Extending Peri-Personal Space in Immersive Virtual Reality: A Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Characteristics of the Selected Studies
3. Results
3.1. Synthesis of Evidence
3.2. Key Findings from Included Studies
- Processing of peripersonal and extrapersonal space using tools: evidence from visual line bisection in real and virtual environments [47]:
- 2.
- Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task [51]:
- 3.
- Reshaping the peripersonal space in virtual reality [49]:
- 4.
- The remapping of peripersonal space in a real but not in a virtual environment [37]:
- 5.
- Embodiment of supernumerary robotic limbs in virtual reality [33]:
- 6.
- A behavioral experiment in virtual reality to verify the role of action function in space coding [35]:
- The effect of facial expressions on peripersonal and interpersonal spaces [42]:
- 2.
- Near or far? It depends on my impression: moral information and spatial behavior in virtual interactions [38]:
- 3.
- Space for power: feeling powerful over others’ behavior affects peri-personal space representation [34]:
- 4.
- Peripersonal and interpersonal space in virtual and real environments: effects of gender and age [39]:
- 5.
- Defensive functions provoke similar psychophysiological reactions in reaching and comfort spaces [43]:
- 6.
- Sharpening of peripersonal space during the COVID-19 pandemic [52]:
- Movement of environmental threats modifies the relevance of the defensive eye-blink in a spatially tuned manner [44]:
- 2.
- The impact of embodiment and avatar sizing on personal space in immersive virtual environments [46]:
- 3.
- Disconnected hand avatar can be integrated into the peripersonal space [41]:
- 4.
- Immersive virtual reality reveals that visuo-proprioceptive discrepancy enlarges the hand-centered peripersonal space [45]:
- 5.
- Remote hand: hand-centered peripersonal space transfers to a disconnected hand avatar [36]:
- 6.
- Peripersonal space as the space of the bodily self [50]:
- 7.
- Adaptation to delayed visual feedback of the body movement extends multisensory peripersonal space [48]:
- 8.
- Expansion of space for visuotactile interaction during visually induced self-motion [40]:
4. Discussion
5. Conclusions
5.1. Practical Implications and Future Research
5.2. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Descartes, Rene|Internet Encyclopedia of Philosophy. Available online: https://iep.utm.edu/rene-descartes/ (accessed on 20 May 2024).
- Rizzolatti, G.; Fadiga, L.; Fogassi, L.; Gallese, V. The Space Around Us. Science 1997, 277, 190–191. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, L.; Hyvärinen, J.; Nyman, G.; Linnankoski, I.I. Functional properties of neurons in lateral part of associative area 7 in awake monkeys. Exp. Brain Res. 1979, 34, 299–320. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Scandolara, C.; Matelli, M.; Gentilucci, M. Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav. Brain Res. 1981, 2, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Fadiga, L.; Gallese, V.; Fogassi, L. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 1996, 3, 131–141. [Google Scholar] [CrossRef]
- Holmes, N.P.; Spence, C. The body schema and the multisensory representation(s) of peripersonal space. Cogn. Process. 2004, 5, 94. [Google Scholar] [CrossRef]
- Spence, C.; Pavani, F.; Driver, J. Spatial constraints on visual-tactile cross-modal distractor congruency effects. Cogn. Affect. Behav. Neurosci. 2004, 4, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Canzoneri, E.; Ubaldi, S.; Rastelli, V.; Finisguerra, A.; Bassolino, M.; Serino, A. Tool-use reshapes the boundaries of body and peripersonal space representations. Exp. Brain Res. 2013, 228, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Serino, A.; Canzoneri, E.; Avenanti, A. Fronto-parietal areas necessary for a multisensory representation of peripersonal space in humans: An rTMS study. J. Cogn. Neurosci. 2011, 23, 2956–2967. [Google Scholar] [CrossRef]
- Rabellino, D.; Frewen, P.A.; McKinnon, M.C.; Lanius, R.A. Peripersonal Space and Bodily Self-Consciousness: Implications for Psychological Trauma-Related Disorders. Front. Neurosci. 2020, 14, 586605. [Google Scholar] [CrossRef] [PubMed]
