A Pilot Study on Mixed-Reality Approaches for Detecting Upper-Limb Dysfunction in Multiple Sclerosis: Insights on Cerebellar Tremor
Abstract
:1. Introduction
- Markerless Tracking: head-mounted visors utilize internal sensors and cameras to monitor upper-limb movements without the requirement for reflective markers, enhancing user comfort and operational ease.
- Enhanced Interaction: MR environments overlay digital data onto the real-world environment, facilitating interactive and immersive rehabilitation exercises and training scenarios. This feature enhances patient engagement and allows for dynamic therapy sessions.
- Portability and Convenience: these devices are compact and simple to deploy, making them adaptable for diverse settings, including clinical facilities and patients’ homes.
2. Materials and Methods
2.1. Participants
2.2. ROCKapp and Experimental Set-Up
2.3. Experimental Protocol
2.4. Data Processing
- Coordinate System Adjustment: data were first roto-translated from HoloLens2’s left-handed coordinate system to a standard right-handed system.
- Centroid Calculation: the centroids of the target areas N and S were computed from the hand dataset by averaging the x- and y-coordinates.
- Reference System Alignment: the centroid of the target area N was translated to the origin (0, 0), and all other points were adjusted accordingly.
- Angle Correction: the inclination angle of the line between the centroids N and S relative to the y-axis was calculated, and a rigid rotation around the z-axis was applied to correct this inclination.
2.5. Kinematic Metrics
2.5.1. Smoothness
- Number of Velocity Peaks (NVP): The NVP denotes the number of submovements required to complete an action. Hand motion patterns showing multiple peaks in the velocity curve signify impair smoothness, while a bell-shaped velocity profile is characteristic of normal, healthy movement [68,69,70,71,72,73,74].
2.5.2. Efficiency
2.5.3. Planning
- Symmetry: Symmetry is defined as the ratio between the duration of the acceleration phase and the duration of the deceleration phase while performing a kinematic movement [77]. Clinically, high symmetry in movements indicates effective motor control and suggests the proper functioning of the patient’s neuromuscular system [78]. In contrast, movement asymmetry can signify motor impairments or compensatory strategies, potentially necessitating further therapeutic intervention.
- Kurtosis: Kurtosis offers insights into the distribution of velocity throughout a movement [77]. High kurtosis indicates that the movement features more frequent extreme values (peaks), while low kurtosis suggests a more consistent distribution of velocities. Clinically, kurtosis can aid in evaluating the smoothness and control of a patient’s movements. Higher kurtosis values may point to abrupt or jerky motions, which are often associated with motor control issues or neurological disorders. Conversely, lower kurtosis values suggest smoother and more controlled movements.
2.5.4. Hand–Eye Coordination
- Gaze Accuracy—Number of Zero Crossing Points (N0C): This a novel metric introduced in this manuscript to evaluate the hand–eye coordination ability of a person. The N0C, calculated as the distance between the eye path and the hand path instantaneously, refers to the measurement of how closely the gaze trajectory follows the hand trajectory at each moment in time. Particularly, the Number of Zero Crossing Points of the first derivative of the distance between the eye path and the hand path (N0C) is calculated. This approach provides a quantitative measure of how often the gaze trajectory intersects or deviates from the hand trajectory over time. By analyzing the derivative’s zero crossings, we can capture changes in gaze accuracy dynamically throughout the task or experimental session. Ideally, a low N0C would indicate healthy hand–eye coordination, suggesting that the person can smoothly execute the movement without frequent shifts in their gaze. Conversely, a high number may suggest uncertainty in movement execution, with the person needing to frequently shift their gaze between the hand and the task. Since this metric is task-dependent, the baseline was first computed using the control group and then compared to the recruited PwMS.
2.6. Metrics-Based Clustering: PwMS and Control Group
- Four-Class Classification Based on Clinical Evaluation: this approach identified four clusters, corresponding to the control group, PwMS, PwMS with intention tremor, and PwMS with ataxia.
