Evaluating the Effect of Multi-Sensory Stimulation on Startle Response Using the Virtual Reality Locomotion Interface MS.TPAWT
Abstract
:1. Introduction
2. Related Work
2.1. Startles, Fear, and Premonition
2.2. Simulator Technology
3. System Description
3.1. CAVE Display and Locomotion
3.2. Environmental Display
3.3. VR Game
4. Methods and Procedures
4.1. Participants
4.2. Design
4.3. Measures
- Q1.
- When the bird flew in front of you did you feel startled?
- Q2.
- When the beam fell in front of you in the barn did you feel startled?
- Q3.
- When the lightning hit the ground did you feel startled?
5. Results
5.1. Bird Startle
5.2. Beam Startle
5.3. Thunder Startle
5.4. Graphics
5.5. Premonition and Environment
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Blumenthal, T.D. Inhibition of the human startle response is affected by both prepulse intensity and eliciting stimulus intensity. Biol. Psychol. 1996, 44, 85–104. [Google Scholar] [CrossRef]
- Fröhlich, J.; Wachsmuth, I. The Visual, the Auditory and the Haptic—A User Study on Combining Modalities in Virtual Worlds. In International Conference on Virtual, Augmented and Mixed Reality; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Dinh, H.; Walker, N.; Hodges, L.; Song, C.; Kobayashi, A. Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. In Proceedings of the IEEE Virtual Reality (Cat. No. 99CB36316), Houston, TX, USA, 13–17 March 1999. [Google Scholar]
- Wang, Y.; Truong, T.E.; Chesebrough, S.W.; Willemsen, P.; Foreman, K.B.; Merryweather, A.S.; Hollerbach, J.M.; Minor, M.A. Augmenting Virtual Reality Terrain Display with Smart Shoe Physical Rendering: A Pilot Study. IEEE Trans. Haptics 2021, 14, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Sabetian, P.; Hollerbach, J.M. A 3 wire body weight support system for a large treadmill. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 498–503. [Google Scholar]
- Christensen, R.R.; Hollerbach, J.M.; Xu, Y.; Meek, S.G. Inertial-force feedback for the Treadport locomotion interface. Presence Teleoperators Virtual Environ. 2000, 9, 1–14. [Google Scholar] [CrossRef]
- Kulkarni, S.D.; Fisher, C.J.; Lefler, P.; Desai, A.; Chakravarthy, S.; Pardyjak, E.R.; Minor, M.A.; Hollerbach, J.M. A Full Body Steerable Wind Display for a Locomotion Interface. IEEE Trans. Vis. Comput. Graph. 2015, 21, 1146–1159. [Google Scholar] [CrossRef] [PubMed]
- Aston, J.P.; Benko, N.; Truong, T.; Zaki, A.; Olsen, N.; Eshete, E.; Luttmer, N.G.; Coats, B.; Minor, M.A. Optimization of a Soft Robotic Bladder Array for Dissipating High Impact Loads: An Initial Study in Designing a Smart Helmet. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May—15 July 2020; p. 8. [Google Scholar]
- Bach, D.R.; Melinscak, F. Psychophysiological modelling and the measurement of fear conditioning. Behav. Res. Ther. 2020, 127, 103576. [Google Scholar] [CrossRef]
- Colvonen, P.J.; Straus, L.D.; Acheson, D.; Gehrman, P. A Review of the Relationship Between Emotional Learning and Memory, Sleep, and PTSD. Curr. Psychiatry Rep. 2019, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Frumento, S.; Menicucci, D.; Hitchcott, P.K.; Zaccaro, A.; Gemignani, A. Systematic Review of Studies on Subliminal Exposure to Phobic Stimuli: Integrating Therapeutic Models for Specific Phobias. Front. Neurosci. 2021, 15, 654170. [Google Scholar] [CrossRef]
- Hyde, J.; Ryan, K.M.; Waters, A.M. Psychophysiological Markers of Fear and Anxiety. Curr. Psychiatry Rep. 2019, 21, 56. [Google Scholar] [CrossRef]
