Evaluation of the Effectiveness of Buprenorphine-Naloxone on Opioid Overdose and Death among Insured Patients with Opioid Use Disorder in the United States
Abstract
:1. Introduction
2. Study Rationale and Objective
3. Materials and Methods
4. Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manchikanti, L.; Vanaparthy, R.; Atluri, S.; Sachdeva, H.; Kaye, A.D.; Hirsch, J.A. COVID-19 and the opioid epidemic: Two public health emergencies that intersect with chronic pain. Pain Ther. 2021, 10, 269–286. [Google Scholar] [CrossRef]
- National Institute on Drug Abuse. Overdose Death Rates. Published 20 January 2022. Available online: https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates (accessed on 22 August 2022).
- Millett, G.A.; Jones, A.T.; Benkeser, D.; Baral, S.; Mercer, L.; Beyrer, C.; Honermann, B.; Lankiewicz, E.; Mena, L.; Crowley, J.S.; et al. Assessing differential impacts of COVID-19 on black communities. Ann. Epidemiol. 2020, 47, 37–44. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Information about Medication-Assisted Treatment (MAT). Updated 2019. Available online: https://www.fda.gov/drugs/information-drug-class/information-about-medication-assisted-treatment-mat (accessed on 9 August 2022).
- National Academies of Sciences, Engineering, and Medicine. Medications for Opioid Use Disorder Save Lives; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Kampman, K.; Jarvis, M. American Society of Addiction Medicine (ASAM) national practice guideline for the use of medications in the treatment of addiction involving opioid use. J. Addict. Med. 2015, 9, 358–367. [Google Scholar] [CrossRef]
- Dunlap, B.; Cifu, A.S. Clinical management of opioid use disorder. JAMA 2016, 316, 338–339. [Google Scholar] [CrossRef] [PubMed]
- Crotty, K.; Freedman, K.I.; Kampman, K.M. Executive summary of the focused update of the ASAM national practice guideline for the treatment of opioid use disorder. J. Addict. Med. 2020, 14, 99–112. [Google Scholar] [CrossRef]
- Ling, W.; Amass, L.; Shoptaw, S.; Annon, J.J.; Hillhouse, M.; Babcock, D.; Brigham, G.; Harrer, J.; Reid, M.; Muir, J.; et al. A multi-center randomized trial of buprenorphine–naloxone versus clonidine for opioid, detoxification: Findings from the National Institute on Drug Abuse Clinical Trials Network. Addiction 2005, 100, 1090–1100. [Google Scholar] [CrossRef]
- D’Onofrio, G.; O’Connor, P.G.; Pantalon, M.V.; Chawarski, M.C.; Busch, S.H.; Owens, P.H.; Bernstein, S.L.; Fiellin, D.A. Emergency department–initiated buprenorphine/naloxone treatment for opioid dependence: A randomized clinical trial. JAMA 2015, 313, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Preuss, C.V.; Kalava, A.; King, K.C. Prescription of Controlled Substances: Benefits and Risks; StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2019. [Google Scholar]
- Kosten, T.R.; Baxter, L.E. Effective management of opioid withdrawal symptoms: A gateway to opioid dependence treatment. Am. J. Addict. 2019, 28, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.A.; Chiodo, L.M.; Bosse, J.D.; Wilson, A. The next stage of buprenorphine care for opioid use disorder. Ann. Intern. Med. 2018, 169, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Hernán, M.A.; Robins, J.M. Using big data to emulate a target trial when a randomized trial is not available. Am. J. Epidemiol. 2016, 183, 758–764. [Google Scholar] [CrossRef]
- Hernán, M.A.; Robins, J.M. Causal Inference: What If; Chapman & Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Lesko, C.R.; Edwards, J.K.; Cole, S.R.; Moore, R.D.; Lau, B. When to censor? Am. J. Epidemiol. 2018, 187, 623–632. [Google Scholar] [CrossRef]
- Hickman, M.; Steer, C.; Tilling, K.; Lim, A.G.; Marsden, J.; Millar, T.; Strang, J.; Telfer, M.; Vickerman, P.; Macleod, J. The impact of buprenorphine and methadone on mortality: A primary care cohort study in the United Kingdom. Addiction 2018, 113, 1461–1476. [Google Scholar] [CrossRef] [PubMed]