- Six-Class Classification Based on the Silhouette Method tested on the complete dataset prior to classification: this method determined the optimal number of clusters to be six.
2.7. Statistical Analysis
3. Results
3.1. Clustering with Four Classes Based on Clinical Evaluation
- PwMS affected by ataxia;
- PwMS affected by cerebellar tremor;
- PwMS with no cerebellar tremor;
- The control group.
- S1 vs. Control: significant differences in four out of six metrics (NVP, MT, Symmetry, and N0C).
- S4 vs. Control: significant in two out of six metrics (MT and Kurtosis).
- S6 vs. Control: significant in one out of six metrics (SPARC).
- S7 vs. Control: significant in three out of six metrics (NVP, MT, and N0C).
3.2. Clustering with Six Classes Based on Silhouette Method
3.3. Movement-Based Kinematic Evaluation of PwMS
3.4. NASA-TLX Questionnaire
4. Discussion and Conclusions
- The overall differences in motor abilities compared to the control group.
- The specific movements for which the subject may require focused rehabilitation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldenberg, M.M. Multiple sclerosis review. Pharm. Ther. 2012, 37, 175. [Google Scholar]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; Der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef]
- Lane, J.; Ng, H.; Poyser, C.; Lucas, R.; Tremlett, H. Multiple sclerosis incidence: A systematic review of change over time by geographical region. Mult. Scler. Relat. Disord. 2022, 63, 103932. [Google Scholar] [CrossRef] [PubMed]
- Sospedra, M.; Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 2005, 23, 683–747. [Google Scholar] [CrossRef]
- Mosconi, P.; Guerra, T.; Paletta, P.; D’Ettorre, A.; Ponzio, M.; Battaglia, M.A.; Amato, M.P.; Bergamaschi, R.; Capobianco, M.; Comi, G.; et al. Data monitoring roadmap. The experience of the Italian Multiple Sclerosis and Related Disorders Register. Neurol. Sci. 2023, 44, 4001–4011. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2018, 26, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Chiaravalloti, N.D.; DeLuca, J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008, 7, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Sparaco, M.; Lavorgna, L.; Bonavita, S. Psychiatric disorders in multiple sclerosis. J. Neurol. 2021, 268, 45–60. [Google Scholar] [CrossRef]
- Krupp, L.; Alvarez, L.; LaRocca, N.; Scheinberg, L. Fatigue in multiple sclerosis. Arch. Neurol. 1988, 45, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Induruwa, I.; Constantinescu, C.S.; Gran, B. Fatigue in multiple sclerosis—a brief review. J. Neurol. Sci. 2012, 323, 9–15. [Google Scholar] [CrossRef]
- Helsen, W.; Feys, P.; Heremans, E.; Lavrysen, A. Eye-Hand Coordination in Goal-Directed Action: Normal and Pathological Functioning; Human Kinetics: Champaign, IL, USA, 2010. [Google Scholar]
- Berrigan, L.I.; Fisk, J.D.; Patten, S.B.; Tremlett, H.; Wolfson, C.; Warren, S.; Fiest, K.M.; McKay, K.A.; Marrie, R.A. Health-related quality of life in multiple sclerosis: Direct and indirect effects of comorbidity. Neurology 2016, 86, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Zwibel, H.L. Contribution of impaired mobility and general symptoms to the burden of multiple sclerosis. Adv. Ther. 2009, 26, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Klockgether, T. Sporadic ataxia with adult onset: Classification and diagnostic criteria. Lancet Neurol. 2010, 9, 94–104. [Google Scholar] [CrossRef]
