Co-Inoculation with Phosphate-Solubilizing Microorganisms of Rock Phosphate and Phosphogypsum and Their Effect on Growth Promotion and Nutrient Uptake by Ryegrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.3. Microorganisms Characterization
2.4. Soil Samples
2.5. Experimental Design and Treatments
2.6. Measurements
2.7. Statistical Analysis
3. Results and Discussion
3.1. Granulometric Characterization of Phosphate and Phosphogypsum
3.2. Composition and Properties of Phosphate Rock and Phosphogypsum
3.3. Mineralogical Analyzes
3.3.1. Microscopic Observations by SEM
3.3.2. Infrared Spectroscopy (IR)
3.3.3. Qualitative Analysis by X-ray Fluorescence
3.4. Plant Relative Growth
3.4.1. Effects of Isolates on Plant Growth
3.4.2. Dry Matter Yield
3.4.3. Shoot and Root Mineral Matter
3.4.4. Nutrient Uptake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zou, K.; Binkley, D.; Doxtader, K.G. New methods for estimating gross P mineralization and mobilization rates in soils. Plant Soil 1992, 147, 243–250. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Leong, J.; Teintze, M.; Schroth, M.N. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 1980, 286, 885–886. [Google Scholar] [CrossRef]
- Elkoca, E.; Turan, M.; Donmez, M.F. Effects of single, dual and triple inoculation with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarumbvphase oil on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris L. cv. ‘Elkoca-05′). J. Plant Nutr. 2010, 33, 2104–2119. [Google Scholar] [CrossRef]
- USEPA. National Emission Standards for Hazardous Air Pollutants; U.S. Environmental Protection Agency, Subpart R: Washington, DC, USA, 2002. [Google Scholar]
- FAOSTAT. Food Agriculture Organization of the United Nations How Published; FAOSTAT: Roma, Italy, 2014. [Google Scholar]
- Gu, K.; Chen, B. Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction. Construct. Build. Mater. 2020, 231, 117195. [Google Scholar] [CrossRef]
- Mashifana, T.P. Chemical treatment of phosphogypsum and its potential application Chemical treatment of phosphogypsum and its potential application for building and construction. Procedia Manuf. 2019, 35, 641–648. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, H.; Zheng, L.; Wang, K.; Li, H.; Wang, Y.; Feng, H. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application. J. Hazard. Mater. 2012, 241, 418–426. [Google Scholar] [CrossRef]
- Bisone, S.; Gautier, M.; Chatain, V.; Blanc, D. Spatial distribution and leaching behavior of pollutants from phosphogypsum stocked in a gypstack: Geochemical characterization and modelling. J. Environ. Manag. 2017, 193, 567–575. [Google Scholar] [CrossRef]
- Burnett, W.C.; Elzerman, A.W. Nuclide migration and the environmental radiochemistry of Florida phosphogypsum. J. Environ. Radioact. 2001, 54, 27–51. [Google Scholar] [CrossRef]
- Lopez, F.A.; Gazquez, M.; Alguacil, F.J.; Bolívar, J.P.; García-Díaz, I.; Lopez-Coto, I. Microencapsulation of phosphogypsum into a sulfur polymer matrix: Physicochemical and radiological characterization. J. Hazard. Mater. 2011, 192, 234–245. [Google Scholar] [CrossRef]