- Presseller, E.K.; Patarinski, A.G.G.; Fan, S.C.; Lampe, E.W.; Juarascio, A.S. Sensor technology in eating disorders research: A systematic review. Int. J. Eat. Disord. 2022, 55, 573–624. [Google Scholar] [CrossRef]
- Blumenthal, T.D.; Cuthbert, B.N.; Filion, D.L.; Hackley, S.; Lipp, O.V.; Van Boxtel, A. Committee report: Guidelines for human startle eyeblink electromyographic studies. Psychophysiology 2005, 42, 1–15. [Google Scholar] [CrossRef]
- Clarkson, M.G.; Keith Berg, W. Bioelectric and Potentiometric Measures of Eyeblink Amplitude in Reflex Modification Paradigms. Psychophysiology 1984, 21, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, T.D.; Goode, C.T. The Startle Eyeblink Response to Low Intensity Acoustic Stimuli. Psychophysiology 1991, 28, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Mühlberger, A.; Bülthoff, H.; Wiedemann, G.; Pauli, P. Virtual Reality for the Psychophysiological Assessment of Phobic Fear: Responses During Virtual Tunnel Driving. Psychol. Assess. 2007, 19, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Haus, M.; Rooney, C.; Barnett, J.; Westley, D.; Wong, B.L. Evaluating the Effect of Startling and Surprising Events in Immersive Training Systems for Emergency Response. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Boston, MA, USA, 22–26 October 2012. [Google Scholar]
- Miller, M.W.; Curtin, J.J.; Patrick, C.J. A startle-probe methodology for investigating the effects of active avoidance on negative emotional reactivity. Biol. Psychol. 1999, 50, 235–257. [Google Scholar] [CrossRef]
- Blumenthal, T.D. Startle modification: Implications for neuroscience, cognitive science, and clinical science. In Short Lead Interval Startle Modification; Cambridge University Press: Cambridge, UK, 1999; pp. 51–71. [Google Scholar]
- Yamasakp, K.; Miyata, Y. Facilitation of human startle eyeblink responses by pure-tone background stimulation. Jpn. Psychol. Res. 1982, 24, 161–164. [Google Scholar] [CrossRef]
- Evinger, C.; Manning, K.A. Pattern of extraocular muscle activation during reflex blinking. Exp. Brain Res. 1993, 92, 502–506. [Google Scholar] [CrossRef]
- Hackley, S.A.; Boelhouwer, A.J.W. The more or less startling effects of weak prestimulation—revisited: Prepulse modulation of multicomponent blink reflexes. In Attention and Orienting: Sensory and Motivational Processes; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1997; pp. 205–227. [Google Scholar]
- Quezada-Scholz, V.E.; Laborda, M.A.; San Martín, C.; Miguez, G.; Alfaro, F.; Mallea, J.; Díaz, F. Cued fear conditioning in humans using immersive Virtual Reality. Learn. Motiv. 2022, 78, 101803. [Google Scholar] [CrossRef]
- Courtney, C.G.; Dawson, M.E.; Schell, A.M.; Iyer, A.; Parsons, T.D. Better than the real thing: Eliciting fear with moving and static computer-generated stimuli. Int. J. Psychophysiol. 2010, 78, 107–114. [Google Scholar] [CrossRef]
- Mühlberger, A.; Wieser, M.J.; Pauli, P. Darkness-enhanced startle responses in ecologically valid environments: A virtual tunnel driving experiment. Biol. Psychol. 2008, 77, 47–52. [Google Scholar] [CrossRef]
- Alvarez, R.P.; Johnson, L.; Grillon, C. Contextual-specificity of short-delay extinction in humans: Renewal of fear-potentiated startle in a virtual environment. Learn. Mem. 2007, 14, 247–253. [Google Scholar] [CrossRef]
- Cuperus, A.A.; Laken, M.; van den Hout, M.A.; Engelhard, I.M. Degrading emotional memories induced by a virtual reality paradigm. J. Behav. Ther. Exp. Psychiatry 2016, 52, 45–50. [Google Scholar] [CrossRef]
- Gandiglio, G.; Fra, L. Further observations on facial reflexes. J. Neurol. Sci. 1967, 5, 273–285. [Google Scholar] [CrossRef]