- Graziano, M.S.A.; Cooke, D.F. Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia 2006, 44, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Fogassi, L.; Gallese, V.; Fadiga, L.; Luppino, G.; Matelli, M.; Rizzolatti, G. Coding of peripersonal space in inferior premotor cortex (area F4). J. Neurophysiol. 1996, 76, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Serino, A.; Noel, J.-P.; Galli, G.; Canzoneri, E.; Marmaroli, P.; Lissek, H.; Blanke, O. Body part-centered and full body-centered peripersonal space representations. Sci. Rep. 2015, 5, 18603. [Google Scholar] [CrossRef] [PubMed]
- Iriki, A.; Tanaka, M.; Iwamura, Y. Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 1996, 7, 2325–2330. [Google Scholar] [CrossRef] [PubMed]
- Farnè, A.; Làdavas, E. Dynamic size-change of hand peripersonal space following tool use. Neuroreport 2000, 11, 1645–1649. [Google Scholar] [CrossRef] [PubMed]
- Berti, A.; Frassinetti, F. When far becomes near: Remapping of space by tool use. J. Cogn. Neurosci. 2000, 12, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Serino, A.; Bassolino, M.; Farnè, A.; Làdavas, E. Extended multisensory space in blind cane users. Psychol. Sci. 2007, 18, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.-P.; Grivaz, P.; Marmaroli, P.; Lissek, H.; Blanke, O.; Serino, A. Full body action remapping of peripersonal space: The case of walking. Neuropsychologia 2015, 70, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, N.; Teramoto, W. Contribution of motor and proprioceptive information to visuotactile interaction in peripersonal space during bike riding. Exp. Brain Res. 2022, 240, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Sambo, C.F.; Iannetti, G.D. Better Safe Than Sorry? The Safety Margin Surrounding the Body Is Increased by Anxiety. J. Neurosci. 2013, 33, 14225–14230. [Google Scholar] [CrossRef] [PubMed]
- de Haan, A.M.; Smit, M.; Van der Stigchel, S.; Dijkerman, H.C. Approaching threat modulates visuotactile interactions in peripersonal space. Exp. Brain Res. 2016, 234, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Teneggi, C.; Canzoneri, E.; Di Pellegrino, G.; Serino, A. Social modulation of peripersonal space boundaries. Curr. Biol. 2013, 23, 406–411. [Google Scholar] [CrossRef]
- Dell’Anna, A.; Rosso, M.; Bruno, V.; Garbarini, F.; Leman, M.; Berti, A. Does musical interaction in a jazz duet modulate peripersonal space? Psychol. Res. 2021, 85, 2107–2118. [Google Scholar] [CrossRef]
- Lucifora, C.; Schembri, M.; Poggi, F.; Grasso, G.M.; Gangemi, A. Virtual reality supports perspective taking in cultural heritage interpretation. Comput. Hum. Behav. 2023, 148, 107911. [Google Scholar] [CrossRef]
- Vicario, C.M.; Salehinejad, M.A.; Lucifora, C.; Martino, G.; Falzone, A.M.; Grasso, G.; Nitsche, M.A. Combining Virtual Reality Exposure Therapy with Non-invasive Brain Stimulation for the Treatment of Post-traumatic Stress Disorder and Related Syndromes: A Perspective; DEU; Humana: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Ferraioli, F.; Culicetto, L.; Cecchetti, L.; Falzone, A.; Tomaiuolo, F.; Quartarone, A.; Vicario, C.M. Virtual Reality Exposure Therapy for Treating Fear of Contamination Disorders: A Systematic Review of Healthy and Clinical Populations. Brain Sci. 2024, 14, 510. [Google Scholar] [CrossRef]
- Nucera, S. A Brief Analysis of the Educational Implications of Virtual Reality. Prelim. Rep. Negat. Results Life Sci. Humanit. 2024, 1, 53–59. [Google Scholar] [CrossRef]
- Vicario, C.M.; Martino, G. Psychology and technology: How Virtual Reality can boost psychotherapy and neurorehabilitation. AIMS Neurosci. 2022, 9, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Castiello, U.; Lusher, D.; Burton, C.; Glover, S.; Disler, P. Improving left hemispatial neglect using virtual reality. Neurology 2004, 62, 1958–1962. [Google Scholar] [CrossRef]