- Tornes, L.; Conway, B.; Sheremata, W. Multiple sclerosis and the cerebellum. Neurol. Clin. 2014, 32, 957–977. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Mostert, J.; Heersema, D.; De Keyser, J. Tremor in multiple sclerosis. J. Neurol. 2007, 254, 133–145. [Google Scholar] [CrossRef]
- Weier, K.; Banwell, B.; Cerasa, A.; Collins, D.L.; Dogonowski, A.M.; Lassmann, H.; Quattrone, A.; Sahraian, M.A.; Siebner, H.R.; Sprenger, T. The role of the cerebellum in multiple sclerosis. Cerebellum 2015, 14, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.; Pullman, S. Tremor: Clinical phenomenology and assessment techniques. Tremor Other Hyperkinetic Mov. 2012, 2, tre-02-65-365-1. [Google Scholar] [CrossRef]
- Labiano-Fontcuberta, A.; Benito-León, J. Understanding tremor in multiple sclerosis: Prevalence, pathological anatomy, and pharmacological and surgical approaches to treatment. Tremor Other Hyperkinetic Mov. 2012, 2, tre-02-109-765-2. [Google Scholar] [CrossRef]
- Hallett, M. Tremor: Pathophysiology. Park. Relat. Disord. 2014, 20, S118–S122. [Google Scholar] [CrossRef] [PubMed]
- Alusi, S.; Glickman, S.; Aziz, T.; Bain, P. Tremor in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1999, 66, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Alusi, S.H.; Worthington, J.; Glickman, S.; Bain, P.G. A study of tremor in multiple sclerosis. Brain 2001, 124, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G. Movement disorders in multiple sclerosis and their treatment. Neurodegener. Dis. Manag. 2016, 6, 31–35. [Google Scholar] [CrossRef] [PubMed]
- McCreary, J.; Rogers, J.; Forwell, S. Upper limb intention tremor in multiple sclerosis: An evidence-based review of assessment and treatment. Int. J. MS Care 2018, 20, 211–223. [Google Scholar] [CrossRef]
- Feys, P.; Maes, F.; Nuttin, B.; Helsen, W.; Malfait, V.; Nagels, G.; Lavrysen, A.; Liu, X. Relationship between multiple sclerosis intention tremor severity and lesion load in the brainstem. Neuroreport 2005, 16, 1379–1382. [Google Scholar] [CrossRef]
- Oakes, P.; Srivatsal, S.; Davis, M.; Samii, A. Movement disorders in multiple sclerosis. Phys. Med. Rehabil. Clin. 2013, 24, 639–651. [Google Scholar] [CrossRef]
- Duquette, J.; Baril, F. Multiple Sclerosis, Vision Problems and Visual Impairment Interventions; Institut Nazareth et Louis-Braille: Longueuil, QC, Canada, 2011. [Google Scholar]
- Versino, M.; Hurko, O.; Zee, D. Disorders of binocular control of eye movements in patients with cerebellar dysfunction. Brain 1996, 119, 1933–1950. [Google Scholar] [CrossRef] [PubMed]
- Feys, P.; Helsen, W.; Lavrysen, A.; Nuttin, B.; Ketelaer, P. Intention tremor during manual aiming: A study of eye and hand movements. Mult. Scler. J. 2003, 9, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Feys, P.; Helsen, W.F.; Liu, X.; Nuttin, B.; Lavrysen, A.; Swinnen, S.P.; Ketelaer, P. Interaction between eye and hand movements in multiple sclerosis patients with intention tremor. Mov. Disord. Off. J. Mov. Disord. Soc. 2005, 20, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Ayache, S.; Chalah, M.; Al-Ani, T.; Farhat, W.; Zouari, H.; Créange, A.; Lefaucheur, J. Tremor in multiple sclerosis: The intriguing role of the cerebellum. J. Neurol. Sci. 2015, 358, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Alusi, S.; Worthington, J.; Glickman, S.; Findley, L.; Bain, P. Evaluation of three different ways of assessing tremor in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2000, 68, 756–760. [Google Scholar] [CrossRef]