- Bischoff, C.; Liscic, R.; Meyer, B.U.; Machetanz, J.; Conrad, B. Magnetically elicited blink reflex: An alternative to conventional electrical stimulation. Electromyogr. Clin. Neurophysiol. 1993, 33, 265–269. [Google Scholar]
- Lissek, S.; Baas, J.M.P.; Pine, D.S.; Orme, K.; Dvir, S.; Nugent, M.; Rosenberger, E.; Rawson, E.; Grillon, C. Airpuff startle probes: An efficacious and less aversive alternative to white-noise. Biol. Psychol. 2005, 68, 283–297. [Google Scholar] [CrossRef]
- Berg, W.K.; Balaban, M.T. Startle elicitation: Stimulus parameters, recording techniques, and quantification. In Startle Modification: Implications for Neuroscience, Cognitive Science, and Clinical Science; Cambridge University Press: Cambridge, UK, 1999; pp. 21–50. [Google Scholar]
- Grillon, C.; Ameli, R. Effects of threat and safety signals on startle during anticipation of aversive shocks, sounds, or airblasts. J. Psychophysiol. 1998, 12, 329–337. [Google Scholar]
- Beise, R.D.; Kohllöffel, L.U.E.; Claus, D. Blink reflex induced by controlled, ballistic mechanical impacts. Muscle Nerve 1999, 22, 443–448. [Google Scholar] [CrossRef]
- Ueoka, R.; Al Mutawaand, A.; Katsuki, H. Emotion hacking VR (EH-VR): Amplifying scary VR experience by accelerating real heart rate using false vibrotactile biofeedback. In Proceedings of the SA 2016—SIGGRAPH ASIA 2016 Emerging Technologies, Macao, China, 5–8 December 2016. [Google Scholar]
- Munoz, M.A.; Idrissi, S.; Sanchez-Barrera, M.B.; Fernandez-Santaella, M.C.; Vila, J. Tobacco craving and eyeblink startle modulation using 3D immersive environments: A pilot study. Psychol. Addict. Behav. 2013, 27, 243–248. [Google Scholar] [CrossRef]
- Robison-Andrew, E.J.; Duval, E.R.; Nelson, C.B.; Echiverri-Cohen, A.; Giardino, N.; Defever, A.; Norrholm, S.D.; Jovanovic, T.; Rothbaum, B.O.; Liberzon, I.; et al. Changes in trauma-potentiated startle with treatment of posttraumatic stress disorder in combat Veterans. J. Anxiety Disord. 2014, 28, 358–362. [Google Scholar] [CrossRef]
- Cornwell, B.R.; Johnson, L.; Berardi, L.; Grillon, C. Anticipation of public speaking in virtual reality reveals a relationship between trait social anxiety and startle reactivity. Biol. Psychiatry 2006, 59, 664–666. [Google Scholar] [CrossRef]
- Mertens, G.; Wagensveld, P.; Engelhard, I.M. Cue conditioning using a virtual spider discriminates between high and low spider fearful individuals. Comput. Hum. Behav. 2019, 91, 192–200. [Google Scholar] [CrossRef]
- Anton, C.; Mitrut, O.; Moldoveanu, A.; Moldoveanu, F.; Kosinka, J. A serious VR game for acrophobia therapy in an urban environment. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality, AIVR 2020, Utrecht, The Netherlands, 14–16 December 2020; IEEE Computer Society: Los Alamitos, CA, USA, 2020. [Google Scholar]
- Homayounpour, M.; Mortensen, J.D.; Merryweather, A.S. Auditory Warnings Invoking Startle Response Cause Faster and More Intense Neck Muscle Contractions Prior to Head Impacts. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; SAGE Publications: Los Angeles, CA, USA, 2019. [Google Scholar]
- Luttmer, N.G.; Truong, T.E.; Boynton, A.M.; Carrier, D.; Minor, M.A. Treadmill Based Three Tether Parallel Robot for Evaluating Auditory Warnings while Running. In Proceedings of the IEEE International Conference on Robotics and Automation, Paris, France, 31 May–31 August 2020; pp. 9135–9142. [Google Scholar]
- Noronha, H.; Campos, P. Harnessing Virtual Reality Nature to Promote Well-Being. Interact. Comput. 2021, 33, 353–366. [Google Scholar] [CrossRef]
