Development of a Modular Adjustable Wearable Haptic Device for XR Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Design and Implementation
2.1.1. Overview of the System
2.1.2. Hardware Design and Configuration
- Controller Module: Acts as the central processing unit of the device, using a custom-designed microcontroller module based on the ESP32-S3.
- Driver Module: Regulates the power and frequency distribution for 58 ERM actuators, ensuring precise control.
- Interface Module: Holds the actuators in place with a custom-designed flexible PCB (Printed Circuit Board) that integrates fifty-eight vibrotactile actuators.
The Controller Module
The Driver Module
The Interface Module
System Integration
2.1.3. Software Development
- HRH Application: The front-end and logic components, developed using Unity (https://unity.com, accessed on 26 September 2024). This user-friendly application allows the user to interact with the virtual environment, triggers haptic sensations, and includes scripts to control actuator behavior and manage data communication with the microcontroller.
- Microcontroller Firmware: The software that runs on the microcontroller, implementing its functionality, managing hardware operations, and processing data received from the HRH application.
HRH Application
Microcontroller Firmware
3. Results
3.1. Comparison with Existing Haptic Devices
3.2. Vibrotactile Actuator Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sutherland, I.E. The ultimate display. In Proceedings of the IFIP Congress 1965, New York, NY, USA, 24–29 May 1965; Volume 2, pp. 506–508. [Google Scholar]
- Fuchs, H.; Bishop, G. Research directions in virtual environments. ACM SIGGRAPH Comput. Graph. 1992, 26, 153–177. [Google Scholar] [CrossRef]
- Gigante, M.A. Virtual Reality: Definitions, History and Applications. In Virtual Reality Systems; Academic Press: New York, NY, USA, 1993; pp. 3–14. [Google Scholar] [CrossRef]
- Slater, M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3549–3557. [Google Scholar] [CrossRef] [PubMed]
- Biocca, F. The Cyborg’s Dilemma: Progressive Embodiment in Virtual Environments. J. Comput.-Mediat. Commun. 1997, 3, JCMC324. [Google Scholar] [CrossRef]
- Lombard, M.; Ditton, T. At the heart of it all: The concept of presence. J. Comput.-Mediat. Commun. 1997, 3, 321. [Google Scholar] [CrossRef]
- Loomis, J.M.; Blascovich, J.J.; Beall, A.C. Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 1999, 31, 557–564. [Google Scholar] [CrossRef]
- Heeter, C. Interactivity in the context of designed experiences. J. Interact. Advert. 2000, 1, 3–14. [Google Scholar] [CrossRef]
- Biocca, F.; Harms, C.; Gregg, J. The networked minds measure of social presence: Pilot test of the factor structure and concurrent validity. In Proceedings of the 4th Annual International Workshop on Presence, Philadelphia, PA, USA, 21–23 May 2001; pp. 1–9. [Google Scholar]
- Bailenson, J.N.; Yee, N.; Merget, D.; Schroeder, R. The effect of behavioral realism and form realism of real-time avatar faces on verbal disclosure, nonverbal disclosure, emotion recognition, and copresence in dyadic interaction. Presence Teleoper. Virtual Environ. 2006, 15, 359–372. [Google Scholar] [CrossRef]
- Skalski, P.; Tamborini, R. The role of social presence in interactive agent-based persuasion. Media Psychol. 2007, 10, 385–413. [Google Scholar] [CrossRef]
- Sundar, S.S.; Xu, Q.; Bellur, S. Designing interactivity in media interfaces: A communications perspective. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, GA, USA, 10–15 April 2010; pp. 2247–2256. [Google Scholar]
- Slater, M.; Wilbur, S. A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence Teleoper. Virtual Environ. 1997, 6, 603–616. [Google Scholar] [CrossRef]
- Rodriguez, S.D.; Rivu, R.; Mäkelä, V.; Alt, F. Challenges in Virtual Reality Studies: Ethics and Internal and External Validity. Association for Computing Machinery. In Proceedings of the Augmented Humans International Conference 2023, Glasgow, UK, 12–14 March 2023; pp. 105–111. [Google Scholar] [CrossRef]
