Part I: Development and Implementation of the Ten, Five, Three (TFT) Model for Resistance Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Three Components of the PPP Model
2.1.1. Prevent
2.1.2. Prepare
2.1.3. Perform
2.2. The Three Components of the ADP Model
2.2.1. Assess
2.2.2. Develop
2.2.3. Perform
2.3. The Three Components of the TFT Model
2.3.1. Ten
- Improvements in body composition;
- Improved metabolic alterations, responses to stressors, and work capacity;
- Improvements in strength–endurance and power–endurance;
- Substantial increases in testosterone and growth hormone concentrations postexercise;
- Increased resting testosterone–cortisol ratio;
- Adequate development of physiological foundation for further, more specific resistance training.
- Squat;
- Step;
- Hinge;
- Lunge;
- Push;
- Pull;
- Carry.
2.3.2. Five
- Barbell back squat;
- Barbell front squat;
- Barbell bench press;
- Barbell incline bench press;
- Barbell overhead press;
- Barbell deadlift;
- Trap bar deadlift.
2.3.3. Three
- Landing;
- Jumping;
- Throwing;
- Clean variations;
- Jerk variations;
- Snatch variations.
2.4. Using the TFT Model to Guide Practice
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stone, M.; Suchomel, T.; Hornsby, W.; Wagle, J.; Cunanan, A. Strength and Conditioning in Sports: From Science to Practice; Routledge: New York, NY, USA, 2022. [Google Scholar]
- Stone, M.H.; Hornsby, W.G.; Suarez, D.G.; Duca, M.; Pierce, K.C. Training specificity for athletes: Emphasis on strength-power training: A narrative review. J. Funct. Morphol. Kinesiol. 2022, 7, 102. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; Hornsby, W.G.; Haff, G.G.; Fry, A.C.; Suarez, D.G.; Liu, J.S.; Gonzalez-Rave, J.M.; Pierce, K.C. Periodization and block periodization in sports: Emphasis on strength-power training—A provocative and challenging narrative. J. Strength Cond. Res. 2021, 35, 2351–2371. [Google Scholar] [CrossRef]
- Sands, W.A.; Wurth, J.J.; Hewit, J.K. Basics of Strength and Conditioning Manual; National Strength and Conditioning Association: Colorado Springs, CO, USA, 2012; Volume 1, pp. 100–104. [Google Scholar]
- Kenn Joe, M.A. CSCS Program Design for the Tier System. Strength Cond. 1997, 19, 66–73. [Google Scholar] [CrossRef]
- National Academy of Sports Medicine. The Optimum Performance Training Model. Available online: https://www.nasm.org/certified-personal-trainer/the-opt-model?srsltid=AfmBOorZ0PunKb0Tws8ipgtXKux_ShSt3EbV-h_cJffExFYWrVp6SO0Z (accessed on 13 May 2025).
- Lloyd, R.S.; Oliver, J.L. The youth physical development model: A new approach to long-term athletic development. Strength Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef]
- Johnson, Q.R. The TFT Approach to Athlete Development: An Applied Model for Strength and Conditioning Professionals. Quincy Johnson Fitness; 2025. Available online: https://quincyjohnsonfitness.com/2025/03/30/the-tft-approach-to-athlete-development-an-applied-model-for-strength-and-conditioning-professionals/ (accessed on 13 May 2025).
