

 analytics-02-00002

analytics-02-00002

Analytics 2023, 2(1), 17-30; doi:10.3390/analytics2010002

Article

A Parallel Implementation of the Differential Evolution Method

Vasileios Charilogis † and Ioannis G. Tsoulos *,†

Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece

*

Correspondence: itsoulos@uoi.gr

†

These authors contributed equally to this work.

Received: 22 December 2022 / Revised: 4 January 2023 / Accepted: 5 January 2023 / Published: 9 January 2023

Abstract

:

Global optimization is a widely used technique that finds application in many sciences such as physics, economics, medicine, etc., and with many extensions, for example, in the area of machine learning. However, in many cases, global minimization techniques require a high computational time and, for this reason, parallel computational approaches should be used. In this paper, a new parallel global optimization technique based on the differential evolutionary method is proposed. This new technique uses a series of independent parallel computing units that periodically exchange the best solutions they have found. Additionally, a new termination rule is proposed here that exploits parallelism to accelerate process termination in a timely and valid manner. The new method is applied to a number of problems in the established literature and the results are quite promising.

Keywords:

global optimization; stopping rules; parallel computing

1. Introduction

The task of locating the global minimum of a continuous and differentiable function f : S → R , S ⊂ R n is defined as

 x * = arg min x ∈ S f (x) .

(1)

The set S is defined as:

 S = a 1 , b 1 ⊗ a 2 , b 2 ⊗ … a n , b n

A variety of practical problems from various research fields can be modeled as global optimization problems, such as problems from physics [1,2,3], chemistry [4,5,6], economics [7,8], medicine [9,10], etc. Many methods have been proposed to tackle the problem of Equation (1), such as controlled random search methods [11,12,13], simulated annealing methods [14,15,16], differential evolution methods [17,18], particle swarm optimization (PSO) methods [19,20,21], ant colony optimization [22,23], genetic algorithms [24,25,26], etc. Reviews of stochastic methods for global optimization problems can be found in the work of Pardalos et al. [27] or in the work of Fouskakis et al. [28].

The current work proposes a parallel implementation of the differential evolution (DE) method that aims to speed up the optimization process of this particular method and also tries to make adequate use of modern computing structures with multicore architectures. The DE method initially generates a population of candidate solutions, which iteratively evolves through the crossover process in order to discover the global minimum of the objective function. The method was applied in various research fields such as electromagnetics [29], energy consumption problems [30], job shop scheduling [31], image segmentation [32], etc. The proposed method partitions the processing into independent structural units, such as threads, and each of them acts independently. Furthermore, the new method proposes a way of communication between the different building blocks of parallel processing and a process termination technique suitably modified for parallel processing.

In the recent literature, several methods have been proposed that take full advantage of parallel processing, such as parallel techniques [33,34,35], methods that take advantage of GPU architectures [36,37,38], etc. Moreover, Weber et al. [39] proposed a parallel DE method for large-scale optimization problems using new search mechanisms for the individuals of the subpopulations. Chen et al. [40] proposed a parallel DE method for cluster optimization using modified genetic operators. Moreover, Penas et al. [41] suggested an enhanced parallel asynchronous DE algorithm for problems in computational systems biology. Recently, Sui et al. [42] proposed a parallel compact DE method applied to image segmentation.

The proposed technique is a modified version of the parallel island methodology for different evolutionary techniques [43,44]. Therefore, in the proposed technique, the initial population of agents (candidate solutions) is divided into a series of independent populations and each individual population evolves independently in a parallel computing unit, such as a thread. Populations periodically exchange information with each other, such as the lowest functional value to which they have been driven. The proposed technique uses a new differential weight calculation scheme, can use a number of different information exchange methods between the parallel computing units and furthermore proposes a new termination method of the optimization process that can take advantage of the parallelism so that the optimization terminates in time and is valid.

The rest of this article is organized as follows: in Section 2, the original DE method as well as the proposed modifications are outlined, in Section 3, the experimental test functions from the relevant literature and the associated experimental results are listed, and finally, in Section 4, some conclusions and guidelines for future research are provided.

2. Method Description

In this section, the basic DE method is first presented and then, the proposed modifications are analyzed so that it can be executed in parallel.

2.1. The Original DE Method

The original method was originally proposed by Storn [45], and it has been modified in various research papers. For example, the compact differential evolution algorithm [46,47], a self-adaptive DE [48] where the parameters of the method are modified iteratively, fuzzy logic modifications [49], etc. Moreover, a numerical study on some modifications of the DE method can be found in the work of Kaelo et al. [50]. The base DE method has the steps described below in Algorithm 1.

	Algorithm 1: The steps of the base DE method

	
	1.

	
INPUT:

	(a)

	
The population size N P ≥ 4. The members of this population are also called agents.

	(b)

	
The crossover probability C R ∈ [0 , 1] .

	(c)

	
The differential weight F ∈ [0 , 2] .

	2.

	
OUTPUT:

	(a)

	
The agent x b e s t with the lower function value f x b e s t .

	3.

	
Initialize all agents in S.

	4.

	
While termination criteria are not held do

	(a)

	
For i = 1 … N P do

	i.

	
Select as x the agent i.

	ii.

	
Select randomly three agents a , b , c with the property a ≠ b ,

 b ≠ c , c ≠ a .

	iii.

	
Select a random position R ∈ 1 , … , n

	iv.