- Hartley, C.A.; Phelps, E.A. Extinction Learning. In Encyclopedia of the Sciences of Learning; Seel, N.M., Ed.; Springer USA: Boston, MA, USA, 2012; pp. 1252–1253. [Google Scholar]
- Beery, T.; Jørgensen, K.A. Children in nature: Sensory engagement and the experience of biodiversity. Environ. Educ. Res. 2018, 24, 13–25. [Google Scholar] [CrossRef]
- Graham, F.K. The More or Less Startling Effects of Weak Prestimulation. Psychophysiology 1975, 12, 238–248. [Google Scholar] [CrossRef]
- Lehning, J.R. Technological innovation, commercialization, and regional development: Computer graphics in Utah, 1965–1978. Inf. Cult. 2016, 51, 479–499. [Google Scholar]
- van Weelden, E.; Alimardani, M.; Wiltshire, T.J.; Louwerse, M.M. Aviation and neurophysiology: A systematic review. Appl. Ergon. 2022, 105, 103838. [Google Scholar] [CrossRef] [PubMed]
- Feltman, K.A.; Bernhardt, K.A.; Kelley, A.M. Measuring the Domain Specificity of Workload Using EEG: Auditory and Visual Domains in Rotary-Wing Simulated Flight. Hum. Factors 2021, 63, 1271–1283. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhu, Q.; Li, S.; Song, Z.; Du, J. VR-Based Haptic Simulator for Subsea Robot Teleoperations. In Proceedings of the ASCE International Conference on Computing in Civil Engineering 2021, Orlando, FL, USA, 12–14 September 2021. [Google Scholar]
- Xia, P.; McSweeney, K.; Wen, F.; Song, Z.; Krieg, M.; Li, S.; Yu, X.; Crippen, K.; Adams, J.; Du, E.J. Virtual Telepresence for the Future of Rov Teleoperations: Opportunities and Challenges. In Proceedings of the SNAME 27th Offshore Symposium, Houston, TX, USA, 22 February 2022. [Google Scholar]
- Azadi, S.; Green, I.C.; Arnold, A.; Truong, M.; Potts, J.; Martino, M.A. Robotic Surgery: The Impact of Simulation and Other Innovative Platforms on Performance and Training. J. Minim. Invasive Gynecol. 2021, 28, 490–495. [Google Scholar] [CrossRef]
- Slater, M.; Usoh, M. Representations systems, perceptual position, and presence in immersive virtual environments. Presence Teleoperators Virtual Environ. 1993, 2, 221–233. [Google Scholar] [CrossRef]
- Richard, E.; Tijou, A.; Richard, P.; Ferrier, J.L. Multi-modal virtual environments for education with haptic and olfactory feedback. Virtual Real. 2006, 10, 207–225. [Google Scholar] [CrossRef]
- Dionisio, J. Virtual hell: A trip through the flames. IEEE Comput. Graph. Appl. 1997, 17, 11–14. [Google Scholar] [CrossRef]
- Ranasinghe, N.; Jain, P.; Karwita, S.; Tolley, D.; Do, E.Y.-L. Ambiotherm: Enhancing Sense of Presence in Virtual Reality by Simulating Real-World Environmental Conditions. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 1731–1742. [Google Scholar]
- Moon, T.; Kim, G. Design and Evaluation of a Wind Display for Virtual Reality. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, Hong Kong, 10–12 November 2004. [Google Scholar] [CrossRef]
- Nunez, D. How is presence in non-immersive, non-realistic virtual environments possible? In Proceedings of the 3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, Stellenbosch, South Africa, 3–5 November 2004; pp. 83–86. [Google Scholar]
- Deligiannidis, L.; Jacob, R.J.K. The VR Scooter: Wind and Tactile Feedback Improve User Performance. In Proceedings of the 3D User Interfaces (3DUI’06), Alexandria, VA, USA, 25–26 March 2006; pp. 143–150. [Google Scholar]
- Morton, M.H. Sensorama. U.S. Patent 3,050,870, 10 January 1961. [Google Scholar]
- Motekmedical. The Worlds Most Advanced Biomechanics Lab. Available online: https://www.motekmedical.com/solution/caren/ (accessed on 19 August 2022).