- Sordo, L.; Barrio, G.; Bravo, M.J.; Indave, B.I.; Degenhardt, L.; Wiessing, L.; Ferri, M.; Pastor-Barriuso, R. Mortality risk during and after opioid substitution treatment: Systematic review and meta-analysis of cohort studies. BMJ 2017, 357, j1550. [Google Scholar] [CrossRef] [PubMed]
- Larochelle, M.R.; Bernson, D.; Land, T.; Stopka, T.J.; Wang, N.; Xuan, Z.; Bagley, S.M.; Liebschutz, J.M.; Walley, A.Y. Medication for opioid use disorder after nonfatal opioid overdose and association with mortality: A cohort study. Ann. Intern. Med. 2018, 169, 137–145. [Google Scholar] [CrossRef]
- Tonelli, M.; Wiebe, N.; Fortin, M.; Guthrie, B.; Hemmelgarn, B.R.; James, M.T.; Klarenbach, S.W.; Lewanczuk, R.; Manns, B.J.; Ronksley, P.; et al. Methods for identifying 30 chronic conditions: Application to administrative data. BMC Med. Inform. Decis. Mak. 2016, 15, 31. [Google Scholar] [CrossRef] [PubMed]
- Stein, B.D.; Gordon, A.J.; Sorbero, M.; Dick, A.W.; Schuster, J.; Farmer, C. The impact of buprenorphine on treatment of opioid dependence in a Medicaid population: Recent service utilization trends in the use of buprenorphine and methadone. Drug Alcohol Depend. 2012, 123, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Olfson, M.; Wall, M.; Wang, S.; Crystal, S.; Blanco, C. Service use preceding opioid-related fatality. Am. J. Psychiatry 2018, 175, 538–544. [Google Scholar] [CrossRef]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Analyzing Prescription Data and Morphine Milligram Equivalents (MME). Available online: https://www.cdc.gov/drugoverdose/resources/data.html (accessed on 9 August 2020).
- Powell, T.M.; Bagnell, M.E. Your “survival” guide to using time-dependent covariates. Proc. SAS Glob. Forum. 2012, 2012, 22–25. [Google Scholar]
- Thomas, L.; Reyes, E.M. Tutorial: Survival estimation for Cox regression models with time-varying coefficients using SAS and R. J. Stat. Softw. 2014, 61, 1–23. [Google Scholar] [CrossRef]
- Cole, S.R.; Hernán, M.A. Constructing inverse probability weights for marginal structural models. Am. J. Epidemiol. 2008, 168, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Breskin, A.; Cole, S.R.; Westreich, D. Exploring the subtleties of inverse probability weighting and marginal structural models. Epidemiology (Camb. Mass.) 2018, 29, 352. [Google Scholar] [CrossRef] [PubMed]
- Hernán, M.A.; McAdams, M.; McGrath, N.; Lanoy, E.; Costagliola, D. Observation plans in longitudinal studies with time-varying treatments. Stat. Methods Med. Res. 2009, 18, 27–52. [Google Scholar] [CrossRef]
- Buchanan, A.L.; Hudgens, M.G.; Cole, S.R.; Adimora, A.A.; Women’s Interagency HIV Study. Worth the weight: Using inverse probability weighted Cox models in AIDS research. AIDS Res. Hum. Retrovir. 2014, 30, 1170–1177. [Google Scholar] [CrossRef]
- Hernán, M.Á.; Brumback, B.; Robins, J.M. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000, 11, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Howe, C.J.; Cole, S.R.; Westreich, D.J.; Greenland, S.; Napravnik, S.; Eron, J.J., Jr. Splines for trend analysis and continuous confounder control. Epidemiology 2011, 22, 874–875. [Google Scholar] [CrossRef]
- Ding, P.; VanderWeele, T.J. Sensitivity analysis without assumptions. Epidemiology 2016, 27, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Mathur, M.B.; Ding, P.; Riddell, C.A.; VanderWeele, T.J. Website and R package for computing E-values. Epidemiology 2018, 29, e45–e47. [Google Scholar] [CrossRef]
- VanderWeele, T.J.; Ding, P. Sensitivity analysis in observational research: Introducing the E-value. Ann. Intern. Med. 2017, 167, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.R.; Hernán, M.A. Adjusted survival curves with inverse probability weights. Comput. Methods Programs Biomed. 2004, 75, 45–49. [Google Scholar] [CrossRef]