- Hentati, O.; Abrantes, N.; Caetano, A.L.; Bouguerra, S.; Gonçalves, F.; Rombke, J.; Pereira, R. Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. J. Hazard. Mater. 2015, 294, 80–89. [Google Scholar] [CrossRef]
- Ma, B.; Lu, W.; Su, Y.; Li, Y.; Gao, C.; He, X. Synthesis of a-hemihydrate gypsum from cleaner phosphogypsum. J. Clean. Prod. 2018, 195, 396–405. [Google Scholar] [CrossRef]
- Saadaoui, E.; Ghazel, N.; Ben Romdhane, C.; Massoudi, N. Phosphogypsum: Potential uses and problems—A review. Int. J. Environ. Res. 2017, 74, 558–567. [Google Scholar] [CrossRef]
- Tayibi, H.; Choura, M.; LÓpez, F.A.; Alguacil, F.J.; LÓpez-Delgado, A. Environmental impact and management of phosphogypsum, a review. J. Environ. Manag. 2009, 90, 2377–2386. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, R.; Souza, J.A.; Moreira, A.; Moraes, L.A.C. Phosphogypsum and vinasse application: Soil chemical properties and alfalfa productivity and nutritional characteristics. Rev. Caatinga 2017, 30, 213–219. [Google Scholar] [CrossRef]
- Papastefanou, C.; Stoulos, S.; Ioannidou, A.; Manolopoulou, A. The application of phosphogypsum in agriculture and the radiological impact. J. Environ. Radioact. 2006, 89, 188–198. [Google Scholar] [CrossRef]
- Prochnow, L.; Caires, E.; Rodrigues, E.C. Phosphogypsum use to improve subsoil acidity: The Brazilian experience. Better Crops Plant Food 2016, 100, 13–15. [Google Scholar]
- Elloumi, N.; Zouari, M.; Chaari, L.; Abdallah, F.B.; Woodward, S.; Kallel, M. Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ. Sci. Pollut. Res. Int. 2015, 22, 14829–14840. [Google Scholar] [CrossRef]
- Komnitsas, K.; Lazar, I.; Petrisor, I.G. Application of a vegetative cover on phosphogypsum stacks. Min. Eng. 1999, 12, 175–185. [Google Scholar] [CrossRef]
- Aransiola, S.A.; Ijah, U.J.J.; Abioye, O.P.; Bala, J.D. Microbial-aided phytoremediation of heavy metals contaminated soil: A review. Eur. J. Biol. Res. 2019, 9, 104–125. [Google Scholar]
- Dorjey, S.; Dolkar, D.; Sharma, R. Plant growth promoting rhizobacteria Pseudomonas: A review. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1335–1344. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Microbial transformations in the phosphorus cycle. Adv. Microb. Ecol. 1977, 1, 95–134. [Google Scholar]
- Illmer, P.; Schinner, F. Solubilization of inorganic phosphorus by microorganisms isolated from forest soils. Soil. Biol. Biochem. 1992, 24, 389–395. [Google Scholar] [CrossRef]
- Sharma, S.N.; Ray, S.B.; Pandey, S.L.; Prasad, R. Effect of irrigation, pyrites and phospho bacteria on the efficiency of rock phosphate applied to lentil. J. Agric. Sci. 1983, 101, 467–472. [Google Scholar] [CrossRef]
- Sharma, S.N.; Prasad, R. Mussoorie rock phosphate–pyrite mixture as phosphate fertilizer. Fert. Res. 1996, 45, 187–191. [Google Scholar] [CrossRef]
- Sharma, S.N.; Prasad, R. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residue and phosphatesolubilizing bacteria. J. Agric. Sci. 2003, 141, 359–369. [Google Scholar] [CrossRef]
- Tomer, S.; Suyal, D.C.; Goel, R. Biofertilizers: A timely approach for sustainable agriculture. In Plant-Microbe Interaction: An Approach to Sustainable Agriculture; Choudhary, D., Varma, A., Tuteja, N., Eds.; Springer: Singapore, 2016; pp. 375–395. [Google Scholar]