- Ronchi, E.; Mayorga, D.; Lovreglio, R.; Wahlqvist, J.; Nilsson, D. Mobile-powered head-mounted displays versus cave automatic virtual environment experiments for evacuation research. Comput. Animat. Virtual Worlds 2019, 30, e1873. [Google Scholar] [CrossRef]
- Cellini, R.; Paladina, G.; Mascaro, G.; Lembo, M.A.; Lombardo Facciale, A.; Ferrera, M.C.; Fonti, B.; Pergolizzi, L.; Buonasera, P.; Bramanti, P.; et al. Effect of Immersive Virtual Reality by a Computer Assisted Rehabilitation Environment (CAREN) in Juvenile Huntington’s Disease: A Case Report. Medicina 2022, 58, 919. [Google Scholar] [CrossRef]
- MacDonald, M.E.; Siragy, T.; Hill, A.; Nantel, J. Walking on Mild Slopes and Altering Arm Swing Each Induce Specific Strategies in Healthy Young Adults. Front. Sports Act. Living 2022, 3, 805147. [Google Scholar] [CrossRef]
- Parker, C.R.; Carrier, D.R.; Hollerbach, J.M. Validation of torso force feedback slope simulation through an energy cost comparison. In Proceedings of the 1st Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems; World Haptics Conference, WHC 2005, Pisa, Italy, 18–20 March 2005; IEEE: New York, NY, USA, 2005. [Google Scholar]
- Hollerbach, J.M.; Mills, R.; Tristano, D.; Christensen, R.R.; Thompson, W.B.; Xu, Y. Torso force feedback realistically simulates slope on treadmill-style locomotion interfaces. Int. J. Robot. Res. 2001, 20, 939–952. [Google Scholar] [CrossRef]
- Tristano, D.; Hollerbach, J.; Christensen, R. Slope display on a locomotion interface. In Experimental Robotics VI; Springer: London, UK, 2000. [Google Scholar]
- Hejrati, B.; Crandall, K.L.; Hollerbach, J.M.; Abbott, J.J. Kinesthetic force feedback and belt control for the treadport locomotion interface. IEEE Trans. Haptics 2015, 8, 176–187. [Google Scholar] [CrossRef]
- Tant, G.R.; Raitor, M.; Collins, S.H. Bump’em: An Open-Source, Bump-Emulation System for Studying Human Balance and Gait. In Proceedings of the IEEE International Conference on Robotics and Automation, Paris, France, 1 May–31 August 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Chesebrough, S.; Hejrati, B.; Hollerbach, J. The Treadport: Natural Gait on a Treadmill. Hum. Factors 2019, 61, 736–748. [Google Scholar] [CrossRef]
- Lefler, P. Olfactory Display for the Treadport Active Wind Tunnel; The University of Utah: Salt Lake City, UT, USA, 2012. [Google Scholar]
- Sokal, R.R. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W.H. Freeman: New York, NY, USA, 1995. [Google Scholar]
- Betancourt, J.; Wojtkowski, B.; Castillo, P.; Thouvenin, I. Exocentric control scheme for robot applications: An immersive virtual reality approach. IEEE Trans. Vis. Comput. Graph. 2022; early access. [Google Scholar] [CrossRef]
- Mine, M. Towards Virtual Reality for the masses: 10 years of research at Disney’s VR Studio. In Proceedings of the Workshop on Virtual Environments, EGVE’03, Zurich, Switzerland, 22–23 May 2003. [Google Scholar] [CrossRef]