- Apostolou, K.; Liarokapis, F. A Systematic Review: The Role of Multisensory Feedback in Virtual Reality. In Proceedings of the 2022 IEEE 2nd International Conference on Intelligent Reality (ICIR), Piscataway, NJ, USA, 14–16 December 2022; pp. 39–42. [Google Scholar]
- Gougeh, R.A.; Falk, T.H. Multisensory immersive experiences: A pilot study on subjective and instrumental human influential factors assessment. In Proceedings of the 2022 14th International Conference on Quality of Multimedia Experience (QoMEX), Lippstadt, Germany, 5–7 September 2022; pp. 1–6. [Google Scholar]
- Dangxiao, W.; Yuan, G.U.O.; Shiyi, L.I.U.; Zhang, Y.; Weiliang, X.; Jing, X. Haptic display for virtual reality: Progress and challenges. Virtual Real. Intell. Hardw. 2019, 1, 136–162. [Google Scholar]
- Saint-Louis, C.; Hamam, A. Survey of haptic technology and entertainment applications. In Proceedings of the Conference Proceedings—IEEE SOUTHEASTCON, Atlanta, GA, USA, 10–13 March 2021. [Google Scholar] [CrossRef]
- Pianzola, F.; Riva, G.; Kukkonen, K.; Mantovani, F. Presence, flow, and narrative absorption: An interdisciplinary theoretical exploration with a new spatiotemporal integrated model based on predictive processing. Open Res. Eur. 2021, 1, 28. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Vives, M.V.; Slater, M. From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 2005, 6, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Heilig, M.L. Sensorama Simulator—US Patent Office. 1962. Available online: https://patentimages.storage.googleapis.com/90/34/2f/24615bb97ad68e/US3050870.pdf (accessed on 1 July 2024).
- Kasowski, J.; Johnson, B.A.; Neydavood, R.; Akkaraju, A.; Beyeler, M. A systematic review of extended reality (XR) for understanding and augmenting vision loss. J. Vis. 2023, 23, 5. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, A.; Carlotti, M.; Mattoli, V. Conformable on-skin devices for thermo-electro-tactile stimulation: Materials, design, and fabrication. Mater. Adv. 2021, 2, 1787–1820. [Google Scholar] [CrossRef]
- Kim, J.H.; Vázquez-Guardado, A.; Luan, H.; Kim, J.T.; Yang, D.S.; Zhang, H.; Chang, J.K.; Yoo, S.; Park, C.; Wei, Y.; et al. A wirelessly programmable, skin-integrated thermo-haptic stimulator system for virtual reality. Proc. Natl. Acad. Sci. USA 2024, 121, e2404007121. [Google Scholar] [CrossRef]
- Cipresso, P.; Giglioli, I.A.C.; Raya, M.A.; Riva, G. The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Front. Psychol. 2018, 9, 2086. [Google Scholar] [CrossRef]
- Lederman, S.J.; Klatzky, R.L. Haptic perception: A tutorial. Atten. Percept. Psychophys. 2009, 71, 1439–1459. [Google Scholar] [CrossRef]
- Hayward, V.; Astley, O.R.; Cruz-Hernandez, M.; Grant, D.; Robles-De-La-Torre, G. Haptic interfaces and devices. Sens. Rev. 2004, 24, 16–29. [Google Scholar] [CrossRef]
- Pacchierotti, C.; Prattichizzo, D.; Kuchenbecker, K.J. Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery. IEEE Trans. Biomed. Eng. 2015, 63, 278–287. [Google Scholar] [CrossRef]
- Adilkhanov, A.; Rubagotti, M.; Kappassov, Z. Haptic devices: Wearability-based taxonomy and literature review. IEEE Access 2022, 10, 91923–91947. [Google Scholar] [CrossRef]
- Culbertson, H.; Schorr, S.B.; Okamura, A.M. Haptics: The present and future of artificial touch sensation. Annu. Rev. Control. Robot. Auton. Syst. 2018, 1, 385–409. [Google Scholar] [CrossRef]
- Laycock, S.D.; Day, A.M. Recent developments and applications of haptic devices. In Computer Graphics Forum; The Eurographics Association and Blackwell Publishing Ltd.: Oxford, UK; Malden, MA, USA, 2003; Volume 22, pp. 117–132. [Google Scholar] [CrossRef]
- Pacchierotti, C.; Sinclair, S.; Solazzi, M.; Frisoli, A.; Hayward, V.; Prattichizzo, D. Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives. IEEE Trans. Haptics 2017, 10, 580–600. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A.G.R.; Luna, F.J.G.; Villegas, O.O.V.; Nandayapa, M. Applications of haptic systems in virtual environments: A brief review. In Advanced Topics on Computer Vision, Control and Robotics in Mechatronics; Springer International Publishing: Cham, Switzerland, 2018; pp. 349–377. [Google Scholar]