- Zhang, Z.H.; Rengel, Z.; Meney, K. Kinetics of ammonium, nitrate and phosphorus uptake by Canna indica and Schoenoplectusvalidus. Aquat. Bot. 2009, 91, 71–74. [Google Scholar] [CrossRef]
- Duan, Y.H.; Yin, X.M.; Zhang, Y.L.; Shen, Q.R. Mechanisms of enhanced rice growth and nitrogen uptake by nitrate. Pedosphere 2007, 17, 697–705. [Google Scholar] [CrossRef]
- Pérez-López, R.; Nieto, J.M.; López-Coto, I.; Aguado, J.L.; Bolivar, J.P.; Santisteban, M. Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment. Appl Geochem. 2010, 25, 705–715. [Google Scholar] [CrossRef]
- El Zrelli, R.; Rabaoui, L.; Daghbouj, N.; Abda, H.; Castet, S.; Josse, C.; van Beek, P.; Souhaut, M.; Michel, S.; Bejaoui, N.; et al. Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): High mining potential and implications for environmental protection. Environ. Sci. Pollut. Res. Int. 2018, 15, 14690–14702. [Google Scholar] [CrossRef]
- Zemni, S.; Hajji, M.; Triki, M.; M’nif, A.; Hamzaoui, A.H. Study of phosphogypsum transformation into calcium silicate and sodium sulfate and their physicochemical characterization. J. Clean. Prod. 2018, 198, 873–881. [Google Scholar] [CrossRef]
- Patten, C.L.; Glick, B.R. Role of Pseudomonas putida indolacetic acid in development of host plant root system. Appl. Environ. Micobiol. 2002, 68, 3795–3801. [Google Scholar] [CrossRef] [PubMed]
- Jalali, J.; Gaudin, P.; Capiaux, H.; Ammar, E.; Lebeau, T. Fate and transport of metal trace elements from phosphogypsum piles in Tunisia and their impact on soil bacteria and wild plants. Ecotoxicol. Environ. Saf. 2019, 174, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Götz, M.; Nirenberg, H.; Krause, S.; Wolters, H.; Draeger, S.; Buchner, A.; Lottmann, J.; Berg, G.; Smalla, K. Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS. Microbiol. Ecol. 2006, 58, 404–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, T.B.; Gonçalves, M.C.; Castanheira, N.L.; Martins, J.C.; Santos, F.L.; Prazeres, A.; Fernandes, M.L. Effect of sodium and nitrogen on yield function of irrigated maize in southern Portugal. Agric.Water Manag. 2009, 96, 585–594. [Google Scholar] [CrossRef]
- Hussain, M.I.; Asghar, H.N.; Arshad, M.; Shahabaz, M. Screening of multi-traits rhizobacteria to improvemaize growth under axenic conditions. J. Anim. Plant Sci. 2013, 23, 514–520. [Google Scholar]
- Zhou, X.; Wang, G.; Yang, F. Characteristics of growth, nutrient uptake, purification effect of Ipomoea aquatica, Lolium multiflorum, and Sorghum sudanense grown under different nitrogen levels. Desalination 2011, 273, 366–374. [Google Scholar] [CrossRef]
- Shi, R. Soil and Agricultural Chemistry Analysis; China Agricultural Press: Beijing, China, 1986; pp. 388–389. [Google Scholar]
- Al-Masri, M.S.; Amin, Y.; Ibrahim, S.; Al-Bich, F. Distribution of some trace metals in Syrian phosphogypsum. Appl. Geochem. 2004, 19, 747–753. [Google Scholar] [CrossRef]
- Reguigui, R.; SfarFelfoul, H.; Ben Ouezdou, M.; Clastres, P. Radionuclide levels and temporal variation in phosphogypsum. J. Radioanal. Nucl. Chem. 2005, 264, 719–722. [Google Scholar] [CrossRef]