- Williams, A.R.; Samples, H.; Crystal, S.; Olfson, M. Acute care, prescription opioid use, and overdose following discontinuation of long-term buprenorphine treatment for opioid use disorder. Am. J. Psychiatry 2020, 177, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-Y.; Krawczyk, N.; Schneider, K.E.; Ferris, L.; Eisenberg, M.; Richards, T.M.; Lyons, B.C.; Jackson, K.; Weiner, J.P.; Saloner, B. A predictive risk model for nonfatal opioid overdose in a statewide population of buprenorphine patients. Drug Alcohol Depend. 2019, 201, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.R.; Schackman, B.R.; Weinstein, Z.M.; Walley, A.Y.; Linas, B.P. Overdose following initiation of naltrexone and buprenorphine medication treatment for opioid use disorder in a United States commercially insured cohort. Drug Alcohol Depend. 2019, 200, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.A.; Yoo, C.; Huang, D.; Saxon, A.J.; Hser, Y.I. Effects of access barriers and medication acceptability on buprenorphine-naloxone treatment utilization over 2 years: Results from a multisite randomized trial of adults with opioid use disorder. J. Subst. Abus. Treat. 2019, 106, 19–28. [Google Scholar] [CrossRef]
- Cooper, H.L.; Cloud, D.H.; Young, A.M.; Freeman, P.R. When Prescribing Isn’t Enough-Pharmacy-Level Barriers to Buprenorphine Access. N. Engl. J. Med. 2020, 383, 703–705. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Young, J.G.; Toh, S. Estimating effects of dynamic treatment strategies in pharmacoepidemiologic studies with time-varying confounding: A primer. Curr. Epidemiol. Rep. 2017, 4, 288–297. [Google Scholar] [CrossRef]
- Haneuse, S.; VanderWeele, T.J.; Arterburn, D. Using the E-value to assess the potential effect of unmeasured confounding in observational studies. JAMA 2019, 321, 602–603. [Google Scholar] [CrossRef] [PubMed]
- Funk, M.J.; Landi, S.N. Misclassification in administrative claims data: Quantifying the impact on treatment effect estimates. Curr. Epidemiol. Rep. 2014, 1, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.A.; Lin, H.M.; Prabhakar, G.; McCormick, P.J.; Egorova, N.N. Alive or dead: Validity of the social security administration death master file after 2011. Health Serv. Res. 2019, 54, 24–33. [Google Scholar] [CrossRef]
Protocol Element | Conceptual Randomized Trial | Retrospective Cohort Study (Emulating the Conceptual Trial Using Routinely-Collected Data) |
---|---|---|
Eligibility criteria | Adults living with opioid use disorder (OUD) between 2010 and 2017 who have not received pharmacological treatment for OUD during the year before screening. | Same as the target trial. Use medical records and pharmacy claims to identify patients with OUD who have not received pharmacological treatment during the previous year. Require continuous enrollment for the screening year to ensure the continuity of the available information. |
Treatment arms | Treatment arm: receiving buprenorphine-naloxone (BUP-NX) though the follow-up period; Control arm: placebo. | The active treatment is defined as the same as the treatment arm in the target trial. Placebo is unavailable in the claims data. Not receiving BUP-NX was defined as the comparison group. Use pharmacy claims to derive the BUP-NX dispensing information. |
Treatment assignment procedures | After recruitment and screening, eligible patients are randomly assigned to either the treatment arm or the placebo arm. | Cannot perform randomization. Adjust for measured baseline and prognostic time-varying variables using statistical methods. |
Follow-up period | The follow-up starts at the randomization. Patients are followed until endpoint occurs, loss-to-follow-up, or two years after the randomization, whichever happens first. | Without the milestone of randomization, the follow-up starts at the time when patients are first considered as eligible. |