- Bernasconi, F.; Noel, J.-P.; Park, H.D.; Faivre, N.; Seeck, M.; Spinelli, L.; Schaller, K.; Blanke, O.; Serino, A. Audio-Tactile and Peripersonal Space Processing Around the Trunk in Human Parietal and Temporal Cortex: An Intracranial EEG Study. Cereb. Cortex 2018, 28, 3385–3397. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Arai, K.; Saito, H.; Fukuoka, M.; Ueda, S.; Sugimoto, M.; Kitazaki, M.; Inami, M. Embodiment of supernumerary robotic limbs in virtual reality. Sci. Rep. 2022, 12, 9769. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, T.; Paladino, M.P.; Pellencin, E.; Serino, S.; Serino, A. Space for power: Feeling powerful over others’ behavior affects peri-personal space representation. Exp. Brain Res. 2023, 241, 2779–2793. [Google Scholar] [CrossRef] [PubMed]
- Gamberini, L.; Carlesso, C.; Seraglia, B.; Craighero, L. A behavioural experiment in virtual reality to verify the role of action function in space coding. Vis. Cogn. 2013, 21, 961–969. [Google Scholar] [CrossRef]
- Mine, D.; Yokosawa, K. Remote hand: Hand-centered peripersonal space transfers to a disconnected hand avatar. Atten. Percept. Psychophys. 2021, 83, 3250–3258. [Google Scholar] [CrossRef]
- Ferroni, F.; Gallese, V.; Soccini, A.M.; Langiulli, N.; Rastelli, F.; Ferri, D.; Bianchi, F.; Ardizzi, M. The Remapping of Peripersonal Space in a Real but Not in a Virtual Environment. Brain Sci. 2022, 12, 1125. [Google Scholar] [CrossRef] [PubMed]
- Iachini, T.; Pagliaro, S.; Ruggiero, G. Near or far? It depends on my impression: Moral information and spatial behavior in virtual interactions. Acta Psychol. 2015, 161, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Iachini, T.; Coello, Y.; Frassinetti, F.; Senese, V.P.; Galante, F.; Ruggiero, G. Peripersonal and Interpersonal Space in Virtual and Real Environments: Effects of Gender and Age. J. Environ. Psychol. 2016, 45, 154–164. [Google Scholar] [CrossRef]
- Kuroda, N.; Teramoto, W. Expansion of space for visuotactile interaction during visually induced self-motion. Exp. Brain Res. 2020, 239, 257–265. [Google Scholar] [CrossRef]
- Mine, D.; Yokosawa, K. Disconnected hand avatar can be integrated into the peripersonal space. Exp. Brain Res. 2020, 239, 237–244. [Google Scholar] [CrossRef]
- Ruggiero, G.; Frassinetti, F.; Coello, Y.; Rapuano, M.; di Cola, A.S.; Iachini, T. The effect of facial expressions on peripersonal and interpersonal spaces. Psychol. Res. 2016, 81, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, G.; Rapuano, M.; Cartaud, A.; Coello, Y.; Iachini, T. Defensive functions provoke similar psychophysiological reactions in reaching and comfort spaces. Sci. Rep. 2021, 11, 5170. [Google Scholar] [CrossRef] [PubMed]
- Somervail, R.; Bufacchi, R.J.; Guo, Y.; Kilintari, M.; Novembre, G.; Swapp, D.; Steed, A.; Iannetti, G.D. Movement of environmental threats modifies the relevance of the defensive eye-blink in a spatially-tuned manner. Sci. Rep. 2019, 9, 3661. [Google Scholar] [CrossRef] [PubMed]
- Fossataro, C.; Rossi Sebastiano, A.; Tieri, G.; Poles, K.; Galigani, M.; Pyasik, M.; Bruno, V.; Bertoni, T.; Garbarini, F. Immersive virtual reality reveals that visuo-proprioceptive discrepancy enlarges the hand-centred peripersonal space. Neuropsychologia 2020, 146, 107540. [Google Scholar] [CrossRef]
- Buck, L.E.; Chakraborty, S.; Bodenheimer, B. The Impact of Embodiment and Avatar Sizing on Personal Space in Immersive Virtual Environments. IEEE Trans. Vis. Comput. Graph. 2022, 28, 2102–2113. [Google Scholar] [CrossRef] [PubMed]
- Gamberini, L.; Seraglia, B.; Priftis, K. Processing of peripersonal and extrapersonal space using tools: Evidence from visual line bisection in real and virtual environments. Neuropsychologia 2008, 46, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Mine, D.; Yokosawa, K. Adaptation to delayed visual feedback of the body movement extends multisensory peripersonal space. Atten. Percept. Psychophys. 2022, 84, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Petrizzo, I.; Mikellidou, K.; Avraam, S.; Avraamides, M.; Arrighi, R. Reshaping the peripersonal space in virtual reality. Sci. Rep. 2024, 14, 2438. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.-P.; Pfeiffer, C.; Blanke, O.; Serino, A. Peripersonal Space as the space of the Bodily Self. Cognition 2015, 144, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Sengül, A.; van Elk, M.; Rognini, G.; Aspell, J.E.; Bleuler, H.; Blanke, O. Extending the body to virtual tools using a robotic surgical interface: Evidence from the crossmodal congruency task. PLoS ONE 2012, 7, e49473. [Google Scholar] [CrossRef]