- Feki, H.E.; Savariault, J.M.; Saleh, A.B. Structure refinements by the Rietveld method of partially substituted hydroxyapatite: Ca9Na0.5(PO4)4.5(CO3)1.5(OH)2. J. Alloys Compd. 1999, 287, 114. [Google Scholar] [CrossRef]
- Gmati, N.; Boughzala, K.; Abdellaoui, M.; Bouzouita, K. Mechanochemical synthesis of strontium britholites: Reaction mechanism. C. R. Chim. 2011, 14, 896–903. [Google Scholar] [CrossRef]
- Ibrahim, N.; Mamane, A.; Zanguina, A.; Khalid, I.; Anne, B.; Michel, B. Etudes physicochimiques du phosphate Marchand de Tahoua. J. Société Ouest-Afr. Chim. 2004, 18, 137–148. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wily and Sons Ltd.: Chichester, UK, 2001. [Google Scholar]
- Georgios, B.; Clément, P.; Lars, J.; Sander, B. Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 5, 29–36. [Google Scholar]
- Boughzala, K.; Fattah, N.; Bouzouita, K.; Ben Hassine, H. Etude minéralogique et chimique du phosphate naturel d’Oum El Khecheb (Gafsa, Tunisie). Sci. Matériaux 2015, 6, 11–29. [Google Scholar]
- Dumitras, D.G.; Marincea, S.; Fransolet, A.M. Brushite in the bat guano deposit from the dry Cioclovina Cave (Sureanu Mountains, Romania). N. Jahrb. Miner. Abh. 2004, 180, 45–64. [Google Scholar] [CrossRef]
- El Cadi, A.; Fakih Lanjri, A.; Lalilti, A.; Chouaibi, N.; Asskali, A.; Khaddor, M. Caractérisation de la fraction lipidique du phosphogypse: Origine et évaluation du degré de transformation des polluantsorganiques (Characterization of the lipid fraction of phosphogypsum: Origin and assessment of the degree of transformation of organic pollutants). Mater. Environ. Sci. 2014, 5, 2223–2229. [Google Scholar]
- Blum, J.; Herpin, U.; Melfi, A.J.; Montes, C.R. Soil properties in a sugarcane plantation after the application of treated sewage effluent and phosphogypsum in Brazil. Agric. Water Manag. 2012, 115, 203–216. [Google Scholar] [CrossRef]
- Jackson, M.E.; Naeth, M.A.; Chanasyk, D.S.; Nichol, C.K. Phosphogypsum capping depth affects revegetation and hydrology in western Canada. J. Environ. Qual. 2011, 40, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Saigusa, M.; Toma, M.; Nanzyo, M. Alleviation of subsoil acidity in nonallophanic andosols by phosphogypsum application in topsoil. Soil Sci. Plant Nutr. 1996, 42, 221–227. [Google Scholar]
- Zhang, X.C.; Miller, W.P.; Nearing, M.A.; Norton, L.D. Effects of surface treatment on surface sealing, runoff, and interrill erosion. Trans. ASAE 1998, 41, 989–994. [Google Scholar] [CrossRef]
- Bana, R.S.; Shivay, Y.S.; Sepat, S.; Rana, K.S.; Pooniya, V. Effect of summer forage crops and phosphogypsum-enriched urea on productivity of basmati rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. Res. Crops 2013, 14, 649–653. [Google Scholar]
- Elloumi, N.; Belhaj, D.; Mseddi, S.; Zouari, M.; Ben Abdallah, F.; Woodward, S.; Kallel, M. Response of Nerium oleander to phosphogypsum amendment and its potential use for phytoremediation. Ecol. Eng. 2017, 99, 164–171. [Google Scholar] [CrossRef]
- Biswas, J.K.; Banerjee, A.; Rai, M.; Naidu, R.; Biswas, B.; Vithanage, M.; Dash, M.C.; Sarkar, S.K.; Meers, E. Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphireposthuma) in plant growth promotion. Geoderma 2018, 330, 117–124. [Google Scholar] [CrossRef]