- Talvas, A.; Marchal, M.; Lecuyer, A. A survey on bimanual haptic interaction. IEEE Trans. Haptics 2014, 7, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Shull, P.B.; Damian, D.D. Haptic wearables as sensory replacement, sensory augmentation and trainer—A review. J. Neuroeng. Rehabil. 2015, 12, 59. [Google Scholar] [CrossRef]
- Wang, D.; Song, M.; Naqash, A.; Zheng, Y.; Xu, W.; Zhang, Y. Toward whole-hand kinesthetic feedback: A survey of force feedback gloves. IEEE Trans. Haptics 2018, 12, 189–204. [Google Scholar] [CrossRef]
- Perret, J.; Poorten, E.V. Touching virtual reality: A review of haptic gloves. In Proceedings of the ACTUATOR 2018; 16th International Conference on New Actuators, Bremen, Germany, 25–27 June 2018; pp. 1–5. [Google Scholar]
- Wee, C.; Yap, K.M.; Lim, W.N. Haptic interfaces for virtual reality: Challenges and research directions. IEEE Access 2021, 9, 112145–112162. [Google Scholar] [CrossRef]
- Kovacs, R.; Ofek, E.; Franco, M.G.; Siu, A.F.; Marwecki, S.; Holz, C.; Sinclair, M. Haptic pivot: On-demand handhelds in vr. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, Virtual, 20–23 October 2020; pp. 1046–1059. [Google Scholar] [CrossRef]
- Shazhaev, I.; Mihaylov, D.; Shafeeg, A. A review of haptic technology applications in healthcare. Open J. Appl. Sci. 2023, 13, 163–174. [Google Scholar] [CrossRef]
- Bortone, I.; Barsotti, M.; Leonardis, D.; Crecchi, A.; Tozzini, A.; Bonfiglio, L.; Frisoli, A. Immersive virtual environments and wearable haptic devices in rehabilitation of children with neuromotor impairments: A single-blind randomized controlled crossover pilot study. J. Neuroeng. Rehabil. 2020, 17, 144. [Google Scholar] [CrossRef]
- Aydin, M.; Mutlu, R.; Singh, D.; Sariyildiz, E.; Coman, R.; Mayland, E.; Shemmell, J.; Lee, W. Novel soft haptic biofeedback—Pilot study on postural balance and proprioception. Sensors 2022, 22, 3779. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Xu, S.; Li, C.; Yang, J.; Tong, X.; Guo, B. Remotetouch: Enhancing immersive 3d video communication with hand touch. In Proceedings of the 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Shanghai, China, 25–29 March 2023; pp. 1–10. [Google Scholar]
- Wang, P.; Bai, X.; Billinghurst, M.; Zhang, S.; Han, D.; Sun, M.; Wang, Z.; Lv, H.; Han, S. Haptic feedback helps me? A VR-SAR remote collaborative system with tangible interaction. Int. J. Hum. Comput. Interact. 2020, 36, 1242–1257. [Google Scholar] [CrossRef]
- Webb, M.; Tracey, M.; Harwin, W.; Tokatli, O.; Hwang, F.; Johnson, R.; Barrett, N.; Jones, C. Haptic-enabled collaborative learning in virtual reality for schools. Educ. Inf. Technol. 2022, 27, 937–960. [Google Scholar] [CrossRef]
- Imran, E.; Adanir, N.; Khurshid, Z. Significance of haptic and virtual reality simulation (VRS) in the dental education: A review of literature. Appl. Sci. 2021, 11, 10196. [Google Scholar] [CrossRef]
- Venkatesan, R.K.; Banakou, D.; Slater, M.; M, M. Haptic feedback in a virtual crowd scenario improves the emotional response. Front. Virtual Real. 2023, 4, 1242587. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, J.; Ke, P.; Guo, X.; Yiu, C.K.; Yao, K.; Cai, S.; Li, D.; Zhou, Y.; Li, J.; et al. A skin-integrated multimodal haptic interface for immersive tactile feedback. Nat. Electron. 2023, 6, 1020–1031. [Google Scholar] [CrossRef]
- Yu, X.; Xie, Z.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D.; et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479. [Google Scholar] [CrossRef]