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Duncan, N.D.; Volek, J.S. Resistance training and elite athletes: Adaptations and program considerations. J. Orthop. Sports Phys. Ther. 1998, 28, 110–119. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Deschenes, M.R.; Fleck, S.J. Physiological adaptations to resistance exercise: Implications for athletic conditioning. Sports Med. 1988, 6, 246–256. [Google Scholar] [CrossRef]
- Bird, S.P.; Tarpenning, K.M.; Marino, F.E. Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Med. 2005, 35, 841–851. [Google Scholar] [CrossRef]
- Weldon, A.; Duncan, M.J.; Turner, A.; Lockie, R.G.; Loturco, I. Practices of strength and conditioning coaches in professional sports: A systematic review. Biol. Sport 2022, 39, 715–726. [Google Scholar] [CrossRef]
- Kukić, F.; Todorović, N.; Ćvorović, A.; Johnson, Q.; Dawes, J.J. Association of improvements in squat jump with improvements in countermovement jump without and with arm swing. Serbian J. Sports Sci. 2020, 11, 29–35. [Google Scholar]
- Holloway, J.B.; Baechle, T.R. Strength training for female athletes: A review of selected aspects. Sports Med. 1990, 9, 216–228. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R.; Wright, G.A.; Fleck, S.J. Strength training for athletes: Does it really help sports performance? Int. J. Sports Physiol. Perform. 2012, 7, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Naclerio, F.; Chapman, M.; Larumbe-Zabala, E.; Massey, B.; Neil, A.; Triplett, T.N. Effects of three different conditioning activity volumes on the optimal recovery time for potentiation in college athletes. J. Strength Cond. Res. 2015, 29, 2579–2585. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Faigenbaum, A.D.; Myer, G.D.; Stone, M.; Oliver, J.; Jeffreys, I.; Pierce, K.J.P.S.C. UKSCA position statement: Youth resistance training. Prof. Strength Cond. 2012, 26, 26–39. [Google Scholar]
- Faigenbaum, A.D.; Kraemer, W.J.; Blimkie, C.J.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth resistance training: Updated position statement paper from the national strength and conditioning association. J. Strength Cond. Res. 2009, 23, S60–S79. [Google Scholar] [CrossRef]
- Bishop, D. An applied research model for the sport sciences. Sports Med. 2008, 38, 253–263. [Google Scholar] [CrossRef]
- Tufano, J.J.; Brown, L.E.; Haff, G.G. Theoretical and practical aspects of different cluster set structures: A systematic review. J. Strength Cond. Res. 2017, 31, 848–867. [Google Scholar] [CrossRef]
- Haff, G.G.; Burgess, S.; Stone, M.H. Cluster training: Theoretical and practical applications for the strength and conditioning professional. Prof Strength Cond 2008, 12, 12–17. [Google Scholar]
- Kawamori, N.; Haff, G.G. The optimal training load for the development of muscular power. J. Strength Cond. Res. 2004, 18, 675–684. [Google Scholar]
- Haff, G.G.; Jackson, J.R.; Kawamori, N.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L.; Morris, R.T.; Ramsey, M.W.; A Sands, W.; Stone, M.H. Force-time curve characteristics and hormonal alterations during an eleven-week training period in elite women weightlifters. J. Strength Cond. Res. 2008, 22, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Bishop, C.; Turner, A.; Haff, G.G. Optimal training sequences to develop lower body force, velocity, power, and jump height: A systematic review with meta-analysis. Sports Med. 2021, 51, 1245–1271. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Nimphius, S. Training principles for power. Strength Cond. J. 2012, 34, 2–12. [Google Scholar] [CrossRef]
- Haff, G.G.; Hobbs, R.T.; Haff, E.E.; Sands, W.A.; Pierce, K.C.; Stone, M.H. Cluster training: A novel method for introducing training program variation. Strength Cond. J. 2008, 30, 67–76. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Myer, G.D.; Croix, M.B.D.S. Chronological age vs. biological maturation: Implications for exercise programming in youth. J. Strength Cond. Res. 2014, 28, 1454–1464. [Google Scholar] [CrossRef]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018, 48, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Radnor, J.M.; Croix, M.B.D.S.; Cronin, J.B.; Oliver, J.L. Changes in sprint and jump performances after traditional, plyometric, and combined resistance training in male youth pre-and post-peak height velocity. J. Strength Cond. Res. 2016, 30, 1239–1247. [Google Scholar] [CrossRef]