- Feys, P.; Helsen, W.; Prinsmel, A.; Ilsbroukx, S.; Wang, S.; Liu, X. Digitised spirography as an evaluation tool for intention tremor in multiple sclerosis. J. Neurosci. Methods 2007, 160, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Wastensson, G.; Holmberg, B.; Johnels, B.; Barregard, L. Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor. Tremor Other Hyperkinetic Mov. 2013, 3, tre-03-196-4279-2. [Google Scholar] [CrossRef]
- Pernalete, N.; Raheja, A.; Segura, M.; Menychtas, D.; Wieczorek, T.; Carey, S. Eye-hand coordination assessment metrics using a multi-platform haptic system with eye-tracking and motion capture feedback. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 2150–2153. [Google Scholar]
- Sánchez-Herrera-Baeza, P.; Cuerda, R.; Oña-Simbaña, E.; Palacios-Ceña, D.; Pérez-Corrales, J.; Cuenca-Zaldivar, J.; Gueita-Rodriguez, J.; Quirós, C.; Jardón-Huete, A.; Cuesta-Gomez, A. The impact of a novel immersive virtual reality technology associated with serious games in Parkinson’s disease patients on upper limb rehabilitation: A mixed methods intervention study. Sensors 2020, 20, 2168. [Google Scholar] [CrossRef]
- Cuesta-Gómez, A.; Sánchez-Herrera-Baeza, P.; Oña-Simbaña, E.; Martínez-Medina, A.; Ortiz-Comino, C.; Quirós, C.; Jardón-Huete, A.; Cuerda, R. Effects of virtual reality associated with serious games for upper limb rehabilitation in patients with multiple sclerosis: Randomized controlled trial. J. Neuroeng. Rehabil. 2020, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.; Narayan, J.; Sandhu, K.; Dwivedy, S. Integration of virtual reality and augmented reality in physical rehabilitation: A state-of-the-art review. In Revolutions in Product Design for Healthcare: Advances in Product Design and Design Methods for Healthcare; Springer: Singapore, 2022; pp. 177–205. [Google Scholar]
- Ficarra, B. Virtual reality, augmented reality, and mixed reality. In Emerging Technologies for Nurses: Implications for Practice; Springer: Berlin/Heidelberg, Germany, 2020; pp. 95–125. [Google Scholar]
- Albanese, G.; Bucchieri, A.; Podda, J.; Tacchino, A.; Buccelli, S.; De Momi, E.; Laffranchi, M.; Mannella, K.; Holmes, M.; Zenzeri, J.; et al. Robotic systems for upper-limb rehabilitation in multiple sclerosis: A SWOT analysis and the synergies with virtual and augmented environments. Front. Robot. AI 2024, 11, 1335147. [Google Scholar] [CrossRef] [PubMed]
- Nahum, M.; Lee, H.; Merzenich, M. Principles of neuroplasticity-based rehabilitation. Prog. Brain Res. 2013, 207, 141–171. [Google Scholar]
- Taylor, M.J.D.; Griffin, M. The use of gaming technology for rehabilitation in people with multiple sclerosis. Mult. Scler. J. 2015, 21, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Alawieh, A.; Zhao, J.; Feng, W. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. Behav. Brain Res. 2018, 340, 94–101. [Google Scholar] [CrossRef]