	
Create the vector y = y 1 , y 2 , … , y n with the following procedure

	v.

	
For j = 1 , … , n do

	A.

	
Set r i ∈ [0 , 1] a random number.

	B.

	
If r j < CR or j = R then y j = a j + F × b j − c j else y j = x j .

	vi.

	
If y ∈ S A N D f y ≤ f x then x = y .

	vii.

	
EndFor

	(b)

	
EndFor

	5.

	
End While

2.2. Proposed Modifications

In the proposed procedure, the population of agents is segmented into N independent contiguous segments. Each section is called an island in the following text, similar to island genetic algorithms [51,52], which are very popular parallel variants of genetic algorithms. For example, if there are 10 agents and 2 islands, then agents 1–5 are assigned to island 1 and agents 6–10 to island 2. On each island, the process of differential evolution is carried out independently. Of course, there should be some mechanism for communication between the islands as well as some appropriate mechanism for terminating the overall process. The proposed Algorithm 2 is presented next.

	Algorithm 2: The steps of the proposed method

	
	1.

	
INPUT:

	(a)

	
The parameters NP, CR, F.

	(b)

	
The integer parameter N, which stands for the number of islands.

	(c)

	
The integer parameter N R , which represents the propagation rate.

	(d)

	
The integer parameter N I , which represents the number of islands that

should terminate in order to terminate the whole process.

	2.

	
OUTPUT:

	(a)

	
The agent x b e s t with the lower function value f x b e s t .

	3.

	
Initialize all agents in S.

	4.

	
Set iter = 1

	5.

	
For i = 1,..., N do in Parallel

	(a)

	
Perform for every island i the step 4.a of the base DE algorithm of

Section 2.1.

	6.

	
EndFor

	7.

	
If iter mod N R = 0, apply the propagation scheme of Section 2.3 to the islands. The default value used in the experiments is the “1 to 1” case.

	8.

	
Set iter = iter + 1

	9.

	
If the termination rule of Section 2.4 is not valid, goto 5.

	10.

	
Apply local search procedure to x b e s t . The local search procedure used in the proposed method is the BFGS variant of Powell [53].

2.3. Propagation Mechanism

During the propagation mechanism, the best values of the islands are spread to the rest by replacing their worst values. In general, there are the following propagation cases:

	1.

	
One to one. In this case, a random island will send to another randomly selected island its best value.

	2.

	
One to N. In this case, a random island will send its best value to all other islands.

	3.

	
N to one. In this case, all islands will inform a randomly selected island about their best value.

	4.

	
N to N. All islands will inform all the other islands about their best value.

2.4. Termination Rule

In the proposed termination criterion, a simple criterion is checked separately on each island. For every island i the difference

 δ i (k) = f i , min (k) − f i , min (k − 1) ,

(2)

is measured at each iteration k , where f i , min (k) is the best located function value for island i at iteration k. If δ i (k) ≤ ϵ for at least M consecutive iterations, then most likely the island i should terminate the population evolution. In the proposed technique, if the quantity of Equation (2) holds for more than N I islands, then the overall algorithm terminates.

3. Experiments

In the following, the benchmark functions used in the experiments as well as the experimental results are presented.

3.1. Test Functions

To evaluate the ability of the proposed technique to find the total minimum of functions, a series of test functions from the relevant literature [54,55] were used and are presented below.

	
Bent-cigar function. The function is

 f (x) = x 1 2 + 10 6 ∑ i = 2 n x i 2

with the global minimum f x * = 0 . For the conducted experiments, the value n = 10 was used.

	
Bf1 function. The function Bohachevsky 1 is given by the equation

 f (x) = x 1 2 + 2 x 2 2 − 3 10 cos 3 π x 1 − 4 10 cos 4 π x 2 + 7 10

with x ∈ [− 100 , 100] 2 .

	
Bf2 function. The function Bohachevsky 2 is given by the equation

 f (x) = x 1 2 + 2 x 2 2 − 3 10 cos 3 π x 1 cos 4 π x 2 + 3 10

with x ∈ [− 50 , 50] 2 .

	
Branin function. The function is defined by f (x) = x 2 − 5.1 4 π 2 x 1 2 + 5 π x 1 − 6 2 + 10 1 − 1 8 π cos (x 1) + 10 with − 5 ≤ x 1 ≤ 10 , 0 ≤ x 2 ≤ 15 . The value of the global minimum is 0.397887 with x ∈ [− 10 , 10] 2 .

	
CM function. The cosine mixture function is given by the equation

 f (x) = ∑ i = 1 n x i 2 − 1 10 ∑ i = 1 n cos 5 π x i

with x ∈ [− 1 , 1] n . For the conducted experiments, the value n = 4 was used.

	
Discus function. The function is defined as

 f (x) = 10 6 x 1 2 + ∑ i = 2 n x i 2

with global minimum f x * = 0 . For the conducted experiments, the value n = 10 was used.

	
Easom function. The function is given by the equation

 f (x) = − cos x 1 cos x 2 exp x 2 − π 2 − x 1 − π 2

with x ∈ [− 100 , 100] 2 and a global minimum of −1.0.

	
Exponential function. The function is given by

 f (x) = − exp − 0.5 ∑ i = 1 n x i 2 , − 1 ≤ x i ≤ 1

The global minimum is located at x * = (0 , 0 , ⋯ , 0) with a value of − 1 . In our experiments, we used this function with n = 4 , 16 , 64 and the corresponding functions are denoted by the labels EXP4, EXP16 and EXP64.