Endpoints | 1. Opioid overdose; 2. All-cause mortality. | Same as the conceptual trial. |
Causal parameters of interest | As-treated effects | Same as the conceptual trial. |
Analysis Plan | Conduct statistical analysis using time-to-event methods. Estimate as-treated effect by comparing the hazard of endpoints using treatment adherence information adjusting for pre-specific baseline and prognostic variables associated with loss-to-follow-up and treatment adherence will be adjusted. | Use marginal structural models to estimate the effect of the time-varying treatment on endpoints adjusting for treatment dispensing, treatment history, measured baseline and time-varying confounders, and selection bias due to differential loss-to-follow-up. |
Baseline Characteristics | Overall Cohort (n = 58,835) |
---|---|
Age (years) at beginning of follow-up, Mean (SD) [IQR] | 51 (17.6) [37, 63] |
Gender, n (%) | |
Female | 30,114 (51.2) |
Male | 28,721 (48.8) |
Region, n (%) | |
Midwest | 10,615 (18.0) |
Northeast | 7361 (12.5) |
South | 26,267 (44.7) |
West | 14,592 (24.8) |
Insurance type, n (%) | |
Commercial | 32,551 (55.33) |
Medicare Advantage | 26,284 (44.67) |
Insurance product, n (%) * | |
Exclusive provider organization | 3749 (6.4) |
Health maintenance organization | 16,095 (27.4) |
Point of service | 24,639 (41.9) |
Preferred provider organization | 3484 (5.9) |
Others | 10,868 (18.5) |
Medical conditions during baseline period, n (%) | |
Chronic pain | 46,559 (79.13) |
Depression | 27,847 (47.33) |
Opioid overdose | 2345 (3.99) |
Alcohol use disorder | 9011 (15.32) |
CCI at baseline, Mean (SD) [minimum, maximum] | 1 (1.64) [0, 12] |
Parameter | Endpoint | ||
---|---|---|---|
First Opioid Overdose | Death | Composite Endpoint | |
Unadjusted model | |||
Total person-time, unit: person-year | 63,910.6 | 65,180.2 | 63,881.6 |
Average follow-up time, unit: year | 1.086 | 1.167 | 1.086 |
Number of events, n (%) | 1908 (3.24) | 1051 (1.79) | 2874 (4.88) |
Patients received at least one BUP-NX during follow-up, n (%) | 5722 (9.73) | 5835 (9.92) | 5720 (9.72) |
HR (95% CI) | 0.71 (0.56, 0.88) | 0.11 (0.05, 0.23) | 0.50 (0.40, 0.62) |
Marginal structural model | |||
Weighted total person-time, unit: person-year | 64,906 | 66,897.5 | 65,183.76 |
Weighted follow-up time, Mean [Min, Max], unit: year | 1.10 | 1.14 | 1.11 |
Weighted number of events, n | 1904 | 1059 | 2874 |
HR (95% CI) | 0.66 (0.49, 0.91) | 0.24 (0.08, 0.75) | 0.58 (0.40, 0.84) |
Weight, Mean | 1.02 | 1.03 | 1.02 |
E-value | 2.4 | 7.8 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Katenka, N.; Kogut, S.; Bratberg, J.; Rich, J.; Buchanan, A. Evaluation of the Effectiveness of Buprenorphine-Naloxone on Opioid Overdose and Death among Insured Patients with Opioid Use Disorder in the United States. Pharmacoepidemiology 2022, 1, 101-112. https://doi.org/10.3390/pharma1030010
Sun T, Katenka N, Kogut S, Bratberg J, Rich J, Buchanan A. Evaluation of the Effectiveness of Buprenorphine-Naloxone on Opioid Overdose and Death among Insured Patients with Opioid Use Disorder in the United States. Pharmacoepidemiology. 2022; 1(3):101-112. https://doi.org/10.3390/pharma1030010
Chicago/Turabian StyleSun, Tianyu, Natallia Katenka, Stephen Kogut, Jeffrey Bratberg, Josiah Rich, and Ashley Buchanan. 2022. "Evaluation of the Effectiveness of Buprenorphine-Naloxone on Opioid Overdose and Death among Insured Patients with Opioid Use Disorder in the United States" Pharmacoepidemiology 1, no. 3: 101-112. https://doi.org/10.3390/pharma1030010
APA StyleSun, T., Katenka, N., Kogut, S., Bratberg, J., Rich, J., & Buchanan, A. (2022). Evaluation of the Effectiveness of Buprenorphine-Naloxone on Opioid Overdose and Death among Insured Patients with Opioid Use Disorder in the United States. Pharmacoepidemiology, 1(3), 101-112. https://doi.org/10.3390/pharma1030010