- Sveistrup, H. Motor rehabilitation using virtual reality. J. Neuroeng. Rehabil. 2004, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Valentina, M.; Ana, Š.; Valentina, M.; Martina, Š.; Željka, K.; Mateja, Z. Virtual Reality in Rehabilitation and Therapy. Acta Clin. Croat. 2013, 52, 453–457. [Google Scholar]
- Mubin, O.; Alnajjar, F.; Jishtu, N.; Alsinglawi, B.; Al Mahmud, A. Exoskeletons with virtual reality, augmented reality, and gamification for stroke patients’ rehabilitation: Systematic review. JMIR Rehabil. Assist. Technol. 2019, 6, e12010. [Google Scholar] [CrossRef] [PubMed]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems and applications. Multimed. Tools Appl. 2011, 51, 341–377. [Google Scholar] [CrossRef]
- Burke, J.W.; McNeill, M.D.J.; Charles, D.K.; Morrow, P.J.; Crosbie, J.H.; McDonough, S.M. Augmented reality games for upper-limb stroke rehabilitation. In Proceedings of the 2010 Second International Conference on Games and Virtual Worlds for Serious Applications, Braga, Portugal, 25–26 March 2010; pp. 75–78. [Google Scholar]
- Guo, H.-J.; Prabhakaran, B. Hololens 2 technical evaluation as mixed reality guide. arXiv 2022, arXiv:2207.09554. [Google Scholar]
- Colomer, C.; Llorens, R.; Noé, E.; Alcañiz, M. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J. Neuroeng. Rehabil. 2016, 13, 1–11. [Google Scholar] [CrossRef]
- Lehrer, N.; Chen, Y.; Duff, M.; Wolf, S.L.; Rikakis, T. Exploring the bases for a mixed reality stroke rehabilitation system, Part II: Design of Interactive Feedback for upper limb rehabilitation. J. Neuroeng. Rehabil. 2011, 8, 54. [Google Scholar] [CrossRef]
- Bucchieri, A.; Buccelli, S.; Barresi, G.; Tessari, F.; De Momi, E.; Laffranchi, M.; De Michieli, L. Design of a mixed reality environment for the extrapolation of reference trajectories in upper-limb rehabilitation. In Proceedings of the International Society for Virtual Rehabilitation (ISVR), Rotterdam, The Netherlands, 26–28 July 2022. [Google Scholar]
- Yahya, M.; Shah, J.A.; Kadir, K.A.; Yusof, Z.M.; Khan, S.; Warsi, A. Motion capture sensing techniques used in human upper limb motion: A review. Sensor Rev. 2019, 39, 504–511. [Google Scholar] [CrossRef]
- Menolotto, M.; Komaris, D.; Tedesco, S.; O’Flynn, B.; Walsh, M. Motion capture technology in industrial applications: A systematic review. Sensors 2020, 20, 5687. [Google Scholar] [CrossRef]
- Bucchieri, A.; Lucaroni, A.; Moschetta, M.; Ricci, L.; Sabatino, E.; Grange, E.; Tacchino, A.; Podda, J.; De Momi, E.; Ferraresi, C.; et al. Exploring the Potential of Mixed Reality for Functional Assessment in Multiple Sclerosis. In Proceedings of the 2024 IEEE Gaming, Entertainment, And Media Conference (GEM), Turin, Italy, 5–7 June 2024; pp. 1–6. [Google Scholar]
- Palumbo, A. Microsoft HoloLens 2 in medical and healthcare context: State of the art and future prospects. Sensors 2022, 22, 7709. [Google Scholar] [CrossRef] [PubMed]
- Saladino, M.L.; Gualtieri, C.; Scaffa, M.; Lopatin, M.F.; Kohler, E.; Bruna, P.; Blaya, P.; Testa, C.; López, G.; Reyna, M.; et al. Neurorehabilitation effectiveness based on virtual reality and tele rehabilitation in people with multiple sclerosis in Argentina: Reavitelem study. Mult. Scler. Relat. Disord. 2023, 70, 104499. [Google Scholar] [CrossRef]
- Godfrey, S.B.; Barresi, G. Video games for positive aging: Playfully engaging older adults. In Internet of Things for Human-Centered Design: Application to Elderly Healthcare; Springer: Berlin/Heidelberg, Germany, 2022; pp. 375–404. [Google Scholar]