- Jeffreys, I. Quadrennial planning for the high school athlete. Strength Cond. J. 2008, 30, 74–83. [Google Scholar] [CrossRef]
- Eisenmann, J.C.; Hettler, J.; Till, K. The development of fast, fit, and fatigue resistant youth field and court sport athletes: A narrative review. Pediatr. Exerc. Sci. 2024, 36, 211–223. [Google Scholar] [CrossRef]
- Gowtizke, B.; Milner, M. Scientific Basis of Human Movement; Williams & Wilkins: Baltimore, MD, USA, 1988. [Google Scholar]
- MacIntosh, B.R.; Gardiner, P.F.; McComas, A.J. Muscle Architecture and Muscle Fiber Anatomy; Human Kinetics: Champaign, IL, USA, 2006. [Google Scholar]
- McComas, A.J. Skeletal Muscle; Human Kinetics: Champaign, IL, USA, 1996. [Google Scholar]
- Roberts, M.D.; Haun, C.T.; Vann, C.G.; Osburn, S.C.; Young, K.C. Sarcoplasmic hypertrophy in skeletal muscle: A scientific “unicorn” or resistance training adaptation? Front. Physiol. 2020, 11, 816. [Google Scholar] [CrossRef]
- Deschenes, M.R. Adaptations of the neuromuscular junction to exercise training. Curr. Opin. Physiol. 2019, 10, 10–16. [Google Scholar] [CrossRef]
- Collins, B.W.; Pearcey, G.E.; Buckle, N.C.; Power, K.E.; Button, D.C. Neuromuscular fatigue during repeated sprint exercise: Underlying physiology and methodological considerations. Appl. Physiol. Nutr. Metab. 2018, 43, 1166–1175. [Google Scholar] [CrossRef]
- Deschenes, M.R.; Maresh, C.M.; Crivello, J.F.; Armstrong, L.E.; Kraemer, W.J.; Covault, J. The effects of exercise training of different intensities on neuromuscular junction morphology. J. Neurocytol. 1993, 22, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; Stone, M.; Sands, W.A. Principles and Practice of Resistance Training; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Morton, J.P.; Close, G.L. The bioenergetics of sports performance. In Strength and Conditioning for Sports Performance; Routledge: New York, NY, USA, 2016; pp. 109–133. [Google Scholar]
- Groennebaek, T.; Vissing, K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front. Physiol. 2017, 8, 713. [Google Scholar] [CrossRef] [PubMed]
- Reis, V.M.; Júnior, R.S.; Zajac, A.; Oliveira, D.R. Energy cost of resistance exercises: An update. J. Hum. Kinet. 2011, 29, 33. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Craig, N.P.; Hawley, J.A. The bioenergetics of world class cycling. J. Sci. Med. Sport 2000, 3, 414–433. [Google Scholar] [CrossRef]
- Fatemeh, B.; Ramin, S.; Marzieh, N. Effect of high-intensity interval training on body composition and bioenergetic indices in boys–futsal players. Educ. Stud. 2016, 20, 42–49. [Google Scholar] [CrossRef]
- Fry, A.C.; Kraemer, W.J.; Ramsey, L.T. Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining. J. Appl. Physiol. 1998, 85, 2352–2359. [Google Scholar] [CrossRef]
- Fry, A.C.; Lohnes, C.A. Acute testosterone and cortisol responses to high power resistance exercise. Hum. Physiol. 2010, 36, 457–461. [Google Scholar] [CrossRef]
- Fry, A.C.; Kraemer, W.J.; Gordon, S.E.; Stone, M.H.; Warren, B.J.; Fleck, S.J.; Kearney, J.T. Endocrine responses to overreaching before and after 1 year of weightlifting. Can. J. Appl. Physiol. 1994, 19, 400–410. [Google Scholar] [CrossRef]
- Fry, A.C.; Kraemer, W.J.; Van Borselen, F.; Lynch, J.M.; Triplett, N.T.; Koziris, L.P.; Fleck, S.J. Catecholamine responses to short-term high-intensity resistance exercise overtraining. J. Appl. Physiol. 1994, 77, 941–946. [Google Scholar] [CrossRef]
- Fry, A.C.; Kraemer, W.J.; Stone, M.H.; Warren, B.J.; Kearney, J.T.; Maresh, C.M.; Weseman, C.A.; Fleck, S.J. Endocrine and performance responses to high volume training and amino acid supplementation in elite junior weightlifters. Int. J. Sport Nutr. Exerc. Metab. 1993, 3, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Endocrine responses and adaptations to strength and power training. Strength Power Sport 2003, 1, 361–386. [Google Scholar]
- Kraemer, W.J. Exercise Physiology Corner: Influence of the endocrine system on resistance training adaptations. Strength Cond. J. 1992, 14, 47–54. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Rogol, A.D. (Eds.) The Endocrine System in Sports and Exercise; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kraemer, W.J.; Ratamess, N.A. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Flanagan, S.D.; Volek, J.S.; Nindl, B.C.; Vingren, J.L.; Dunn-Lewis, C.; Comstock, B.A.; Hooper, D.R.; Szivak, T.K.; Looney, D.P.; et al. Resistance exercise induces region-specific adaptations in anterior pituitary gland structure and function in rats. J. Appl. Physiol. 2013, 115, 1641–1647. [Google Scholar] [CrossRef]
