Genotoxic Aspects of Psychoactive Substances
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dinis-Oliveira, R.J. The genesis of a new open-access journal focused on the latest scientific advances in psychoactive substances. Psychoactives 2022, 1, 1–6. [Google Scholar] [CrossRef]
- Dinis-Oliveira, R.J.; Magalhães, T. Driving under the influence of psychotropic substances: A technical interpretation. Psychoactives 2022, 1, 7–15. [Google Scholar] [CrossRef]
- Huang, Y.H.; Zhang, Z.F.; Tashkin, D.P.; Feng, B.; Straif, K.; Hashibe, M. An epidemiologic review of marijuana and cancer: An update. Cancer Epidemiol. Biomarkers. Prev. 2015, 24, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Preston, R.J.; Hoffman, G.R. Genetic toxicology. In Casarett and Doull’s Toxicology: The Basic Science of Poisons, 8th ed.; Klaassen, C.D., Ed.; McGraw-Hill Education: New York, NY, USA, 2013; pp. 445–480. [Google Scholar]
- Zimmerman, S.; Zimmerman, A.M. Genetic effects of marijuana. Int. J. Addict. 1990, 25 (Suppl. S1), 19–33. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Lin, L.F. Genetic toxicology of abused drugs: A brief review. Mutagenesis 1998, 13, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, N.G.; Dinis-Oliveira, R.J. Drugs of abuse from a different Toxicological perspective: An updated review of cocaine genotoxicity. Arch. Toxicol. 2018, 92, 2987–3006. [Google Scholar] [CrossRef]
- Malacarne, I.T.; De Souza, D.V.; Rosario, B.D.A.; Viana, M.B.; Pereira, C.D.S.; Estadella, D.; Dos Santos, J.N.; Ribeiro, D.A. Genotoxicity, oxidative stress, and inflammatory response induced by crack-cocaine: Relevance to carcinogenesis. Environ. Sci. Pollut. Res. Int. 2021, 28, 14285–14292. [Google Scholar] [CrossRef]
- Maertens, R.M.; White, P.A.; Rickert, W.; Levasseur, G.; Douglas, G.R.; Bellier, P.V.; McNamee, J.P.; Thuppal, V.; Walker, M.; Desjardins, S. The genotoxicity of mainstream and sidestream marijuana and tobacco smoke condensates. Chem. Res. Toxicol. 2009, 22, 1406–1414. [Google Scholar] [CrossRef]
- Fabian-Morales, E.; Fernández-Cáceres, C.; Gudiño, A.; Andonegui Elguera, M.A.; Torres-Arciga, K.; Escobar Arrazola, M.A.; Tolentino García, L.; Alfaro Mora, Y.E.; Oliva-Rico, D.A.; Cáceres Gutiérrez, R.E.; et al. Genotoxicity of Marijuana in Mono-Users. Front. Psychiatry 2021, 12, 753562. [Google Scholar] [CrossRef]
- Kim, H.R.; Son, B.H.; Lee, S.Y.; Chung, K.H.; Oh, S.M. The Role of p53 in Marijuana Smoke Condensates-induced Genotoxicity and Apoptosis. Environ. Health Toxicol. 2012, 27, e2012017. [Google Scholar] [CrossRef]
- Russo, C.; Ferk, F.; Mišík, M.; Ropek, N.; Nersesyan, A.; Mejri, D.; Holzmann, K.; Lavorgna, M.; Isidori, M.; Knasmüller, S. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 2019, 93, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, N.G.; Ramos, D.L.; Dinis-Oliveira, R.J. Genetic toxicology and toxicokinetics of arecoline and related areca nut compounds: An updated review. Arch. Toxicol. 2021, 95, 375–393. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.B.; Dinis-Oliveira, R.J.; Oliveira, N.G. An updated review on the psychoactive, toxic and anticancer properties of kava. J. Clin. Med. 2022, 11, 4039. [Google Scholar] [CrossRef] [PubMed]
- Shafi, A.; Berry, A.J.; Sumnall, H.; Wood, D.M.; Tracy, D.K. New psychoactive substances: A review and updates. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320967197. [Google Scholar] [CrossRef] [PubMed]
- Luethi, D.; Liechti, M.E. Designer drugs: Mechanism of action and adverse effects. Arch. Toxicol. 2020, 94, 1085–1133. [Google Scholar] [CrossRef] [Green Version]