- Serino, S.; Trabanelli, S.; Jandus, C.; Fellrath, J.; Grivaz, P.; Paladino, M.P.; Serino, A. Sharpening of peripersonal space during the COVID-19 pandemic. Curr. Biol. CB 2021, 31, R889–R890. [Google Scholar] [CrossRef]
- Valori, I.; McKenna-Plumley, P.E.; Bayramova, R.; Farroni, T. Perception and Motion in Real and Virtual Environments: A Narrative Review of Autism Spectrum Disorders. Front. Psychol. 2021, 12, 708229. [Google Scholar] [CrossRef] [PubMed]
- Gammeri, R.; Turri, F.; Ricci, R.; Ptak, R. Adaptation to virtual prisms and its relevance for neglect rehabilitation: A single-blind dose-response study with healthy participants. Neuropsychol. Rehabil. 2020, 30, 753–766. [Google Scholar] [CrossRef]
- Lucifora, C.; Grasso, G.M.; Nitsche, M.A.; D’Italia, G.; Sortino, M.; Salehinejad, M.A.; Falzone, A.; Avenanti, A.; Vicario, C.M. Enhanced fear acquisition in individuals with evening chronotype. A virtual reality fear conditioning/extinction study. J. Affect. Disord. 2022, 311, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C.M.; Makris, S.; Culicetto, L.; Lucifora, C.; Falzone, A.; Martino, G.; Ferraioli, F.; Nitsche, M.A.; Avenanti, A.; Craparo, G. Evidence of Altered Fear Extinction Learning in Individuals with High Vaccine Hesitancy During Covid-19 Pandemic. Clin. Neuropsychiatry 2023, 20, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Karami, B.; Koushki, R.; Arabgol, F.; Rahmani, M.; Vahabie, A.-H. Effectiveness of Virtual/Augmented Reality–Based Therapeutic Interventions on Individuals with Autism Spectrum Disorder: A Comprehensive Meta-Analysis. Front. Psychiatry 2021, 12, 665326. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.; Stacey, J.; Jenner, S.; Maguire, E. Are Extended Reality Interventions Effective in Helping Autistic Children to Enhance Their Social Skills? A Systematic Review. Rev. J. Autism Dev. Disord. 2023, 10, 729–748. [Google Scholar] [CrossRef]
- Neo, J.R.J.; Won, A.S.; Shepley, M.M. Designing Immersive Virtual Environments for Human Behavior Research. Front. Virtual Real. 2021, 2, 603750. [Google Scholar] [CrossRef]
- Abdlkarim, D.; Di Luca, M.; Aves, P.; Maaroufi, M.; Yeo, S.-H.; Miall, R.C.; Holland, P.; Galea, J.M. A methodological framework to assess the accuracy of virtual reality hand-tracking systems: A case study with the Meta Quest 2. Behav. Res. Methods 2024, 56, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- What Does the Frame Rate of a Virtual Reality Headset Indicate. Robots.net. Available online: https://robots.net/tech/what-does-the-frame-rate-of-a-virtual-reality-headset-indicate/ (accessed on 26 June 2024).
Database | Search Fields | Search Phrase | Limitations |
---|---|---|---|
SCOPUS | Article title, abstract, and keywords | “peripersonal” OR “peri-personal” AND “virtual” | English; article |
PubMed | All Fields | ((peripersonal) OR (peri-personal)) AND (virtual) | None |
Web of Science | Topic (article title, abstract, and keywords) | ((TS = (peripersonal)) OR TS = (peri-personal)) AND TS = (virtual) | English; article |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakoc, C.; Lucifora, C.; Massimino, S.; Nucera, S.; Vicario, C.M. Extending Peri-Personal Space in Immersive Virtual Reality: A Systematic Review. Virtual Worlds 2025, 4, 5. https://doi.org/10.3390/virtualworlds4010005
Karakoc C, Lucifora C, Massimino S, Nucera S, Vicario CM. Extending Peri-Personal Space in Immersive Virtual Reality: A Systematic Review. Virtual Worlds. 2025; 4(1):5. https://doi.org/10.3390/virtualworlds4010005
Chicago/Turabian StyleKarakoc, Cagatay, Chiara Lucifora, Simona Massimino, Sebastiano Nucera, and Carmelo Mario Vicario. 2025. "Extending Peri-Personal Space in Immersive Virtual Reality: A Systematic Review" Virtual Worlds 4, no. 1: 5. https://doi.org/10.3390/virtualworlds4010005
APA StyleKarakoc, C., Lucifora, C., Massimino, S., Nucera, S., & Vicario, C. M. (2025). Extending Peri-Personal Space in Immersive Virtual Reality: A Systematic Review. Virtual Worlds, 4(1), 5. https://doi.org/10.3390/virtualworlds4010005