- Sulbaran, M.; Perez, E.; Ball, M.M.; Bahsas, A.; Yarzabal, L.A. Characterization of the mineral phosphate-solubilizing activity of Pantoeaaglomerans MMB051 isolated from an iron-rich soil in southeastern Venezuela (Bolivar state). Curr. Microbiol. 2009, 58, 378–383. [Google Scholar] [CrossRef]
- Ryan, R.P.; Monchy, S.; Cardinale, M.; Taghavi, S.; Crossman, L.; Avison, M.B.; Berg, G.; van der Lelie, D.; Dow, J.M. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 2009, 7, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Rajwar, J.; Chandra, R.; Suyal, D.C.; Tomer, S.; Kumar, S.; Goel, R. Comparative phosphate solubilizing efficiency of psychrotolerant Pseudomonas jesenii MP1 and Acinetobacter sp. ST02 against chickpea for sustainable hill agriculture. Biologia 2018, 73, 793–802. [Google Scholar] [CrossRef]
- Zaheer, A.; Malik, A.; Sher, A.; Qaisrani, M.M.; Mehmood, A.; Khan, S.U.; Ashraf, M.; Mirza, Z.; Karim, S.; Rasool, M. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J. Biol. Sci. 2019, 26, 1061–1067. [Google Scholar] [CrossRef]
- Kpomblekou, A.; Tabatabai, M. Effect of organic acids on release of phosphorus from phosphate rock. Soil Sci. 1994, 158, 442–453. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Van Themaat, E.V.L.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant. Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef]
- Dobbelaere, S.; Vanderleyden, J.; Okon, Y. Plant growth-promoting effects of dia-zotrophs in the rhizosphere. Crit. Rev. Plant. Sci. 2003, 22, 107–149. [Google Scholar] [CrossRef]
- Scavino, A.F.; Pedraza, R.O. The role of siderophores in plant growth-promoting bacteria. In Bacteria in Agrobiology: Crop Productivity; Maheshwari, D.K., Saraf, M., Aeron, A., Eds.; Springer-Verlag: Berlin/Heidelberg, Germay, 2013; pp. 265–285. [Google Scholar]
- Yanni, Y.G.; Rizk, R.Y.; El-Fattah, F.K.; Squartini, A.; Corich, V.; Giacomini, A.; De Bruijn, F.; Rademaker, J.; Maya-Flores, J.; Ostrom, P.; et al. The beneficial plant growth-promoting association of Rhizobium leguminosarumbv. trifolii with rice roots. Aust. J. Plant Physiol. 2001, 28, 845–870. [Google Scholar]
- Ping, L.Y.; Boland, W. Signals from the underground: Bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci. 2004, 9, 263–266. [Google Scholar] [CrossRef] [PubMed]
- de-Bashan, L.E.; Hernandez, J.-P.; Bashan, Y.; Maier, R.M. Bacillus pumilus ES4: Candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environ. Exp. Bot. 2010, 69, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Delétoile, A.; Decré, D.; Courant, S.; Passet, V.; Audo, J.; Grimont, P.; Arlet, G.; Brisse, S. Phylogeny and identification of Pantoea species and typing of Pantoeaagglomerans strains by multilocus gene sequencing. J. Clin. Microbiol. 2009, 47, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Trifi, H.; Ben Salem, I.; KolsiBenzina, N.; Fourati, A.; Costa, M.C.; Achouak, W.; Sghaier, H.; Saidi, M. Effectiveness of the plant growth-promoting rhizobacterium Pantoea spp. BRM17 in enhancing Brassica napus growth in phosphogypsum-amended soil. Pedosphere 2017, 17, 60454–60455. [Google Scholar]
- Zhang, Y.F.; He, L.Y.; Chen, Z.J.; Zhang, W.H.; Wang, Q.Y.; Qian, M.; Sheng, X.F. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J. Hazard. Mater. 2011, 186, 1720–1725. [Google Scholar] [CrossRef]