- Kim, J.T.; Shin, H.S.; Yoo, J.Y.; Avila, R.; Huang, Y.; Jung, Y.H.; Colgate, J.E.; Rogers, J.A. Mechanics of vibrotactile sensors for applications in skin-interfaced haptic systems. Extrem. Mech. Lett. 2023, 58, 101940. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, D.; Lee, W.W.; Li, X.; Hong, Y.; Pan, Q.; Zhang, R.; Peng, G.; Tan, H.Z.; Zhang, Z.; et al. Super-resolution wearable electrotactile rendering system. Sci. Adv. 2022, 8, eabp8738. [Google Scholar] [CrossRef]
- Jung, Y.H.; Yoo, J.Y.; Vázquez-Guardado, A.; Kim, J.H.; Kim, J.T.; Luan, H.; Park, M.; Lim, J.; Shin, H.S.; Su, C.J.; et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 2022, 5, 374–385. [Google Scholar] [CrossRef]
- Xia, W.; Qian, Z.; Zhang, M.; Yu, Y.; Xu, L. System Design of Wearable Tactile Device Based on Virtual Reality. In Proceedings of the 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 26–28 May 2023; pp. 424–428. [Google Scholar]
- Abad, A.C.; Reid, D.; Ranasinghe, A. A novel untethered hand wearable with fine-grained cutaneous haptic feedback. Sensors 2022, 22, 1924. [Google Scholar] [CrossRef]
- Martinez-Hernandez, U.; Al, G.A. Wearable fingertip with touch, sliding and vibration feedback for immersive virtual reality. In Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 9–12 October 2022; pp. 293–298. [Google Scholar] [CrossRef]
- Trinitatova, D.; Tsetserukou, D. Study of the Effectiveness of a Wearable Haptic Interface With Cutaneous and Vibrotactile Feedback for VR-Based Teleoperation. IEEE Trans. Haptics 2023, 16, 463–469. [Google Scholar] [CrossRef]
- Yu, M.; Cheng, X.; Peng, S.; Cao, Y.; Lu, Y.; Li, B.; Feng, X.; Zhang, Y.; Wang, H.; Jiao, Z.; et al. A self-sensing soft pneumatic actuator with closed-Loop control for haptic feedback wearable devices. Mater. Des. 2022, 223, 111149. [Google Scholar] [CrossRef]
- Fersurella, G.; Torre, A.D.; Quaranta, F.; Losito, P.; D’Alessandro, L.; Invitto, S.; Rinaldi, R. A wearable and smart actuator for haptic stimulation. Micro Nano Eng. 2022, 16, 100161. [Google Scholar] [CrossRef]
- Camardella, C.; Chiaradia, D.; Bortone, I.; Frisoli, A.; Leonardis, D. Introducing wearable haptics for rendering velocity feedback in VR serious games for neuro-rehabilitation of children. Front. Virtual Real. 2023, 3, 1019302. [Google Scholar] [CrossRef]
- Moriyama, T.; Nakamura, T.; Kajimoto, H. Wearable haptic device that presents the haptics sensation corresponding to three fingers on the forearm. In Proceedings of the UIST 2018 Adjunct—Adjunct Publication of the 31st Annual ACM Symposium on User Interface Software and Technology, Berlin, Germany, 14 October 2018; pp. 152–153. [Google Scholar] [CrossRef]
- Moriyama, T.; Takahashi, A.; Asazu, H.; Kajimoto, H. Simple is vest: High-density tactile vest that realizes tactile transfer of fingers. In Proceedings of the SIGGRAPH Asia 2019 Emerging Technologies, Brisbane, Australia, 17–20 November 2019; pp. 42–43. [Google Scholar] [CrossRef]
- Moriyama, T.; Kajimoto, H. HARVEST: High-Density Tactile Vest that Represents Fingers to Back. In Proceedings of the SIGGRAPH’20: ACM SIGGRAPH 2020 Emerging Technologies, Virtual, 17 August 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Costes, A.; Lécuyer, A. Inducing Self-Motion Sensations with Haptic Feedback: State-of-the-Art and Perspectives on “Haptic Motion”. IEEE Trans. Haptics 2023, 16, 171–181. [Google Scholar] [CrossRef]
- Vermeulen, Y.; Damme, S.V.; Wallendael, G.V.; Turck, F.D.; Vega, M.T. Haptic Interactions for Extended Reality. In Proceedings of the 2023 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 6–8 January 2023. [Google Scholar] [CrossRef]
- Vlam, V.D.; Wiertlewski, M.; Vardar, Y. Focused Vibrotactile Stimuli From a Wearable Sparse Array of Actuators. IEEE Trans. Haptics 2023, 16, 511–517. [Google Scholar] [CrossRef]
- Pasluosta, C.; Kiele, P.; Stieglitz, T. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clin. Neurophysiol. 2018, 129, 851–862. [Google Scholar] [CrossRef]
- European Commission. Radio Equipment Directive (RED). 2024. Available online: https://single-market-economy.ec.europa.eu/single-market/european-standards/harmonised-standards/radio-equipment_en (accessed on 30 June 2024).