- Haff, G.G.; Lehmkuhl, M.J.; McCoy, L.B.; Stone, M.H. Carbohydrate supplementation and resistance training. J. Strength Cond. Res. 2003, 17, 187–196. [Google Scholar]
- Fukuda, D.H.; Smith, A.E.; Kendall, K.L.; Stout, J.R. The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humans. Nutr. Res. 2010, 30, 607–614. [Google Scholar] [CrossRef]
- Fukuda, D.H.; Kendall, K.L.; Hetrick, R.P. Nutritional strategies to optimize youth development. In Strength and Conditioning for Young Athletes; Routledge: New York, NY, USA, 2013; Volume 1, pp. 207–221. [Google Scholar]
- Volek, J.S. Influence of nutrition on responses to resistance training. Med. Sci. Sports Exerc. 2004, 36, 689–696. [Google Scholar] [CrossRef]
- Morton, R.W.; McGlory, C.; Phillips, S.M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front. Physiol. 2015, 6, 245. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Periodized nutrition for athletes. Sports Med. 2017, 47 (Suppl. S1), 51–63. [Google Scholar] [CrossRef] [PubMed]
- Spriet, L.L.; Gibala, M.J. Nutritional strategies to influence adaptations to training. Food Nutr. Sports Perform. II 2004, 1, 204–228. [Google Scholar]
- Volek, J.S.; Forsythe, C.E.; Kraemer, W.J. Nutritional aspects of women strength athletes. Br. J. Sports Med. 2006, 40, 742–748. [Google Scholar] [CrossRef]
- Roberts, B.M.; Helms, E.R.; Trexler, E.T.; Fitschen, P.J. Nutritional recommendations for physique athletes. J. Hum. Kinet. 2020, 71, 79. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Wilborn, C.D.; Taylor, L.; Campbell, B.; Almada, A.L.; Collins, R.; Cooke, M.; Earnest, C.P.; Greenwood, M.; Kalman, D.S.; et al. ISSN exercise & sport nutrition review: Research & recommendations. J. Int. Soc. Sports Nutr. 2010, 7, 1–43. [Google Scholar]
- Juhn, M.S. Popular sports supplements and ergogenic aids. Sports Med. 2003, 33, 921–939. [Google Scholar] [CrossRef]
- Silver, M.D. Use of ergogenic aids by athletes. JAAOS-J. Am. Acad. Orthop. Surg. 2001, 9, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Tokish, J.M.; Kocher, M.S.; Hawkins, R.J. Ergogenic aids: A review of basic science, performance, side effects, and status in sports. Am. J. Sports Med. 2004, 32, 1543–1553. [Google Scholar] [CrossRef]
- Applegate, E. Effective nutritional ergogenic aids. Int. J. Sport Nutr. Exerc. Metab. 1999, 9, 229–239. [Google Scholar] [CrossRef]
- Maughan, R.J. Nutritional ergogenic aids and exercise performance. Nutr. Res. Rev. 1999, 12, 255–280. [Google Scholar] [CrossRef]
- Clarkson, P.M. Nutrition for improved sports performance: Current issues on ergogenic aids. Sports Med. 1996, 21, 393–401. [Google Scholar] [CrossRef]
- Ellender, L.; Linder, M.M. Sports pharmacology and ergogenic aids. Prim. Care: Clin. Off. Pract. 2005, 32, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Frączek, B.; Warzecha, M.; Tyrała, F.; Pięta, A. Prevalence of the use of effective ergogenic aids among professional athletes. Rocz. Panstw. Zakl. Hig. 2016, 67, 271–278. [Google Scholar] [PubMed]
- Williams, M.H.; Branch, J.D. Ergogenic aids for improved performance. In Exercise and Sport Science; Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 2000; pp. 373–384. [Google Scholar]
- Adami, P.E.; Koutlianos, N.; Baggish, A.; Bermon, S.; Cavarretta, E.; Deligiannis, A.; Furlanello, F.; Kouidi, E.; Marques-Vidal, P.; Niebauer, J.; et al. Cardiovascular effects of doping substances, commonly prescribed medications and ergogenic aids in relation to sports: A position statement of the sport cardiology and exercise nucleus of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2022, 29, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Fry, A.C. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004, 34, 663–679. [Google Scholar] [CrossRef]
- Fleck, S.J. Cardiovascular adaptations to resistance training. Med. Sci. Sports Exerc. 1988, 20 (Suppl. S5), S146–S151. [Google Scholar] [CrossRef]
- Farup, J.; Kjølhede, T.; Sørensen, H.; Dalgas, U.; Møller, A.B.; Vestergaard, P.F.; Ringgaard, S.; Bojsen-Møller, J.; Vissing, K. Muscle morphological and strength adaptations to endurance vs. resistance training. J. Strength Cond. Res. 2012, 26, 398–407. [Google Scholar] [CrossRef]