	
Griewank2 function. The function is given by

 f (x) = 1 + 1 200 ∑ i = 1 2 x i 2 − ∏ i = 1 2 cos (x i) (i) , x ∈ [− 100 , 100] 2

The global minimum is located at the x * = (0 , 0 , ⋯ , 0) with a value of 0.

	
Gkls function. f (x) = G k l s (x , n , w) is a function with w local minima, described in [56] with x ∈ [− 1 , 1] n and n a positive integer between 2 and 100. The value of the global minimum is −1 and in our experiments, we used n = 2 , 3 and w = 50 , 100 .

	
Hansen function. f (x) = ∑ i = 1 5 i cos (i − 1) x 1 + i ∑ j = 1 5 j cos (j + 1) x 2 + j , x ∈ [− 10 , 10] 2 . The global minimum of the function is −176.541793.

	
Hartman 3 function. The function is given by

 f (x) = − ∑ i = 1 4 c i exp − ∑ j = 1 3 a i j x j − p i j 2

with x ∈ [0 , 1] 3 and a = 3 10 30 0.1 10 35 3 10 30 0.1 10 35 , c = 1 1.2 3 3.2 and

 p = 0.3689 0.117 0.2673 0.4699 0.4387 0.747 0.1091 0.8732 0.5547 0.03815 0.5743 0.8828 .

The value of the global minimum is −3.862782.

	
Hartman 6 function.

 f (x) = − ∑ i = 1 4 c i exp − ∑ j = 1 6 a i j x j − p i j 2

with x ∈ [0 , 1] 6 and a = 10 3 17 3.5 1.7 8 0.05 10 17 0.1 8 14 3 3.5 1.7 10 17 8 17 8 0.05 10 0.1 14 , c = 1 1.2 3 3.2 and

 p = 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 .

The value of the global minimum is −3.322368.

	
High conditioned elliptic function, defined as

 f (x) = ∑ i = 1 n 10 6 i − 1 n − 1 x i 2

with global minimum f x * = 0 ; the value n = 10 was used in the conducted experiments

	
Potential function. The molecular conformation corresponding to the global minimum of the energy of N atoms interacting via the Lennard–Jones potential [57] was used as a test case here. The function to be minimized is given by:

 V L J (r) = 4 ϵ σ r 12 − σ r 6

(3)

In the experiments, two different cases were studied: N = 3 , 5

	
Rastrigin function. The function is given by

 f (x) = x 1 2 + x 2 2 − cos (18 x 1) − cos (18 x 2) , x ∈ [− 1 , 1] 2

	
Shekel 7 function.

 f (x) = − ∑ i = 1 7 1 (x − a i) (x − a i) T + c i

with x ∈ [0 , 10] 4 and a = 4 4 4 4 1 1 1 1 8 8 8 8 6 6 6 6 3 7 3 7 2 9 2 9 5 3 5 3 , c = 0.1 0.2 0.2 0.4 0.4 0.6 0.3 .

	
Shekel 5 function.

 f (x) = − ∑ i = 1 5 1 (x − a i) (x − a i) T + c i

with x ∈ [0 , 10] 4 and a = 4 4 4 4 1 1 1 1 8 8 8 8 6 6 6 6 3 7 3 7 , c = 0.1 0.2 0.2 0.4 0.4 .

	
Shekel 10 function.

 f (x) = − ∑ i = 1 10 1 (x − a i) (x − a i) T + c i

with x ∈ [0 , 10] 4 and a = 4 4 4 4 1 1 1 1 8 8 8 8 6 6 6 6 3 7 3 7 2 9 2 9 5 5 3 3 8 1 8 1 6 2 6 2 7 3.6 7 3.6 , c = 0.1 0.2 0.2 0.4 0.4 0.6 0.3 0.7 0.5 0.6 .

	
Sinusoidal function. The function is given by

 f (x) = − 2.5 ∏ i = 1 n sin x i − z + ∏ i = 1 n sin 5 x i − z , 0 ≤ x i ≤ π .

The global minimum is located at x * = (2.09435 , 2.09435 , ⋯ , 2.09435) with f x * = − 3.5 . For the conducted experiments, the cases of n = 4 , 8 and z = π 6 were studied. The parameter z was used to shift the location of the global minimum [58].

	
Test2N function. This function is given by the equation

 f (x) = 1 2 ∑ i = 1 n x i 4 − 16 x i 2 + 5 x i , x i ∈ [− 5 , 5] .

The function has 2 n in the specified range and in our experiments, we used n = 4 , 5 , 6 , 7 .

	
Test30N function. This function is given by

 f (x) = 1 10 sin 2 3 π x 1 ∑ i = 2 n − 1 x i − 1 2 1 + sin 2 3 π x i + 1 + x n − 1 2 1 + sin 2 2 π x n

with x ∈ [− 10 , 10] . The function has 30 n local minima in the specified range, and we used n = 3 , 4 in the conducted experiments.