- European Commission. Electromagnetic Compatibility (EMC) Directive. 2024. Available online: https://ec.europa.eu/growth/sectors/electrical-engineering/emc-directive_en (accessed on 30 June 2024).
- European Commission. General Product Safety Directive (GPSD). 2024. Available online: https://single-market-economy.ec.europa.eu/single-market/european-standards/harmonised-standards/general-product-safety_en (accessed on 30 June 2024).
- Jones, L.A.; Sarter, N.B. Tactile displays: Guidance for their design and application. Hum. Factors 2008, 50, 90–111. [Google Scholar] [CrossRef]
- Van Erp, J.B.; Toet, A. How to touch humans: Guidelines for social agents and robots that can touch. In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2–5 September 2013; IEEE: New York, NY, USA, 2013; pp. 780–785. [Google Scholar]
- Brooks, T.L. Telerobotic response requirements. In Proceedings of the 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings, Los Angeles, CA, USA, 4–7 November 1990; IEEE: New York, NY, USA, 1990; pp. 113–120. [Google Scholar]
- Chen, T.; Dai, Z.; Liu, M.; Zhao, Y.; Ling, H.; Sun, L.; He, H.; Lee, C.; Zhu, M. 3D Multimodal Sensing and Feedback Finger Case for Immersive Dual-Way Interaction. Adv. Mater. Technol. 2024, 9, 2301681. [Google Scholar] [CrossRef]
- Yin, J.; Hinchet, R.; Shea, H.; Majidi, C. Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 2021, 31, 2007428. [Google Scholar] [CrossRef]
- De Fazio, R.; Mastronardi, V.M.; Petruzzi, M.; De Vittorio, M.; Visconti, P. Human–machine interaction through advanced haptic sensors: A piezoelectric sensory glove with edge machine learning for gesture and object recognition. Future Internet 2022, 15, 14. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Y.; Zhang, K.; Wan, J.; Zhao, D.; Pi, Y.; Chen, G.; Zhang, J.; Tang, W.; Lin, L.; et al. Air permeable vibrotactile actuators for wearable wireless haptics. Adv. Funct. Mater. 2023, 33, 2211146. [Google Scholar] [CrossRef]
- Son, J.; Lee, S.; Bae, G.Y.; Lee, G.; Duduta, M.; Cho, K. Skin-Mountable Vibrotactile Stimulator Based on Laterally Multilayered Dielectric Elastomer Actuators. Adv. Funct. Mater. 2023, 33, 2213589. [Google Scholar] [CrossRef]
- Oldiges, A.; Bajaj, N. Control, Sensor Calibration, and Parasitic Torque Cancellation of a Dual-Rotor Haptic Actuator. In Proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Sapporo, Japan, 1–15 July 2022; pp. 1763–1770. [Google Scholar]
- Lozada, J.; Roselier, S.; Periquet, F.; Boutillon, X.; Hafez, M. Magneto-rheological technology for human-machine interaction. In Mechatronic Systems Applications; InTech: Rijeka, Croatia, 2010; p. 187. [Google Scholar]
- Lebel, L.P.; Verreault, J.A.; Bigué, J.P.L.; Plante, J.S.; Girard, A. Performance study of low inertia magnetorheological actuators for kinesthetic haptic devices. In Proceedings of the 2021 IEEE World Haptics Conference (WHC), Montreal, QC, Canada, 6–9 July 2021; pp. 103–108. [Google Scholar]
- Zhang, C.; Takongmo, M.; Salmon, J. High-quality PWM scheme for high-speed electric drives. IEEE Trans. Power Electron. 2021, 37, 1228–1233. [Google Scholar] [CrossRef]
- Mishra, P.; Banerjee, A.; Ghosh, M. FPGA-based real-time implementation of quadral-duty digital-PWM-controlled permanent magnet BLDC drive. IEEE/ASME Trans. Mechatron. 2020, 25, 1456–1467. [Google Scholar] [CrossRef]
