; Tsoulos, I.G.; Tzallas, A.; Karvounis, E. Modifications for the Differential Evolution Algorithm. Symmetry 2022, 14, 447. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural networks and their applications. Rev. Sci. Instrum. 1994, 65, 1803–1832. [Google Scholar] [CrossRef]
- Raymer, M.; Doom, T.E.; Kuhn, L.A.; Punch, W.F. Knowledge discovery in medical and biological datasets using a hybrid Bayes classifier/evolutionary algorithm. IEEE Trans. Syst. Man Cybern Part B 2003, 33, 802–813. [Google Scholar] [CrossRef]
- Zhong, P.; Fukushima, M. Regularized nonsmooth Newton method for multi-class support vector machines. Optim. Methods Softw. 2007, 22, 225–236. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
NP | 200 agents |
Propagation | 1-to-1 method |
5 iterations | |
2 islands | |
CR | 0.9 for the crossover probability |
M | 15 iterations |
Function | Thread 1 | Threads 4 | Threads 5 | Threads 10 |
---|---|---|---|---|
BF1 | 5908 | 5517 | 5310 | 4887 |
BF2 | 5415 | 5008 | 4888 | 4577 |
BRANIN | 5467 | 4767 | 4535 | 3895 |
CIGAR10 | 1886 | 1885 | 1885 | 1875 |
CM4 | 2518 | 2432 | 2330 | 2243 (0.97) |
DISCUS10 | 1818 | 1816 | 1814 | 1807 |
EASOM | 1807 | 1802 | 1801 | 1791 |
ELP10 | 44,910 | 41,731 | 41,930 | 29,944 |
EXP4 | 1820 | 1816 | 1814 | 1806 |
EXP16 | 1838 | 1835 | 1834 | 1830 |
EXP64 | 1842 | 1840 | 1839 | 1838 |
GKLS250 | 1987 | 1897 | 1879 | 1818 |
GKLS350 | 2428 | 2373 | 2299 | 2195 |
GRIEWANK2 | 5544 | 4811 | 4612 | 4208 |
POTENTIAL3 | 11,121 | 7868 | 7260 | 5598 |
POTENTIAL5 | 24,708 | 15,146 | 13,793 | 8620 |
HANSEN | 23,035 | 13,602 | 12,178 | 9242 |
HARTMAN3 | 3406 | 3198 | 3162 | 2883 |
HARTMAN6 | 7611 | 6172 | 5739 | 4877 (0.97) |
RASTRIGIN | 5642 | 4537 | 4386 | 3707 |
ROSENBROCK4 | 11,859 | 10,441 | 10,139 | 9473 |
ROSENBROCK8 | 21,640 | 19,536 | 20,560 | 20,654 |
SHEKEL5 | 12,491 | 10,247 | 9754 | 5065 (0.80) |
SHEKEL7 | 10,755 | 9183 | 8857 | 6996 |
SHEKEL10 | 10,257 | 9002 | 8705 | 7283 |
SINU4 | 6045 | 5473 | 5301 | 4434 |
SINU8 | 9764 | 8132 | 7748 | 4523 |
TEST2N4 | 8521 | 7487 | 7404 | 6834 |
TEST2N5 | 10,218 | 8916 | 8715 | 8050 |
TEST2N6 | 11,984 | 10,240 | 10,191 | 9175 |
TEST2N7 | 15,674 | 13,983 | 13,341 | 9760 |
TEST30N3 | 3720 | 3379 | 3349 | 2994 |
TEST30N4 | 3728 | 3382 | 3363 | 3031 |
Average | 298,267 | 249,454 | 242,715 | 197,913 (0.99) |
Function | 1 to 1 | 1 to N | N to 1 | N to N |
---|---|---|---|---|
BF1 | 4887 | 4259 | 4209 | 2792 |
BF2 | 4577 | 4021 | 3917 | 2691 |
BRANIN | 3895 | 3378 | 3307 | 2382 |
CIGAR10 | 1875 | 1874 | 1871 | 1873 |
CM4 | 2243 (0.97) | 2173 | 2136 (0.97) | 2030 |
DISCUS10 | 1807 | 1810 | 1808 | 1809 |
EASOM | 1791 | 1790 | 1791 | 1789 |
ELP10 | 29,944 | 42,025 | 22,876 | 19,117 |
EXP4 | 1806 | 1807 | 1811 | 1806 |
EXP16 | 1830 | 1829 | 1828 | 1824 |
EXP64 | 1838 | 1838 | 1838 | 1836 |
GKLS250 | 1818 | 1812 | 1810 | 1802 |
GKLS350 | 2195 | 2163 | 2109 | 2011 (0.97) |
GRIEWANK2 | 4208 | 3620 | 3514 | 2445 (0.80) |
POTENTIAL3 | 5598 | 4445 | 4353 | 2521 |
POTENTIAL5 | 8620 | 7475 | 7025 | 3374 |
HANSEN | 9242 | 6075 | 6181 | 3135 |
HARTMAN3 | 2883 | 2664 | 2593 | 2207 |