3.2. Experimental Results

To evaluate the performance of the modified version of the differential evolutionary technique, a series of experiments were performed in which the number of parallel computing units varied from 1 to 10. The freely available OpenMP library [59] was used for parallelization, and the method was coded in ANSI C++ inside the OPTIMUS optimization package available from https://github.com/itsoulos/OPTIMUS (accessed on 4 January 2023). All the experiments were conducted on an AMD Ryzen 5950X with 128 GB of RAM and the Debian Linux operating system. All the experiments were conducted 30 times using different seed for the random generator each time and averages were reported. The values for the parameters used in the DE algorithm are shown in Table 1. The parameter F (differential weight) was calculated as:

 F = − 1 2 + 2 × R ,

(4)

where R ∈ [0 , 1] is a random number, which was used in [60]. This random scheme for the calculation of the parameter F was used successfully to better explore the search space of the objective function. The experimental results for different numbers of threads for the test functions of the previous subsection are shown in Table 2. The number in the cells denote average function calls for every test function. The number in parentheses stands for the fraction of executions where the global optimum was successfully found. The absence of this number indicates that the global minimum was computed for every independent run (100% success). At the end of the table, an additional row named average has been added and shows the total number of function calls for all test functions and the average success rate in locating the global minimum.

As can be seen, as the number of computational threads increased, the required number of function calls needed to locate the global minimum decreased, with no appreciable difference in the overall reliability of the method, which remained extremely high (99–100%). In addition, to show the dynamics of the proposed methodology, it was also used in the training of an artificial neural network [61] for learning a common benchmark problem from machine learning, the wine problem [62,63]. The sums of execution times for 30 independent runs are displayed in Figure 1. As we can see, as the number of network weights increased from w = 5 to w = 20, the gain from using multiple processing threads increased as the training time decreased noticeably.

In addition, to discover whether there was differentiation using the different propagation techniques, additional experiments were performed using 10 processing threads. In each processing thread, as before, the population of each island was 20 agents. The results from these experiments are shown in Table 3. From the experimental results, it appears that most of the time, there were no significant changes in the total number of function calls except in the case of an “N to N” propagation. There was a significant reduction in function calls, but also a drop in reliability of the techniques from 99% to 91%. This may be because, due to the exchange of the best costs between all the islands, the total population was locked into local minima.

Furthermore, the proposed method was compared against the original differential evolution method and two variants from the relevant literature, mentioned as DERL and DELB [50]. The results from this comparison are shown in Table 4. As is evident, the proposed technique significantly outperformed the other modifications of the different evolutionary method. This was largely due to the different differential weight calculation technique but also to the proposed termination method. The used differential weight calculation technique largely succeeded in providing a better search of the search space, while the new termination method terminated the optimization method in time. Moreover, this new termination technique was modified to perform well in parallel computing environments as well.

Moreover, a statistical comparison was performed for the proposed method and different numbers of processing threads, and the results are outlined in Figure 2. A statistical comparison was also included for the results of the proposed method against the other variations of the DE method and the corresponding plot is shown in Figure 3.

4. Conclusions

A new global optimization technique was presented in this manuscript, which can be performed in parallel computing environments. This method was based on the well-known differential evolutionary technique and partitioned the initial population of agents, so as to create independent populations executed on parallel computing units. The parallel units periodically exchanged the best values for the objective function with each other, and from the experiments carried out it was found that the most robust information exchange technique was the so-called “1 to 1”, where a randomly selected subpopulation exchanges information with another randomly selected subpopulation. Furthermore, a new termination method was proposed which could take full advantage of the parallel computing environment. With this termination rule, the decision to terminate the method could be efficiently made even by a small portion of the independent computing units.

From the experimental results, it appeared that the proposed technique could successfully find the global minimum in a series of problems from the relevant literature, and in fact, as the number of parallel processing units increased, the required number of function calls decreased. Furthermore, after experiments on a difficult problem such as the training of artificial neural networks, it was shown that the time required for the optimization process decreased dramatically with the increase of threads.

However, much can still be done to improve the methodology, such as finding a better way of communication between parallel processing units or even formulating more efficient termination criteria that exploit parallel computing environments. In addition, the proposed technique could be applied to other global optimization techniques such as genetic algorithms or particle swarm optimization.

Author Contributions

I.G.T. and V.C., conceived of the idea and methodology and supervised the technical part regarding the software. I.G.T., conducted the experiments, employed test functions and provided the comparative experiments. V.C., performed the statistical analysis and prepared the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

The experiments of this research work were performed at the high-performance computing system established at Knowledge and Intelligent Computing Laboratory, Department of Informatics and Telecommunications, University of Ioannina, acquired with the project “Educational Laboratory equipment of TEI of Epirus” with MIS 5007094 funded by the Operational Programme “Epirus” 2014–2020, by ERDF and national funds.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The experiments of this research work were performed at the high-performance computing system established at Knowledge and Intelligent Computing Laboratory, Department of Informatics and Telecommunications, University of Ioannina, acquired with the project “Educational Laboratory equipment of TEI of Epirus” with MIS 5007094 funded by the Operational Programme “Epirus” 2014–2020, by ERDF and national funds.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Honda, M. Application of genetic algorithms to modelings of fusion plasma physics. Comput. Phys. Commun. 2018, 231, 94–106. [Google Scholar] [CrossRef]

	

Luo, X.L.; Feng, J.; Zhang, H.H. A genetic algorithm for astroparticle physics studies. Comput. Phys. Commun. 2020, 250, 106818. [Google Scholar] [CrossRef]

	