- Shirabe, K.; Swamy, M.; Kang, J.K.; Hisatsune, M.; Wu, Y.; Kebort, D.; Honea, J. Advantages of high frequency PWM in AC motor drive applications. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 2977–2984. [Google Scholar]
- Scott, K.R.; Khatri, S.P. A Flash-Based Digital to Analog Converter for Low Power Applications. In Proceedings of the 2022 IEEE 40th International Conference on Computer Design (ICCD), Olympic Valley, CA, USA, 23–26 October 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Alaraj, A.; Lemole, M.G.; Finkle, J.H.; Yudkowsky, R.; Wallace, A.; Luciano, C.; Banerjee, P.P.; Rizzi, S.H.; Charbel, F.T. Virtual reality training in neurosurgery: Review of current status and future applications. Surg. Neurol. Int. 2011, 2, 52. [Google Scholar] [CrossRef]
- Deusdado, L.D.; Antunes, A.F. Virtual Reality Haptic Device for Mental Illness Treatment. Procedia Comput. Sci. 2023, 219, 1112–1119. [Google Scholar] [CrossRef]
- Jung, J.; Reed, C.M.; Martinez, J.S.; Tan, H.Z. Tactile Speech Communication: Reception of Words and Two-Way Messages through a Phoneme-Based Display. Virtual Worlds 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Rybarczyk, Y.; Coelho, T.; Cardoso, T.; de Oliveira, R. Effect of avatars and viewpoints on performance in virtual world: Efficiency vs. telepresence. EAI Endorsed Trans. Creat. Technol. 2014, 1, e4. [Google Scholar] [CrossRef]
Device Name | Approx. Responsiveness | Price Range | Number and Type of Actuators | Body Part Focus |
---|---|---|---|---|
* Ultrahaptics (https://www.ultraleap.com/haptics/ (accessed on 26 September 2024)) | Hand-tracking 20 to 200 FPS Haptic feedback 40 kHz (https://support.ultraleap.com/hc/en-us/articles/360004368558-What-is-the-resolution-of-Ultrahaptics (accessed on 26 September 2024)) | <USD 3000 (https://www.robotshop.com/products/ultrahaptics-stratos-explore-development-kit (accessed on 26 September 2024)) | 320 ultrasonic emitters | Hand |
* Neosensory Buzz (https://neosensory.com/blog/introducing-buzz/ (accessed on 26 September 2024)) | End-to-end latency 23 ms | <USD 1000 (https://neosensory.com/wp-content/uploads/2020/10/Neosensory-Buzz-Tech-Sheet.pdf (accessed on 26 September 2024)) | 4 vibratory motors | Wrist |
* SenseGlove Nova (https://www.senseglove.com/ (accessed on 26 September 2024)) | Sensor Data 10–29 ms Command 20–22.5 ms (https://senseglove.gitlab.io/SenseGloveDocs/nova-glove.html?highlight=latency (accessed on 26 September 2024)) | <USD 6000 | Force feedback and few vibrotactile actuators | Hand |
* HaptX Gloves (https://haptx.com/ (accessed on 26 September 2024)) | Update Rate 120 Hz (16 ms) (https://docs.haptx.com/docs/files/HaptX_Glove_G1_Spec_Sheet_Rev_1.4_Spec.pdf (accessed on 26 September 2024)) | <USD 6000 (https://www.techpowerup.com/300272/haptx-introduces-industrys-most-advanced-haptic-gloves-priced-for-scalable-deployment (accessed on 26 September 2024)) | Hundreds of microfluidic actuators | Hand |
* VibroTac Belt (https://www.sensodrive.de/products/vibrotactile-feedback.php (accessed on 26 September 2024)) | N/A | N/A | 6 vibrotactile | Wrist |