- Webster, A.; Poyade, M.; Rooney, S.; Paul, L. Upper limb rehabilitation interventions using virtual reality for people with multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2021, 47, 102610. [Google Scholar] [CrossRef]
- Pau, M.; Porta, M.; Bertoni, R.; Mattos, F.G.M.; Cocco, E.; Cattaneo, D. Effect of immersive virtual reality training on hand-to-mouth task performance in people with multiple sclerosis: A quantitative kinematic study. Mult. Scler. Relat. Disord. 2023, 69, 104455. [Google Scholar] [CrossRef]
- Chadali, A.; Trevlaki, E.; Zarra, E.; Trevlakis, E. Virtual reality in upper extremity rehabilitation of multiple sclerosis patients. Int. J. Sci. Res. Arch. 2023, 9, 302–308. [Google Scholar] [CrossRef]
- Pruszyńska, M.; Milewska-Jędrzejczak, M.; Bednarski, I.; Szpakowski, P.; Głąbiński, A.; Tadeja, S.K. Towards effective telerehabilitation: Assessing effects of applying augmented reality in remote rehabilitation of patients suffering from multiple sclerosis. ACM Trans. Accessible Comput. TACCESS 2022, 15, 1–14. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task LoadIndex): Results of empirical and theoretical research. In Human Mental Workload; Hancock, P.A., Meshkati, N., Eds.; North-Holland: Oxford, UK, 1988; pp. 139–183. [Google Scholar]
- Bucchieri, A.; Tessari, F.; Buccelli, S.; De Momi, E.; Laffranchi, M.; De Michieli, L. The effect of gravity on hand spatio-temporal kinematic features during functional movements. PLoS ONE 2024, 19, e0310192. [Google Scholar] [CrossRef] [PubMed]
- Bayle, N.; Lempereur, M.; Hutin, E.; Motavasseli, D.; Remy-Neris, O.; Gracies, J.; Cornec, G. Comparison of Various Smoothness Metrics for Upper Limb Movements in Middle-Aged Healthy Subjects. Sensors 2023, 23, 1158. [Google Scholar] [CrossRef] [PubMed]
- Hailey, R.O.; De Oliveira, A.C.; Ghonasgi, K.; Whitford, B.; Lee, R.K.; Rose, C.G.; Deshpande, A.D. Impact of gravity compensation on upper extremity movements in harmony exoskeleton. In Proceedings of the 2022 International Conference on Rehabilitation Robotics (ICORR), Rotterdam, The Netherlands, 25–29 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Saes, M.; Mohamed Refai, M.I.; van Kordelaar, J.; Scheltinga, B.L.; Van Beijnum, B.J.F.; Bussmann, J.B.; Buurke, J.H.; Veltink, P.H.; Meskers, C.G.; van Wegen, E.E.; et al. Smoothness metric during reach-to-grasp after stroke: Part 2. Longitudinal association with motor impairment. J. Neuroeng. Rehabil. 2021, 18, 144. [Google Scholar] [CrossRef]
- Mohamed Refai, M.I.; Saes, M.; Scheltinga, B.L.; van Kordelaar, J.; Bussmann, J.B.; Veltink, P.H.; Buurke, J.H.; Meskers, C.G.; van Wegen, E.E.; Kwakkel, G.; et al. Smoothness metrics for reaching performance after stroke. Part 1: Which one to choose? J. Neuroeng. Rehabil. 2021, 18, 154. [Google Scholar] [CrossRef]
- Hajihosseinali, M.; Behzadipour, S.; Taghizadeh, G.; Farahm, F. Direction-dependency of the kinematic indices in upper extremities motor assessment of stroke patients. Med. Eng. Phys. 2022, 108, 103880. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.; Kanzler, C.M.; Lambercy, O.; Luft, A.R.; Veerbeek, J.M. Systematic review on kinematic assessments of upper limb movements after stroke. Stroke 2019, 50, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, B.; Fasoli, S.; Krebs, H.I.; Hughes, R.; Volpe, B.; Frontera, W.R.; Stein, J.; Hogan, N. Movement smoothness changes during stroke recovery. J. Neurosci. 2002, 22, 8297–8304. [Google Scholar] [CrossRef] [PubMed]