Aljohani, T.M.; Ebrahim, A.F.; Mohammed, O. Single and Multiobjective Optimal Reactive Power Dispatch Based on Hybrid Artificial Physics–Particle Swarm Optimization. Energies 2019, 12, 2333. [Google Scholar] [CrossRef]

	

Pardalos, P.M.; Shalloway, D.; Xue, G. Optimization methods for computing global minima of nonconvex potential energy functions. J. Glob. Optim. 1994, 4, 117–133. [Google Scholar] [CrossRef]

	

Liwo, A.; Lee, J.; Ripoll, D.R.; Pillardy, J.; Scheraga, H.A. Protein structure prediction by global optimization of a potential energy function. Biophysics 1999, 96, 5482–5485. [Google Scholar] [CrossRef]

	

An, J.; He, G.; Qin, F.; Li, R.; Huang, Z. A new framework of global sensitivity analysis for the chemical kinetic model using PSO-BPNN. Comput. Chem. Eng. 2018, 112, 154–164. [Google Scholar] [CrossRef]

	

Gaing, Z.-L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195. [Google Scholar] [CrossRef]

	

Basu, M. A simulated annealing-based goal-attainment method for economic emission load dispatch of fixed head hydrothermal power systems. Int. J. Electr. Power Energy Syst. 2005, 27, 147–153. [Google Scholar] [CrossRef]

	

Cherruault, Y. Global optimization in biology and medicine. Math. Comput. Model. 1994, 20, 119–132. [Google Scholar] [CrossRef]

	

Lee, E.K. Large-Scale Optimization-Based Classification Models in Medicine and Biology. Ann. Biomed. Eng. 2007, 35, 1095–1109. [Google Scholar] [CrossRef]

	

Price, W.L. Global optimization by controlled random search. J. Optim. Theory Appl. 1983, 40, 333–348. [Google Scholar] [CrossRef]

	

Křivý, I.; Tvrdík, J. The controlled random search algorithm in optimizing regression models. Comput. Stat. Data Anal. 1995, 20, 229–234. [Google Scholar] [CrossRef]

	

Ali, M.M.; Törn, A.; Viitanen, S. A Numerical Comparison of Some Modified Controlled Random Search Algorithms. J. Glob. 1997, 11, 377–385. [Google Scholar]

	

Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]

	

Ingber, L. Very fast simulated re-annealing. Math. Comput. Model. 1989, 12, 967–973. [Google Scholar] [CrossRef]

	

Eglese, R.W. Simulated annealing: A tool for operational research. Simulated Annealing Tool Oper. Res. 1990, 46, 271–281. [Google Scholar] [CrossRef]

	

Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]

	

Liu, J.; Lampinen, J. A Fuzzy Adaptive Differential Evolution Algorithm. Soft Comput. 2005, 9, 448–462. [Google Scholar] [CrossRef]

	

Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]

	

Poli, R.; Kennedy, J.K.; Blackwell, T. Particle swarm optimization An Overview. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]

	

Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 2003, 85, 317–325. [Google Scholar] [CrossRef]

	

Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]

	

Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [Google Scholar] [CrossRef]

	

Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning, Addison; Wesley Publishing Company: Reading, MA, USA, 1989. [Google Scholar]

	

Michaelewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]

	

Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30, 259–270. [Google Scholar] [CrossRef]

	

Pardalos, P.M.; Romeijn, H.E.; Tuy, H. Recent developments and trends in global optimization. J. Comput. Appl. Math. 2000, 124, 209–228. [Google Scholar] [CrossRef]

	

Fouskakis, D.; Draper, D. Stochastic Optimization: A Review. Int. Stat. Rev. 2002, 70, 315–349. [Google Scholar] [CrossRef]

	

Rocca, P.; Oliveri, G.; Massa, A. Differential Evolution as Applied to Electromagnetics. IEEE Antennas Propag. Mag. 2011, 53, 38–49. [Google Scholar] [CrossRef]

	

Lee, W.S.; Chen, Y.T.; Kao, Y. Optimal chiller loading by differential evolution algorithm for reducing energy consumption. Energy Build. 2011, 43, 599–604. [Google Scholar] [CrossRef]

	

Yuan, Y.; Xu, H. Flexible job shop scheduling using hybrid differential evolution algorithms. Comput. Ind. 2013, 65, 246–260. [Google Scholar] [CrossRef]

	

Xu, L.; Jia, H.; Lang, C.; Peng, X.; Sun, K. A Novel Method for Multilevel Color Image Segmentation Based on Dragonfly Algorithm and Differential Evolution. IEEE Access 2019, 7, 19502–19538. [Google Scholar] [CrossRef]

	

Schutte, J.F.; Reinbolt, J.A.; Fregly, B.J.; Haftka, R.; George, A.D. Parallel global optimization with the particle swarm algorithm. Int. J. Numer. Methods Eng. 2004, 61, 2296–2315. [Google Scholar] [CrossRef]

	

Larson, J.; Wild, S.M. Asynchronously parallel optimization solver for finding multiple minima. Math. Comput. 2018, 10, 303–332. [Google Scholar] [CrossRef]

	

Tsoulos, I.G.; Tzallas, A.; Tsalikakis, D. PDoublePop: An implementation of parallel genetic algorithm for function optimization. Comput. Phys. Commun. 2016, 209, 183–189. [Google Scholar] [CrossRef]

	