- Roque-Bravo, R.; Silva, R.S.; Malheiro, R.F.; Carmo, H.; Carvalho, F.; da Silva, D.D.; Silva, J.P. Synthetic Cannabinoids: A Pharmacological and Toxicological Overview. Annu. Rev. Pharmacol. Toxicol. 2022; 63, in press. [Google Scholar] [CrossRef]
- Cocchi, V.; Gasperini, S.; Hrelia, P.; Tirri, M.; Marti, M.; Lenzi, M. Novel Psychoactive Phenethylamines: Impact on Genetic Material. Int. J. Mol. Sci. 2020, 21, 9616. [Google Scholar] [CrossRef]
- Sezer, Y.; Jannuzzi, A.T.; Huestis, M.A.; Alpertunga, B. In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells. Toxicol. Res. 2020, 9, 734–774. [Google Scholar] [CrossRef]
- Lenzi, M.; Cocchi, V.; Cavazza, L.; Bilel, S.; Hrelia, P.; Marti, M. Genotoxic Properties of Synthetic Cannabinoids on TK6 Human Cells by Flow Cytometry. Int. J. Mol. Sci. 2020, 21, 1150. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, M.; Cocchi, V.; Gasperini, S.; Arfè, R.; Marti, M.; Hrelia, P. Evaluation of Cytotoxic and Mutagenic Effects of the Synthetic Cathinones Mexedrone, α-PVP and α-PHP. Int. J. Mol. Sci. 2021, 22, 6320. [Google Scholar] [CrossRef]
- Lenzi, M.; Gasperini, S.; Cocchi, V.; Tirri, M.; Marti, M.; Hrelia, P. Genotoxicological Characterization of (±)cis-4,4’-DMAR and (±)trans-4,4’-DMAR and Their Association. Int. J. Mol. Sci. 2022, 23, 5849. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, M.; Freyer, N.; Knöspel, F.; Oliveira, N.G.; Barcia, R.; Cruz, P.E.; Cruz, H.; Castro, M.; Santos, J.M.; Zeilinger, K.; et al. Self-assembled 3D spheroids and hollow-fibre bioreactors improve MSC-derived hepatocyte-like cell maturation in vitro. Arch. Toxicol. 2017, 91, 1815–1832. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, M.; Correia, J.C.; Camões, S.P.; Oliveira, N.G.; Cruz, P.; Cruz, H.; Castro, M.; Ruas, J.L.; Santos, J.M.; Miranda, J.P. The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells. Arch. Toxicol. 2017, 91, 2469–2489. [Google Scholar] [CrossRef] [PubMed]
- Serras, A.S.; Rodrigues, J.S.; Cipriano, M.; Rodrigues, A.V.; Oliveira, N.G.; Miranda, J.M. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front. Cell Dev. Biol. 2021, 9, 626805. [Google Scholar] [CrossRef] [PubMed]
- Štampar, M.; Tomc, J.; Filipič, M.; Žegura, B. Development of in vitro 3D cell model from hepatocellular carcinoma (HepG2) cell line and its application for genotoxicity testing. Arch. Toxicol. 2019, 93, 3321–3333. [Google Scholar] [CrossRef]
- Araújo, A.M.; Carvalho, F.; Guedes de Pinho, P.; Carvalho, M. Toxicometabolomics: Small Molecules to Answer Big Toxicological Questions. Metabolites 2021, 11, 692. [Google Scholar] [CrossRef]
- La Barbera, G.; Nommesen, K.D.; Cuparencu, C.; Stanstrup, J.; Dragsted, L.O. A Comprehensive Database for DNA Adductomics. Front. Chem. 2022, 10, 908572. [Google Scholar] [CrossRef]
- Behl, T.; Rachamalla, M.; Najda, A.; Sehgal, A.; Singh, S.; Sharma, N.; Bhatia, S.; Al-Harrasi, A.; Chigurupati, S.; Vargas-De-La-Cruz, C.; et al. Applications of Adductomics in Chemically Induced Adverse Outcomes and Major Emphasis on DNA Adductomics: A Pathbreaking Tool in Biomedical Research. Int. J. Mol. Sci. 2021, 22, 10141. [Google Scholar] [CrossRef]
Aspects to be Further Considered | Possible Experimental Approaches |
---|---|
Level of exposure | Evaluation of realistic or pharmacological concentrations and doses of the drugs used in the in vitro and in vivo experimental studies, respectively. |