- Walterson, A.M.; Starinides, J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMSMicrobiol. Rev. 2015, 39, 968–984. [Google Scholar]
- Ikemoto, S.; Suzuki, K.; Kaneko, T.; Komagata, K. Characterization of strains of Pseudomonas maltophilia which do notrequire methionine. Int. J. Syst. Bacteriol. 1980, 30, 437–447. [Google Scholar] [CrossRef]
- Berg, G.; Knaape, C.; Ballin, G.; Seidel, D. Biological control of Verticillium dahliae KLEB by naturally occurring rhizosphere bacteria. Arch. Phytopathol. Dis. Prot. 1994, 29, 249–262. [Google Scholar] [CrossRef]
- Barra, P.J.; Pontigo, S.; Delgado, M.; Parra-Almuna, L.; Duran, P.; Valentine, A.J.; Jorquera, M.A.; de la Luz Mora, M. Phosphobacteria inoculation enhances the benefit of P–fertilization on Lolium perenne in soils contrasting in P–availability. Soil Biol. Biochem. 2019, 136, 107516. [Google Scholar] [CrossRef]
- Singh, S.; Kapoor, K.K. Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol. Fertil. Soils 1999, 28, 139–144. [Google Scholar] [CrossRef]
- Gull, M.; Hafeez, F.Y.; Saleem, M.; Malik, K.A. Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilising bacteria and a mixed rhizobial culture. Aust. J. Exp. Agric. 2004, 44, 623–628. [Google Scholar] [CrossRef]
- Lloyd, G.M. Phosphogypsum—A sulfur resource. Abstr. Pap. Am. Chem. Soc. 1989, 198, 31-FERT. [Google Scholar]
- Soratto, R.P.; Costa Crusciol, C.A. Nutrition and grain yield of black oats affected by surface application of lime and phosphogypsum at the establishment of no-tillage system. Rev. Bras. Ciencia Solo 2008, 32, 715–725. [Google Scholar] [CrossRef]
- Rechcigl, J.E.; Mislevy, P. Stargrass response to lime and phosphogypsum. J. Prod. Agric. 1997, 10, 101–105. [Google Scholar] [CrossRef]
- Enamorado, S.; Abril, J.M.; Delgado, A.; Más, J.L.; Polvillo, O.; Quintera, J.M. Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain. J. Hazard. Mater. 2014, 226, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.K.; Mishra, V.K.; Sharma, D.K.; Jha, S.K.; Singh, C.S.; Shahabuddin, M.; Shahid, M. Efficiency of phosphogypsum and mined gypsum in reclamation and productivity of rice-wheat cropping system in sodic soil. Commun. Soil Sci. Plant Anal. 2013, 44, 909–921. [Google Scholar] [CrossRef]
- Vicensi, M.; Muller, M.M.L.; Kawakami, J.; do Nascimento, R.; Michalovicz, L.; Lopes, C. Do rates and splitting of phosphogypsum applications influence the soil and annual crops in a No-tillage system? Rev. Bras. Ciência Solo 2016, 40. [Google Scholar] [CrossRef]
- Nayak, S.; Mishra, C.S.; Guru, B.C.; Rath, M. Effects of phosphogypsum amendment on soil physico-chemical properties, microbial and soil enzyme activities. J. Environ. Biol. 2011, 32, 613–617. [Google Scholar]
- Pratibha, R.; Sudeshna, D.; Deepti, S.; Shankhdhar, S.C. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar]
- Adesemoye, A.O.; Torbert, H.A.; Kloepper, J.W. Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl. Soil Ecol. 2010, 46, 54–58. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.M.; McNeill, A.M.; Prigent-Combaret, C. Acquistion of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Chabot, R.; Antoun, H.; Cescas, M.P. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 1996, 184, 311–321. [Google Scholar] [CrossRef]