Kamil, R.; Reiji, S. An Efficient GPU Implementation of a Multi-Start TSP Solver for Large Problem Instances. In Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012; pp. 1441–1442. [Google Scholar]

	

Van Luong, T.; Melab, N.; Talbi, E.G. GPU-Based Multi-start Local Search Algorithms. In Learning and Intelligent Optimization; Coello, C.A.C., Ed.; LION 2011. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6683. [Google Scholar] [CrossRef]

	

Barkalov, K.; Gergel, V. Parallel global optimization on GPU. J. Glob. Optim. 2016, 66, 3–20. [Google Scholar] [CrossRef]

	

Weber, M.; Neri, F.; Tirronen, V. Shuffle or update parallel differential evolution for large-scale optimization. Soft Comput. 2011, 15, 2089–2107. [Google Scholar] [CrossRef]

	

Chen, Z.; Jiang, X.; Li, J.; Li, S.; Wang, L. PDECO: Parallel differential evolution for clusters optimization. J. Comput. Chem. 2013, 34, 1046–1059. [Google Scholar] [CrossRef]

	

Penas, D.R.; Banga, J.R.; Gonzalez, P.; Doallo, R. Enhanced parallel Differential Evolution algorithm for problems in computational systems biology. Appl. Soft Comput. 2015, 33, 86–99. [Google Scholar] [CrossRef]

	

Sui, X.; Chu, S.C.; Pan, J.S.; Luo, H. Parallel Compact Differential Evolution for Optimization Applied to Image Segmentation. Appl. Sci. 2020, 10, 2195. [Google Scholar] [CrossRef]

	

Skakovski, A.; Jędrzejowicz, P. An island-based differential evolution algorithm with the multi-size populations. Expert Syst. Appl. 2019, 126, 308–320. [Google Scholar] [CrossRef]

	

Skakovski, A.; Jędrzejowicz, P. A Multisize no Migration Island-Based Differential Evolution Algorithm with Removal of Ineffective Islands. IEEE Access 2022, 10, 34539–34549. [Google Scholar] [CrossRef]

	

Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North American Fuzzy Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523. [Google Scholar]

	

F.Neri, E. Mininno, Memetic Compact Differential Evolution for Cartesian Robot Control. IEEE Comput. Intell. 2010, 5, 54–65. [Google Scholar] [CrossRef]

	

Mininno, E.; Neri, F.; Cupertino, F.; Naso, D. Compact Differential Evolution. IEEE Trans. Evol. 2011, 15, 32–54. [Google Scholar] [CrossRef]

	

Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [Google Scholar] [CrossRef]

	

Hachicha, N.; Jarboui, B.; Siarry, P. A fuzzy logic control using a differential evolution algorithm aimed at modelling the financial market dynamics. Inf. Sci. 2011, 181, 79–91. [Google Scholar] [CrossRef]

	

Kaelo, P.; Ali, M.M. A numerical study of some modified differential evolution algorithms. Eur. J. Oper. 2006, 169, 1176–1184. [Google Scholar] [CrossRef]

	

Corcoran, A.L.; Wainwright, R.L. A parallel island model genetic algorithm for the multiprocessor scheduling problem. In Proceedings of the 1994 ACM Symposium on Applied Computing, SAC ’94, Phoenix, AZ, USA, 6–8 March 1994; pp. 483–487. [Google Scholar]

	

Whitley, D.; Rana, S.; Heckendorn, R.B. Island model genetic algorithms and linearly separable problems. In Evolutionary Computing; Series Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1305, pp. 109–125. [Google Scholar]

	

Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program. 1989, 45, 547–566. [Google Scholar] [CrossRef]

	

Ali, M.M. Charoenchai Khompatraporn, Zelda B. Zabinsky, A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems. J. Glob. Optim. 2005, 31, 635–672. [Google Scholar] [CrossRef]

	

Floudas, C.A.; Pardalos, P.M.; Adjiman, C.; Esposoto, W.; Gümüs, Z.; Harding, S.; Klepeis, J.; Meyer, C.; Schweiger, C. Handbook of Test Problems in Local and Global Optimization; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]

	

Gaviano, M.; Ksasov, D.E.; Lera, D.; Sergeyev, Y.D. Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 2003, 29, 469–480. [Google Scholar] [CrossRef]

	

Lennard-Jones, J.E. On the Determination of Molecular Fields. Proc. R. Soc. Lond. A 1924, 106, 463–477. [Google Scholar]

	

Zabinsky, Z.B.; Graesser, D.L.; Tuttle, M.E.; Kim, G.I. Global optimization of composite laminates using improving hit and run. In Recent Advances in Global Optimization; ACM Digital Library: New York, NY, USA, 1992; pp. 343–368. [Google Scholar]

	

Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J.; Menon, R. Parallel Programming in OpenMP; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2001. [Google Scholar]

	

Charilogis, V.; Tsoulos, I.G.; Tzallas, A.; Karvounis, E. Modifications for the Differential Evolution Algorithm. Symmetry 2022, 14, 447. [Google Scholar] [CrossRef]

	

Bishop, C.M. Neural networks and their applications. Rev. Sci. Instrum. 1994, 65, 1803–1832. [Google Scholar] [CrossRef]

	

Raymer, M.; Doom, T.E.; Kuhn, L.A.; Punch, W.F. Knowledge discovery in medical and biological datasets using a hybrid Bayes classifier/evolutionary algorithm. IEEE Trans. Syst. Man Cybern Part B 2003, 33, 802–813. [Google Scholar] [CrossRef]

	

Zhong, P.; Fukushima, M. Regularized nonsmooth Newton method for multi-class support vector machines. Optim. Methods Softw. 2007, 22, 225–236. [Google Scholar] [CrossRef]

[image: Analytics 02 00002 g001 550]

Figure 1. Time comparison when the proposed method applied to Neural Network training.