Duration of exposure | Assessment of genotoxicity endpoints in long-term exposure experiments with the purpose of mimicking the repeated and chronic behavior patterns found in many drug users and addicts. |
Concomitant exposure | Evaluation of the genotoxicity displayed by mixtures of psychoactive substances, either illicit or prescribed, to assess possible toxicological interactions that may occur (synergistic, potentiation, additive, and antagonism). |
Advanced cell models | Advanced cell models, alternative to the use of experimental animals and more representative of the physiological conditions, can adequately be adopted also in this field, namely, resorting to three-dimensional (3D) cultures or human stem cell-derived models with metabolic competence, e.g., [23,24,25,26]. |
Additional genotoxicity endpoints | Experiments using novel or emerging genotoxicity endpoints or integrating mechanistically complementary assays in the same study should be determinant to gather more information and obtain conclusive findings. |
Mechanistic studies | Experiments exploring pathways associated with DNA damage and repair, biotransformation, redox signaling, and apoptosis could be important to comprehend in detail the genotoxic mechanisms involved (mode of action), which can be relevant for cancer risk assessment purposes. |
In silico approaches | Computational tools could be important also in this topic of genetic toxicology, particularly to predict the genotoxicity of NPS. |
Metabolome studies | Analysis of the endo- (i.e., intracellular metabolites) and exometabolome (i.e., extracellular metabolites secreted by the cells) of human cells exposed to genotoxic concentrations of the drugs may provide valuable mechanistic information. Toxicometabolomics is undoubtedly an emerging field with multiple applications in toxicological research, including for psychoactive substances (reviewed in [27]). |
Adductomic studies | Analysis of the adductome of cells exposed to psychoactive substances using different techniques could be very useful to understand the mode of action of genotoxic psychoactive agents. Some comprehensive articles focusing on adductomics in different contexts have been recently published [28,29]. |
Human data and biomarkers | Conducting additional genotoxicity studies with human populations exposed at different drug levels could be very informative. Biomarkers of exposure, effect, and susceptibility should be studied in this context. The validated cytogenetic endpoints for cancer, i.e., chromosome aberrations and micronuclei in human lymphocytes, can be used as biomarkers of early biological effects. The association of these biomarkers with biomarkers of susceptibility (e.g., genetic polymorphisms in DNA repair and biotransformation genes) could lead to the identification of genotypes at differential risk. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, N.G.; Dinis-Oliveira, R.J. Genotoxic Aspects of Psychoactive Substances. Psychoactives 2022, 1, 64-69. https://doi.org/10.3390/psychoactives1020007
Oliveira NG, Dinis-Oliveira RJ. Genotoxic Aspects of Psychoactive Substances. Psychoactives. 2022; 1(2):64-69. https://doi.org/10.3390/psychoactives1020007
Chicago/Turabian StyleOliveira, Nuno G., and Ricardo Jorge Dinis-Oliveira. 2022. "Genotoxic Aspects of Psychoactive Substances" Psychoactives 1, no. 2: 64-69. https://doi.org/10.3390/psychoactives1020007
APA StyleOliveira, N. G., & Dinis-Oliveira, R. J. (2022). Genotoxic Aspects of Psychoactive Substances. Psychoactives, 1(2), 64-69. https://doi.org/10.3390/psychoactives1020007