- Goffredo, M.; Mazzoleni, S.; Gison, A.; Infarinato, F.; Pournajaf, S.; Galafate, D.; Agosti, M.; Posteraro, F.; Franceschini, M. Kinematic parameters for tracking patient progress during upper limb robot-assisted rehabilitation: An observational study on subacute stroke subjects. Appl. Bionics Biomech. 2019, 2019, 4251089. [Google Scholar] [CrossRef]
- Panarese, A.; Colombo, R.; Sterpi, I.; Pisano, F.; Micera, S. Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients. Neurorehabilit. Neural Repair 2012, 26, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.; Riggs, S. VR-Based Kinematic Assessments: Examining the Effects of Task Properties on Arm Movement Kinematics. In Proceedings of the CHI Conference on Human Factors in Computing Systems Extended Abstracts, New Orleans, LA, USA, 29 April–5 May 2022; pp. 1–8. [Google Scholar]
- Valevicius, A.M.; Boser, Q.A.; Lavoie, E.B.; Murgatroyd, G.S.; Pilarski, P.M.; Chapman, C.S.; Vette, A.H.; Hebert, J.S. Characterization of normative hand movements during two functional upper limb tasks. PLoS ONE 2018, 13, e0199549. [Google Scholar] [CrossRef]
- Zollo, L.; Gallotta, E.; Guglielmelli, E.; Sterzi, S. Robotic technologies and rehabilitation: New tools for upper-limb therapy and assessment in chronic stroke. Eur. J. Phys. Rehabil. Med. 2011, 47, 223–236. [Google Scholar] [PubMed]
- Ponsiglione, A.; Ricciardi, C.; Amato, F.; Cesarelli, M.; Cesarelli, G.; D’Addio, G. Statistical analysis and kinematic assessment of upper limb reaching task in Parkinson’s disease. Sensors 2022, 22, 1708. [Google Scholar] [CrossRef]
- Jaric, S. Changes in Movement Symmetry Associated With Strengthening and Fatigue of Agonist and Antagonist Muscles. J. Mot. Behav. 2000, 32, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Raouafi, S.; Achiche, S.; Begon, M.; Sarcher, A.; Raison, M. Classification of upper limb disability levels of children with spastic unilateral cerebral palsy using K-means algorithm. Med. Biol. Eng. Comput. 2018, 56, 49–59. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult norms for the Box and Block Test of manual dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Weber, K.; Kashman, N.; Volland, G. Adult Norms for the Nine Hole Peg Test of Finger Dexterity. Occup. Ther. J. Res. 1985, 5, 24–38. [Google Scholar] [CrossRef]
- Carpinella, I.; Cattaneo, D.; Ferrarin, M. Hilbert–Huang transform based instrumental assessment of intention tremor in multiple sclerosis. J. Neural Eng. 2015, 12, 046011. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, V.; Raj, S.B.E.; Jancy, P.L. Investigation of in-home augmented reality assisted rehabilitation therapies for disabled patient. In Proceedings of the 2021 International Conference on ICT for Smart Society (ICISS), Bandung, Indonesia, 2–4 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
- Alamri, A.; Cha, J.; Eid, M.; El Saddik, A. Evaluating the post-stroke patients progress using an augmented reality rehabilitation system. In Proceedings of the 2009 IEEE International Workshop on Medical Measurements and Applications, Cetraro, Italy, 29–30 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 89–94. [Google Scholar]