Figure 1. Time comparison when the proposed method applied to Neural Network training.

[image: Analytics 02 00002 g001]

[image: Analytics 02 00002 g002 550]

Figure 2. Statistical comparison for the proposed method and different numbers of threads.

Figure 2. Statistical comparison for the proposed method and different numbers of threads.

[image: Analytics 02 00002 g002]

[image: Analytics 02 00002 g003 550]

Figure 3. Statistical comparison for the results of the proposed method against different variations of the DE method.

Figure 3. Statistical comparison for the results of the proposed method against different variations of the DE method.

[image: Analytics 02 00002 g003]

[image: Table]

Table 1. Experimental settings.

Table 1. Experimental settings.

	Parameter
	Value

	NP
	200 agents

	Propagation
	1-to-1 method

	 N R
	5 iterations

	 N I
	2 islands

	CR
	0.9 for the crossover probability

	M
	15 iterations

	 ϵ
	 10 − 4

[image: Table]

Table 2. Comparison of experimental results with a “1 to 1” propagation scheme. The first column represents the name of the objective function and the remaining columns are the average function calls using 1 to 10 processing threads for the proposed method.

Table 2. Comparison of experimental results with a “1 to 1” propagation scheme. The first column represents the name of the objective function and the remaining columns are the average function calls using 1 to 10 processing threads for the proposed method.

	Function
	Thread 1
	Threads 4
	Threads 5
	Threads 10

	BF1
	5908
	5517
	5310
	4887

	BF2
	5415
	5008
	4888
	4577

	BRANIN
	5467
	4767
	4535
	3895

	CIGAR10
	1886
	1885
	1885
	1875

	CM4
	2518
	2432
	2330
	2243 (0.97)

	DISCUS10
	1818
	1816
	1814
	1807

	EASOM
	1807
	1802
	1801
	1791

	ELP10
	44,910
	41,731
	41,930
	29,944

	EXP4
	1820
	1816
	1814
	1806

	EXP16
	1838
	1835
	1834
	1830

	EXP64
	1842
	1840
	1839
	1838

	GKLS250
	1987
	1897
	1879
	1818

	GKLS350
	2428
	2373
	2299
	2195

	GRIEWANK2
	5544
	4811
	4612
	4208

	POTENTIAL3
	11,121
	7868
	7260
	5598

	POTENTIAL5
	24,708
	15,146
	13,793
	8620

	HANSEN
	23,035
	13,602
	12,178
	9242

	HARTMAN3
	3406
	3198
	3162
	2883

	HARTMAN6
	7611
	6172
	5739
	4877 (0.97)

	RASTRIGIN
	5642
	4537
	4386
	3707

	ROSENBROCK4
	11,859
	10,441
	10,139
	9473

	ROSENBROCK8
	21,640
	19,536
	20,560
	20,654

	SHEKEL5
	12,491
	10,247
	9754
	5065 (0.80)

	SHEKEL7
	10,755
	9183
	8857
	6996

	SHEKEL10
	10,257
	9002
	8705
	7283

	SINU4
	6045
	5473
	5301
	4434

	SINU8
	9764
	8132
	7748
	4523

	TEST2N4
	8521
	7487
	7404
	6834

	TEST2N5
	10,218
	8916
	8715
	8050

	TEST2N6
	11,984
	10,240
	10,191
	9175

	TEST2N7
	15,674
	13,983
	13,341
	9760

	TEST30N3
	3720
	3379
	3349
	2994

	TEST30N4
	3728
	3382
	3363
	3031

	Average
	298,267
	249,454
	242,715
	197,913 (0.99)

[image: Table]

Table 3. Experiments for the proposed method using different options for the propagation method. The number of processing threads was set to 10. Numbers in cells represent average function calls for every test function.

Table 3. Experiments for the proposed method using different options for the propagation method. The number of processing threads was set to 10. Numbers in cells represent average function calls for every test function.

	Function
	1 to 1
	1 to N
	N to 1
	N to N

	BF1
	4887
	4259
	4209
	2792

	BF2
	4577
	4021
	3917
	2691

	BRANIN
	3895
	3378
	3307
	2382

	CIGAR10
	1875
	1874
	1871
	1873

	CM4
	2243 (0.97)
	2173
	2136 (0.97)
	2030

	DISCUS10
	1807
	1810
	1808
	1809

	EASOM
	1791
	1790
	1791
	1789

	ELP10
	29,944
	42,025
	22,876
	19,117

	EXP4
	1806
	1807
	1811
	1806

	EXP16
	1830
	1829
	1828
	1824

	EXP64
	1838
	1838
	1838
	1836

	GKLS250
	1818
	1812
	1810
	1802

	GKLS350
	2195
	2163
	2109
	2011 (0.97)

	GRIEWANK2
	4208
	3620
	3514
	2445 (0.80)