Environment Off | Environment On: Heat, Wind, Scent, Moisture | |
---|---|---|
High Auditory Startle (90 dB) | Aud: High, Env: Off | Aud: High, Env: On |
Medium Auditory Startle (80 dB) | Aud: Med., Env: Off | Aud: Med., Env: On |
Background Noise Only (70 dB) | Aud: Off, Env: Off | Aud: Off, Env: On |
EMG and Survey | Bird | ||||
---|---|---|---|---|---|
Neck EMG | Back EMG | Eye EMG | Survey | ||
Env: On | Aud: High | −1.77 ± 0.94 | −1.98 ± 0.47 | −1.66 ± 0.71 | 3.30 ± 1.30 |
Aud: Med | −2.12 ± 0.85 | −1.87 ± 0.45 | −1.74 ± 0.57 | 3.00 ± 1.26 | |
Aud: Off | −2.31 ± 0.84 | −2.01 ± 0.33 | −2.27 ± 0.72 | 1.80 ± 1.15 | |
Env: Off | Aud: High | −1.98 ± 1.13 | −1.80 ± 0.50 | −1.70 ± 0.56 | 3.85 ± 0.99 |
Aud: Med | −1.89 ± 0.82 | −1.74 ± 0.51 | −1.87 ± 0.75 | 3.35 ± 1.23 | |
Aud: Off | −2.51 ± 0.68 | −1.90 ± 0.39 | −2.08 ± 0.66 | 1.60 ± 0.88 | |
Box Cox Transform: λ | 0.1484 | 0.2466 | 0.1958 | − | |
Degrees of Freedom: df | 112 | 108 | 112 | 119 | |
Audio: F(2,df) | 3.48 | 1.05 | 5.45 | 29.79 | |
Environment: F(1,df) | 0.12 | 2.69 | 0.00 | 1.25 | |
Aud*Env: F(2,df) | 0.76 | 0.07 | 0.55 | 1.15 | |
Audio: p | 0.034 * | 0.355 | 0.006 * | <0.001 * | |
Environment: p | 0.725 | 0.104 | 0.951 | 0.266 | |
Aud*Env: p | 0.472 | 0.929 | 0.580 | 0.319 |
EMG and Survey | Beam | ||||
---|---|---|---|---|---|
Neck EMG | Back EMG | Eye EMG | Survey | ||
Env: On | Aud: High | −0.91 ± 1.10 | −1.68 ± 0.89 | −1.34 ± 0.67 | 4.35 ± 0.88 |
Aud: Med | −1.07 ± 1.18 | −1.87 ± 1.08 | −1.22 ± 0.67 | 4.15 ± 1.23 | |
Aud: Off | −2.27 ± 0.88 | −2.40 ± 0.56 | −1.75 ± 0.65 | 2.95 ± 1.50 | |
Env: Off | Aud: High | −1.82 ± 1.03 | −1.71 ± 0.96 | −1.38 ± 0.69 | 4.50 ± 0.83 |
Aud: Med | −1.61 ± 0.91 | −1.90 ± 0.84 | −1.48 ± 0.67 | 4.10 ± 0.97 | |
Aud: Off | −2.34 ± 0.68 | −2.35 ± 0.70 | −1.93 ± 0.67 | 2.65 ± 1.27 | |
Box Cox Transform: λ | 0.1530 | 0.0993 | 0.2422 | − | |
Degrees of Freedom: df | 104 | 112 | 111 | 119 | |
Audio: F(2,df) | 11.10 | 5.96 | 6.19 | 23.13 | |
Environment: F(1,df) | 7.11 | <0.001 | 1.49 | 0.10 | |
Aud*Env: F(2,df) | 1.61 | 0.02 | 0.27 | 0.39 | |
Audio: p | <0.001 * | 0.004 * | 0.003 * | <0.001 * | |
Environment: p | 0.009 * | 0.992 | 0.224 | 0.748 | |
Aud*Env: p | 0.205 | 0.977 | 0.764 | 0.676 |
EMG and Survey | Thunder | ||||
---|---|---|---|---|---|
Neck EMG | Back EMG | Eye EMG | Survey | ||
Env: On | Aud: High | −1.81 ± 1.20 | −2.37 ± 0.90 | −1.28 ± 0.50 | 2.70 ± 1.34 |
Aud: Med | −1.68 ± 1.43 | −2.01 ± 0.98 | −1.03 ± 0.61 | 2.60 ± 1.39 | |
Aud: Off | −2.56 ± 0.77 | −2.51 ± 0.68 | −1.46 ± 0.81 | 2.50 ± 1.15 | |
Env: Off | Aud: High | −1.80 ± 1.60 | −1.91 ± 0.89 | −1.32 ± 0.51 | 3.70 ± 1.34 |
Aud: Med | −1.68 ± 1.19 | −2.00 ± 0.86 | −1.52 ± 0.67 | 3.35 ± 1.39 | |
Aud: Off | −2.30 ± 1.11 | −2.09 ± 0.96 | −1.60 ± 0.60 | 2.80 ± 1.20 | |