- Morales Dr, A.; Alvear, M.; Valenzuela, E.; Rubio, R.; Borie, F. Effect of inoculation with Penicillium albidum, a phosphate-solubilizing fungus, on the growth of Trifolium pratense cropped in a volcanic soil. J. Basic Microb. 2007, 47, 275–280. [Google Scholar] [CrossRef]
- Requena, B.N.; Jimenez, I.; Toro, M.; Barea, J.M. Interactions between plant growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytiisoides, a model legume for revegetation in Mediterranean semi-arid ecosystem. New Phytol. 1997, 136, 667–677. [Google Scholar] [CrossRef]
- Al-Enazy, A.A.R.; Al-Oud, S.S.; Al-Barakah, F.N.; Usman, A.R.A. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil. J. Sci. Food Agric. 2017, 97, 3665–3674. [Google Scholar] [CrossRef]
- Vyshpolsky, F.; Mukhamedjanov, K.; Bekbaev, U.; Ibatullin, S.; Yuldashev, T.; Noble, A.D.; Mirzabaev, A.; Aw-Hassan, A.; Qadir, M. Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement. Agric. Water Manag. 2010, 97, 1277–1286. [Google Scholar] [CrossRef]
- Takasu, E.; Yamada, F.; Shimada, N.; Kumagai, N.; Hirabayashi, T.; Saigusa, M. Effect of phosphogypsum application on the chemical properties of Andosols, and the growth and Ca uptake of melon seedlings. Soil Sci. Plant Nutr. 2006, 52, 760–768. [Google Scholar] [CrossRef]
- Moreira, H.; Pereira, S.I.A.; Marques, A.P.G.C.; Rangel, A.O.S.S.; Castro, P.M.L. Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Environ. Sci Pollut. Res. 2015, 23, 6940–6950. [Google Scholar] [CrossRef]
- Dong, H. Mineral-microbe interactions: A review. Front. Earth Sci. 2010, 4, 127–147. [Google Scholar] [CrossRef]
- Hussain, A.; Adnan, M.; Iqbal, S.; Fahad, S.; Saeed, M.; Mian, I.A.; Muhammad, M.W.; Romman, M.; Perveez, R.; Wahid, F.; et al. Combining phosphorus (P) with phosphate solubilizing bacteria (PSB) improved wheat yield and P uptake in alkaline soil. Pure Appl. Biol. 2019, 8, 1809–1817. [Google Scholar] [CrossRef]
- Rawat, P.; Shankhdhar, D.; Shankhdhar, S.C. Plant growth-promoting rhizobacteria: A booster for ameliorating soil health and agriculture production. In Soil Health; Giri, B., Verma, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 59, pp. 47–68. [Google Scholar]
- Braud, A.; Hubert, M.; Gaudin, P.; Lebeau, T. A quick rhizobacterial selection tool to be used in phytoextraction-assisted bioaugmentation of metal contaminated soils. J. Appl. Microbiol. 2015, 119, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Liebeke, M.; Brozel, V.S.; Hecker, M.; Lalk, M. Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria. Appl. Microbiol. Biotechnol. 2009, 83, 161–173. [Google Scholar] [CrossRef] [PubMed]
Samples | Sieve | Material Retained in the Sieve (g) | Material Retained in the Sieve (%) | Accumulated Retained Material (%) | Accumulated Material That Passes (%) |
---|---|---|---|---|---|
PN (57.4 g) | No. 20 (0.850 mm) | 1.50 | 2.6 | 2.6 | 97.4 |
No. 40 (0.425 mm) | 3.2 | 5.6 | 8.2 | 91.8 | |
No. 60 (0.250 mm) | 5.2 | 9.1 | 17.2 | 82.8 | |
No. 140 (0.106 mm) | 36.6 | 63.8 | 81 | 19 | |
No. 200 (0.075 mm) | 2.6 | 4.5 | 85.5 | 14.5 | |