	POTENTIAL3
	5598
	4445
	4353
	2521

	POTENTIAL5
	8620
	7475
	7025
	3374

	HANSEN
	9242
	6075
	6181
	3135

	HARTMAN3
	2883
	2664
	2593
	2207

	HARTMAN6
	4877 (0.97)
	4327 (0.83)
	4362 (0.80)
	2834 (0.57)

	RASTRIGIN
	3707
	3213
	2870
	2220 (0.90)

	ROSENBROCK4
	9473
	8294
	7883
	7084

	ROSENBROCK8
	20,654
	24,470
	15,919
	19,272

	SHEKEL5
	5065 (0.80)
	7556
	5386 (0.93)
	4456 (0.70)

	SHEKEL7
	6996
	7207 (0.90)
	6488 (0.93)
	4493 (0.80)

	SHEKEL10
	7283
	6812 (0.93)
	6440
	3916 (0.73)

	SINU4
	4434
	4204
	4020
	2796 (0.97)

	SINU8
	4523
	5386
	4605
	3341 (0.90)

	TEST2N4
	6834
	5777
	5625
	3609 (0.97)

	TEST2N5
	8050
	6695 (0.97)
	6647
	4179 (0.73)

	TEST2N6
	9175
	7770 (0.93)
	7660
	4522 (0.53)

	TEST2N7
	9760
	9259 (0.77)
	9081
	5200 (0.57)

	TEST30N3
	2994
	2814
	2653
	2210

	TEST30N4
	3031
	2797
	2700
	2107

	Average
	197,913 (0.99)
	201,649 (0.98)
	167,316(0.98)
	129,683 (0.91)

[image: Table]

Table 4. Comparison of the proposed method against other variants of the differential evolution technique.

Table 4. Comparison of the proposed method against other variants of the differential evolution technique.

	Function
	Proposed
	Original DE
	DERL
	DELB

	BF1
	4887
	5516
	2881
	5319

	BF2
	4577
	5555
	2895
	5405

	BRANIN
	3895
	5656
	2857
	4830

	CIGAR10
	1875
	88,396
	66,161
	58,460

	CM4
	2243 (0.97)
	9107
	3856
	6014

	DISCUS10
	1807
	87,657
	55,722
	49,014

	EASOM
	1791
	7879
	7225
	14,934

	ELP10
	29,944
	33,371
	9345
	39,890

	EXP4
	1806
	6027
	2638
	4142

	EXP16
	1830
	26,194
	25,117
	11,740

	EXP64
	1838
	26,497
	27,831
	18,346

	GKLS250
	1818
	3800
	1983
	3706

	GKLS350
	2195
	6206
	2901
	5027

	GRIEWANK2
	4208
	6365
	3325
	6165

	POTENTIAL3
	5598
	82,933
	111,496
	44,592

	POTENTIAL5
	8620
	24,118
	61,694
	46,557

	HANSEN
	9242
	18,470
	7123
	12212

	HARTMAN3
	2883
	4655
	2205
	4124

	HARTMAN6
	4877 (0.97)
	15,488
	5343
	7215 (0.93)

	RASTRIGIN
	3707
	6362
	3102
	5704

	ROSENBROCK4
	9473
	16,857
	6679
	10,411

	ROSENBROCK8
	20,654
	56,445
	17,198
	22,939

	SHEKEL5
	5065 (0.80)
	13,079
	5224 (0.90)
	8167

	SHEKEL7
	6996
	12,409
	4994 (0.97)
	8093

	SHEKEL10
	7283
	13,238
	5240
	8822

	SINU4
	4434
	8977
	3828
	6052

	SINU8
	4523
	28,871
	9318
	10,157

	TEST2N4
	6834
	10,764
	4529
	7331

	TEST2N5
	8050
	15,568
	5917
	8969

	TEST2N6
	9175
	21,185
	7613
	10,648

	TEST2N7
	9760
	28,411
	9492
	12,252

	TEST30N3
	2994
	4965
	2758
	4693

	TEST30N4
	3031
	5123
	2688
	5153

	Average
	197,913 (0.99)
	706,144
	491,178 (0.99)
	477,083 (0.99)

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 analytics-02-00002

 		
 analytics-02-00002

media/file5.png
Function Calls

the proposed method against others (statistical comparison)

120,000

100,000

80,000

60,000

40,000

20,000

1

M proposed M original DE [DERL [DELB

media/file3.png
Function Calls

Parallel differential evolution with different number of threads
(statistical comparison)
50,000

45,000 °
40,000
35,000
30,000 o

25,000

20,000 L
15,000
10,000

0

M Thread 1 M Threads 4 [Threads5 [Threads 10

media/file1.png
Total time (second)

70

60

50

0

LLLL

W=10

Number of weights

w=15

W=20

ET1
mT4
©T5
mT10

media/file4.jpg
Function Calls

the proposed method against others (statistical comparison)
120000

100,000

80,000

60,000 {]

40000 .

20,000

M proposed M original DE [DERL M DELB

media/file0.jpg
Totaltime (second)

7

g

&

20

10

0

bbb

Nurmber of weights

T
T4
“Ts
uT10

media/file2.jpg
Function Calls

Parallel differential evolution with different number of threads

50,000
45000
0000
35000
30000
25000
2000
15000

10000

5000

(statistical comparison)

i

B Theead 1 I Theeads 4 [Threads s Threads 10