Box Cox Transform: λ | 0.0617 | 0.0571 | 0.2675 | − | |
Degrees of Freedom: df | 111 | 113 | 112 | 119 | |
Audio: F(2,df) | 3.67 | 1.03 | 1.83 | 1.80 | |
Environment: F(1,df) | 0.15 | 3.25 | 3.68 | 8.23 | |
Aud*Env: F(2,df) | 0.13 | 0.74 | 1.37 | 0.74 | |
Audio: p | 0.029 * | 0.362 | 0.165 | 0.170 | |
Environment: p | 0.704 | 0.074 ^ | 0.058 ^ | 0.004 * | |
Aud*Env: p | 0.878 | 0.477 | 0.257 | 0.480 |
Visual Levels | Eye EMG | Survey |
---|---|---|
Vis: Small (Bird) | −1.88 ± 0.69 | 3.28 ± 1.34 |
Vis: Large (Beam) | −1.51 ± 0.70 | 3.75 ± 1.29 |
Vis: Large w/Prem (Thunder) | −1.37 ± 0.63 | 2.93 ± 1.41 |
Degrees of Freedom: df | 186 | 179 |
Visual: F(2,df) | 6.08 | 5.52 |
Visual: p | 0.003 * | 0.005 * |
Premonition and Environment | Neck EMG | Back EMG | Survey | |
---|---|---|---|---|
Premonition: On (Thunder) | Env: On | −2.00 ± 1.22 | −2.29 ± 0.87 | 2.60 ± 1.28 |
Env: Off | −1.92 ± 1.34 | −1.99 ± 0.89 | 3.28 ± 1.34 | |
Premonition: Off (Beam) | Env: On | −1.37 ± 1.21 | −1.97 ± 0.91 | 3.82 ± 1.36 |
Env: Off | −1.94 ± 0.91 | −1.98 ± 0.88 | 3.75 ± 1.30 | |
Degrees of Freedom: df | 216 | 226 | 239 | |
Premonition: F(1,df) | 3.58 | 2.01 | 24.42 | |
Environment: F(1,df) | 2.42 | 1.54 | 3.28 | |
Prem*Env: F(1,df) | 4.12 | 1.60 | 4.85 | |
Premonition: p | 0.059 ^ | 0.157 | <0.001 * | |
Environment: p | 0.121 | 0.216 | 0.072 ^ | |
Prem*Env: p | 0.043 * | 0.207 | 0.028 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truong, T.E.; Luttmer, N.G.; Eshete, E.R.; Zaki, A.B.M.; Greer, D.D.; Hirschi, T.J.; Stewart, B.R.; Gregory, C.A.; Minor, M.A. Evaluating the Effect of Multi-Sensory Stimulation on Startle Response Using the Virtual Reality Locomotion Interface MS.TPAWT. Virtual Worlds 2022, 1, 62-81. https://doi.org/10.3390/virtualworlds1010005
Truong TE, Luttmer NG, Eshete ER, Zaki ABM, Greer DD, Hirschi TJ, Stewart BR, Gregory CA, Minor MA. Evaluating the Effect of Multi-Sensory Stimulation on Startle Response Using the Virtual Reality Locomotion Interface MS.TPAWT. Virtual Worlds. 2022; 1(1):62-81. https://doi.org/10.3390/virtualworlds1010005
Chicago/Turabian StyleTruong, Takara E., Nathaniel G. Luttmer, Ebsa R. Eshete, Alia B. M. Zaki, Derek D. Greer, Tren J. Hirschi, Benjamin R. Stewart, Cherry A. Gregory, and Mark A. Minor. 2022. "Evaluating the Effect of Multi-Sensory Stimulation on Startle Response Using the Virtual Reality Locomotion Interface MS.TPAWT" Virtual Worlds 1, no. 1: 62-81. https://doi.org/10.3390/virtualworlds1010005
APA StyleTruong, T. E., Luttmer, N. G., Eshete, E. R., Zaki, A. B. M., Greer, D. D., Hirschi, T. J., Stewart, B. R., Gregory, C. A., & Minor, M. A. (2022). Evaluating the Effect of Multi-Sensory Stimulation on Startle Response Using the Virtual Reality Locomotion Interface MS.TPAWT. Virtual Worlds, 1(1), 62-81. https://doi.org/10.3390/virtualworlds1010005