* TactGlove DK2 (https://www.bhaptics.com/tactsuit/tactglove// (accessed on 26 September 2024)) | N/A | <USD 500 | 12 vibrators | Hand |
* TactSuit X16–X40 (https://www.bhaptics.com/tactsuit/ (accessed on 26 September 2024)) | N/A | <USD 1000 | X16: 16 and X40: ERM Vibromotors | Torso |
* TESLASUIT (https://teslasuit.io/products/teslasuit-4/ (accessed on 26 September 2024)) | Motion capture 200 Hz Command N/A | >USD 10,000 | 80 electro muscle stimulation (EMS) | Upper and lower body |
Wireless Haptic Interface [52] | Total system latency 20 ms | N/A | 36 ERM Vibromotors | Large areas of the skin |
3-RSR Haptic Wearable Device [41] | N/A | N/A | 2 contact points, 6 actuators | Fingertips |
Untethered Hand-Wearable Haptic Device [54] | System latency avg. 46.5 ms | N/A | 5 contact points, 80 piezo-based pin actuators | Fingertips |
HARVEST: High-Density Tactile Vest [62] | System latency N/A Actuator Response 4 ms | N/A | 144 voice coil vibrators | Torso (back) |
HRH Device | System latency 9–17 ms Actuator Response: 5–50 ms | <USD 500 | 58 ERM Vibromotors | Large areas of the skin |
Parameter | Vibrotactile |
---|---|
Frequency (Hz) | 5–1000 |
Max Sensitivity (Hz) | 250 |
Force (mN) | >10–100 (Normal direction) |
Displacement (µm) | >10–100 (static, normal direction) |
>0.85 (dynamic, normal direction) |
Electromagnetic * | Electrostatic * | Piezoelectric/ Electrostrictive | Polymer | |||
---|---|---|---|---|---|---|
ERM * | LRA * | Voice Coil * | Ceramic | |||
Driving field | Magnetic | Magnetic | Magnetic | Electric | Electric | Electric |
Driven voltage (V) | 3–5 | 1–3 | 5–12 | 10 | 10–120 | 10–100 |
Driven current (A) | 0.05–0.5 | 0.05–0.2 | 0.5–3 | 1 µA | 1–100 µA | 1–100 µA |
Energy consumption | High | Medium | High | Low | Low | Low |
Vibration frequency (Hz) | 90–200 | 150–300 | 50–300 | 100–2000 | 5–25,000 | 0.1–500 |
Haptic types | Vibrotactile | Vibrotactile | Vibrotactile | Vibrotactile | Vibrotactile/ Ultrasonic | Vibrotactile |
Responding time (ms) | 20–100 | 20–30 | 5 | 5 | 1–4 | 10 |
Displacement (µm) | >1000 | >1000 | >1000 | 10–40 | 0.5–100 | 75–200 |
Physical Flexibility (Potential) | No | No | No | Yes | Limited | Yes |
Suitable application | Vibration notification | Vibration notification | Haptic wearable MEMS | Haptic wearable MEMS | High-definition haptic sensation for touching screen | Medical wearable device |
Commercialized | Yes | Yes | Yes | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najm, A.; Banakou, D.; Michael-Grigoriou, D. Development of a Modular Adjustable Wearable Haptic Device for XR Applications. Virtual Worlds 2024, 3, 436-458. https://doi.org/10.3390/virtualworlds3040024
Najm A, Banakou D, Michael-Grigoriou D. Development of a Modular Adjustable Wearable Haptic Device for XR Applications. Virtual Worlds. 2024; 3(4):436-458. https://doi.org/10.3390/virtualworlds3040024
Chicago/Turabian StyleNajm, Ali, Domna Banakou, and Despina Michael-Grigoriou. 2024. "Development of a Modular Adjustable Wearable Haptic Device for XR Applications" Virtual Worlds 3, no. 4: 436-458. https://doi.org/10.3390/virtualworlds3040024
APA StyleNajm, A., Banakou, D., & Michael-Grigoriou, D. (2024). Development of a Modular Adjustable Wearable Haptic Device for XR Applications. Virtual Worlds, 3(4), 436-458. https://doi.org/10.3390/virtualworlds3040024