- Speicher, M.; Hall, B.D.; Nebeling, M. What is mixed reality? In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–15. [Google Scholar]
- Khademi, M.; Hondori, H.M.; Dodakian, L.; Cramer, S.; Lopes, C.V. Comparing “pick and place” task in spatial augmented reality versus non-immersive virtual reality for rehabilitation setting. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 4613–4616. [Google Scholar]
- Condino, S.; Turini, G.; Viglialoro, R.; Gesi, M.; Ferrari, V. Wearable augmented reality application for shoulder rehabilitation. Electronics 2019, 8, 1178. [Google Scholar] [CrossRef]
- Tada, K.; Kutsuzawa, K.; Owaki, D.; Hayashibe, M. Quantifying motor and cognitive function of the upper limb using mixed reality smartglasses. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 2556–2559. [Google Scholar]
ID | Sex | Age | Side | EDSS | 9-HPT | BBT | Cerebellar Condition |
---|---|---|---|---|---|---|---|
S1 | M | 29 | R | 1 | 20.43 | 66 | N/A |
S2 | F | 28 | R | 1.5 | 15.53 | 71 | N/A |
S3 | F | 49 | R | 4.5 | 42.28 | 31 | Cerebellar tremor |
S4 | M | 49 | R | 2 | 25.30 | 49 | N/A |
S5 | F | 38 | L | 6 | 24.70 | 42 | Ataxia |
S6 | M | 34 | R | 3.5 | 35.50 | 52 | N/A |
S7 | M | 35 | R | 1 | 17.60 | 59 | N/A |
S8 | F | 64 | L | 6.5 | N/A | 12 | Cerebellar tremor (severe) |
S9 | F | 63 | L | 6.5 | 66.34 | 33 | Cerebellar tremor |
Movement | Label |
---|---|
North–South | NS |
South–North | SN |
North–East | NE |
East–North | EN |
North–West | NW |
West–North | WN |
Metric | Friedman Test | S1 | S4 | S6 | S7 |
---|---|---|---|---|---|
SPARC | <0.001 * | 0.03 | 0.63 | 0.002 * | 0.06 |
NVP | <0.001 * | <0.001 * | 0.057 | 0.91 | <0.001 * |
MT | <0.001 * | <0.001 * | <0.001 * | 0.62 | <0.001 * |
SYMMETRY | 0.011 * | 0.008 * | 0.11 | 0.318 | 0.034 |
KURTOSIS | <0.001 * | 0.044 | <0.001 * | 0.33 | 0.06 |
N0C | <0.001 * | 0.002 * | 0.40 | 0.13 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabatino, E.; Moschetta, M.; Lucaroni, A.; Barresi, G.; Ferraresi, C.; Podda, J.; Grange, E.; Brichetto, G.; Bucchieri, A. A Pilot Study on Mixed-Reality Approaches for Detecting Upper-Limb Dysfunction in Multiple Sclerosis: Insights on Cerebellar Tremor. Virtual Worlds 2025, 4, 4. https://doi.org/10.3390/virtualworlds4010004
Sabatino E, Moschetta M, Lucaroni A, Barresi G, Ferraresi C, Podda J, Grange E, Brichetto G, Bucchieri A. A Pilot Study on Mixed-Reality Approaches for Detecting Upper-Limb Dysfunction in Multiple Sclerosis: Insights on Cerebellar Tremor. Virtual Worlds. 2025; 4(1):4. https://doi.org/10.3390/virtualworlds4010004
Chicago/Turabian StyleSabatino, Etty, Miriam Moschetta, Andrea Lucaroni, Giacinto Barresi, Carlo Ferraresi, Jessica Podda, Erica Grange, Giampaolo Brichetto, and Anna Bucchieri. 2025. "A Pilot Study on Mixed-Reality Approaches for Detecting Upper-Limb Dysfunction in Multiple Sclerosis: Insights on Cerebellar Tremor" Virtual Worlds 4, no. 1: 4. https://doi.org/10.3390/virtualworlds4010004
APA StyleSabatino, E., Moschetta, M., Lucaroni, A., Barresi, G., Ferraresi, C., Podda, J., Grange, E., Brichetto, G., & Bucchieri, A. (2025). A Pilot Study on Mixed-Reality Approaches for Detecting Upper-Limb Dysfunction in Multiple Sclerosis: Insights on Cerebellar Tremor. Virtual Worlds, 4(1), 4. https://doi.org/10.3390/virtualworlds4010004