PG (57.4 g) | No. 20 (0.850 mm) | 0 | 0 | 0 | 100 |
No. 40 (0.425 mm) | 0 | 0 | 0 | 100 | |
No. 60 (0.250 mm) | 0 | 0 | 0 | 100 | |
No. 140 (0.106 mm) | 9.9 | 17.2 | 17.2 | 82.8 | |
No. 200 (0.075 mm) | 7.3 | 12.7 | 30 | 70 |
Samples | Stitch (μm) | Mass (g) | Rp (%) |
---|---|---|---|
PN | F > 2 mm | 0 | 0 |
75 μm < F <2 mm | 49.1 | 85.5 | |
F < 75 μm | 8.3 | 14.5 | |
Global Reconstituted | 57.4 | 100 | |
PG | F > 2 mm | 0 | 0 |
75 μm < F <2 mm | 17.2 | 30 | |
F < 75 μm | 40.2 | 70 | |
Global Reconstituted | 57.4 | 100 |
The Samples | P2O5 | Na2O | CaO | MgO | SiO2 | K2O | Al2O3 | FeO3 |
---|---|---|---|---|---|---|---|---|
PN | 23 | 0.842 | 56.17 | 0.75 | 8.67 | 0.24 | 1.15 | 0.57 |
PG | 0.4 | 0.505 | 37.1 | 0.09 | 1.09 | 0.07 | 0.08 | 0.15 |
Position in cm−1 And Intensities of Phosphate Bands | Position in cm−1 and Intensities Bands (References) | Band Identification | References |
---|---|---|---|
430 | [420–470] | υ (PO4) | [43,44] |
470 | |||
563 | [564.08–601.23] | Phosphate ions | [45] |
601 | |||
867 | 865.32 | Carbonated apatites | |
972 | 975 | P=O | [46] |
1021 | 1020 | Hydroxylapatite | [47] |
1418 | 1421 | Apatite | [47] |
1455 | [1453–1406] | CO2−3 | [48] |
1641 | 1641 | Calcium phosphate dibasic amorphas | [47] |
Position in cm−1 and Intensities of Bands | Position in cm−1 and Intensities Bands References | Band Identification | References |
---|---|---|---|
594 | 594 | υ (SO2−4) | [49] |
666 | 666 | ||
1096 | 1099 | Ɣ (SO2−4) | |
1618 | 1620 | υ (H2O) | [49] |
1680 | 1682 | ||
3245 | 3244 | Ɣ (H2O) | [50] |
3393 | 3399 | [49] |
Elements | Number or Intensity | ||
---|---|---|---|
PN | PG | Coverslip | |
Kα1 P | 1800 | - | - |
Kα1 S | 400 | 4800 | - |
Kα1 Ca | 27,800 | 15,700 | 4750 |
Kβ1 Ca | 4100 | 2400 | 800 |
Kα1 Fe | 1000 | 200 | 500 |
Lα1 Ag | 2200 | 2200 | 2200 |
Kα1 Si | - | - | 1300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amri, M.; Mateus, D.; Gatrouni, M.; Rjeibi, M.R.; Asses, N.; Abbes, C. Co-Inoculation with Phosphate-Solubilizing Microorganisms of Rock Phosphate and Phosphogypsum and Their Effect on Growth Promotion and Nutrient Uptake by Ryegrass. Appl. Biosci. 2022, 1, 179-197. https://doi.org/10.3390/applbiosci1020012
Amri M, Mateus D, Gatrouni M, Rjeibi MR, Asses N, Abbes C. Co-Inoculation with Phosphate-Solubilizing Microorganisms of Rock Phosphate and Phosphogypsum and Their Effect on Growth Promotion and Nutrient Uptake by Ryegrass. Applied Biosciences. 2022; 1(2):179-197. https://doi.org/10.3390/applbiosci1020012
Chicago/Turabian StyleAmri, Marwa, Dina Mateus, Marwa Gatrouni, Mohamed Ridha Rjeibi, Nedra Asses, and Chaabane Abbes. 2022. "Co-Inoculation with Phosphate-Solubilizing Microorganisms of Rock Phosphate and Phosphogypsum and Their Effect on Growth Promotion and Nutrient Uptake by Ryegrass" Applied Biosciences 1, no. 2: 179-197. https://doi.org/10.3390/applbiosci1020012
APA StyleAmri, M., Mateus, D., Gatrouni, M., Rjeibi, M. R., Asses, N., & Abbes, C. (2022). Co-Inoculation with Phosphate-Solubilizing Microorganisms of Rock Phosphate and Phosphogypsum and Their Effect on Growth Promotion and Nutrient Uptake by Ryegrass. Applied Biosciences, 1(2), 179-197. https://doi.org/10.3390/applbiosci1020012