HARTMAN6 | 4877 (0.97) | 4327 (0.83) | 4362 (0.80) | 2834 (0.57) |
RASTRIGIN | 3707 | 3213 | 2870 | 2220 (0.90) |
ROSENBROCK4 | 9473 | 8294 | 7883 | 7084 |
ROSENBROCK8 | 20,654 | 24,470 | 15,919 | 19,272 |
SHEKEL5 | 5065 (0.80) | 7556 | 5386 (0.93) | 4456 (0.70) |
SHEKEL7 | 6996 | 7207 (0.90) | 6488 (0.93) | 4493 (0.80) |
SHEKEL10 | 7283 | 6812 (0.93) | 6440 | 3916 (0.73) |
SINU4 | 4434 | 4204 | 4020 | 2796 (0.97) |
SINU8 | 4523 | 5386 | 4605 | 3341 (0.90) |
TEST2N4 | 6834 | 5777 | 5625 | 3609 (0.97) |
TEST2N5 | 8050 | 6695 (0.97) | 6647 | 4179 (0.73) |
TEST2N6 | 9175 | 7770 (0.93) | 7660 | 4522 (0.53) |
TEST2N7 | 9760 | 9259 (0.77) | 9081 | 5200 (0.57) |
TEST30N3 | 2994 | 2814 | 2653 | 2210 |
TEST30N4 | 3031 | 2797 | 2700 | 2107 |
Average | 197,913 (0.99) | 201,649 (0.98) | 167,316(0.98) | 129,683 (0.91) |
Function | Proposed | Original DE | DERL | DELB |
---|---|---|---|---|
BF1 | 4887 | 5516 | 2881 | 5319 |
BF2 | 4577 | 5555 | 2895 | 5405 |
BRANIN | 3895 | 5656 | 2857 | 4830 |
CIGAR10 | 1875 | 88,396 | 66,161 | 58,460 |
CM4 | 2243 (0.97) | 9107 | 3856 | 6014 |
DISCUS10 | 1807 | 87,657 | 55,722 | 49,014 |
EASOM | 1791 | 7879 | 7225 | 14,934 |
ELP10 | 29,944 | 33,371 | 9345 | 39,890 |
EXP4 | 1806 | 6027 | 2638 | 4142 |
EXP16 | 1830 | 26,194 | 25,117 | 11,740 |
EXP64 | 1838 | 26,497 | 27,831 | 18,346 |
GKLS250 | 1818 | 3800 | 1983 | 3706 |
GKLS350 | 2195 | 6206 | 2901 | 5027 |
GRIEWANK2 | 4208 | 6365 | 3325 | 6165 |
POTENTIAL3 | 5598 | 82,933 | 111,496 | 44,592 |
POTENTIAL5 | 8620 | 24,118 | 61,694 | 46,557 |
HANSEN | 9242 | 18,470 | 7123 | 12212 |
HARTMAN3 | 2883 | 4655 | 2205 | 4124 |
HARTMAN6 | 4877 (0.97) | 15,488 | 5343 | 7215 (0.93) |
RASTRIGIN | 3707 | 6362 | 3102 | 5704 |
ROSENBROCK4 | 9473 | 16,857 | 6679 | 10,411 |
ROSENBROCK8 | 20,654 | 56,445 | 17,198 | 22,939 |
SHEKEL5 | 5065 (0.80) | 13,079 | 5224 (0.90) | 8167 |
SHEKEL7 | 6996 | 12,409 | 4994 (0.97) | 8093 |
SHEKEL10 | 7283 | 13,238 | 5240 | 8822 |
SINU4 | 4434 | 8977 | 3828 | 6052 |
SINU8 | 4523 | 28,871 | 9318 | 10,157 |
TEST2N4 | 6834 | 10,764 | 4529 | 7331 |
TEST2N5 | 8050 | 15,568 | 5917 | 8969 |
TEST2N6 | 9175 | 21,185 | 7613 | 10,648 |
TEST2N7 | 9760 | 28,411 | 9492 | 12,252 |
TEST30N3 | 2994 | 4965 | 2758 | 4693 |
TEST30N4 | 3031 | 5123 | 2688 | 5153 |
Average | 197,913 (0.99) | 706,144 | 491,178 (0.99) | 477,083 (0.99) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charilogis, V.; Tsoulos, I.G. A Parallel Implementation of the Differential Evolution Method. Analytics 2023, 2, 17-30. https://doi.org/10.3390/analytics2010002
Charilogis V, Tsoulos IG. A Parallel Implementation of the Differential Evolution Method. Analytics. 2023; 2(1):17-30. https://doi.org/10.3390/analytics2010002
Chicago/Turabian StyleCharilogis, Vasileios, and Ioannis G. Tsoulos. 2023. "A Parallel Implementation of the Differential Evolution Method" Analytics 2, no. 1: 17-30. https://doi.org/10.3390/analytics2010002
APA StyleCharilogis, V., & Tsoulos, I. G. (2023). A Parallel Implementation of the Differential Evolution Method. Analytics, 2(1), 17-30. https://doi.org/10.3390/analytics2010002