- Stone, M.H.; Sanborn, K.I.M.; O’bryant, H.S.; Hartman, M.; Stone, M.E.; Proulx, C.; Ward, B.; Hruby, J. Maximum strength-power-performance relationships in collegiate throwers. J. Strength Cond. Res. 2003, 17, 739–745. [Google Scholar]
- Häkkinen, K.; Newton, R.U.; Gordon, S.E.; McCormick, M.; Volek, J.S.; Nindl, B.C.; Gotshalk, L.A.; Campbell, W.W.; Evans, W.J.; Häkkinen, A.; et al. Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 1998, 53, B415–B423. [Google Scholar] [CrossRef]
- Ploutz, L.L.; Tesch, P.A.; Biro, R.L.; Dudley, G.A. Effect of resistance training on muscle use during exercise. J. Appl. Physiol. 1994, 76, 1675–1681. [Google Scholar] [CrossRef]
- Stone, M.H.; Potteiger, J.A.; Pierce, K.C.; Proulx, C.M.; O’bryant, H.S.; Johnson, R.L.; Stone, M.E. Comparison of the effects of three different weight-training programs on the one repetition maximum squat. J. Strength Cond. Res. 2000, 14, 332–337. [Google Scholar]
- Viitasalo, J.T.; Komi, P.V. Interrelationships between electromyographic, mechanical, muscle structure and reflex time measurements in man. Acta Physiol. Scand. 1981, 111, 97–103. [Google Scholar] [CrossRef]
- Andersen, L.L.; Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 2006, 96, 46–52. [Google Scholar] [CrossRef]
- Semmler, J.G.; Enoka, R.M. Neural contributions to changes in muscle strength. Biomech. Sport Perform. Enhanc. Inj. Prev. 2000, 2–20. [Google Scholar]
- Sale, D.G. Neural adaptation to strength training. Strength Power Sport 2003, 281–314. [Google Scholar]
- Judge, L.; Moreau, C.; Burke, J. Neural adaptations with sport-specific resistance training in highly skilled athletes. J. Sports Sci. 2003, 21, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; Collins, D.; Plisk, S.; Haff, G.; Stone, M.E. Training principles: Evaluation of modes and methods of resistance training. Strength Cond. J. 2000, 22, 65. [Google Scholar] [CrossRef]
- Boyd, J.M.; Andrews, A.M.; Wojcik, J.R.; Bowers, C.J. Perceptions of NCAA Division I athletes on strength training. Sport J. 2017, 1, 1–10. [Google Scholar]
- Elder, C.; Elder, A.S.; Kelly, C. Collegiate athletes’ perceptions on the importance of strength and conditioning coaches and their contribution to increased athletic performance. J. Athl. Enhanc. 2014, 4, 1–9. [Google Scholar]
- Bliss, A.; Langdown, B. Integrating strength and conditioning training and golf practice during the golf season: Approaches and perceptions of highly skilled golfers. Int. J. Sports Sci. Coach. 2023, 18, 1605–1614. [Google Scholar] [CrossRef]
- Foulds, S.J.; Hoffmann, S.M.; Hinck, K.; Carson, F. The coach–athlete relationship in strength and conditioning: High performance athletes’ perceptions. Sports 2019, 7, 244. [Google Scholar] [CrossRef]
- Biscardi, L.M.; Miller, A.D.; Andre, M.J.; Stroiney, D.A. Self-efficacy, Effort, and Performance Perceptions Enhance Psychological Responses to Strength Training in National Collegiate Athletic Association Division I Athletes. J. Strength Cond. Res. 2024, 38, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, I.; Chow, J.Y. A constraint-led approach to sport and physical education pedagogy. Phys. Educ. Sport Pedagog. 2019, 24, 103–116. [Google Scholar] [CrossRef]
- Renshaw, I.; Davids, K.; Newcombe, D.; Roberts, W. The Constraints-Led Approach: Principles for Sports Coaching and Practice Design; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Glazier, P.S. Towards a grand unified theory of sports performance. Hum. Mov. Sci. 2017, 56, 139–156. [Google Scholar] [CrossRef] [PubMed]
- McGarry, T. Applied and theoretical perspectives of performance analysis in sport: Scientific issues and challenges. Int. J. Perform. Anal. Sport 2009, 9, 128–140. [Google Scholar] [CrossRef]
- Gibson, J.J. The Ecological Approach to Visual Perception; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Renshaw, I.; Chow, J.Y.; Davids, K.; Hammond, J. A constraints-led perspective to understanding skill acquisition and game play: A basis for integration of motor learning theory and physical education praxis? Phys. Educ. Sport Pedagog. 2010, 15, 117–137. [Google Scholar] [CrossRef]
- Fleck, S.J.; Falkel, J.E. Value of resistance training for the reduction of sports injuries. Sports Med. 1986, 3, 61–68. [Google Scholar] [CrossRef]
- Shaw, I.; Shaw, B.; Brown, G.; Shariat, A. Review of the role of resistance training and musculoskeletal injury prevention and rehabilitation. J. Orthop. Res. Ther. 2016, 2016, 1–5. [Google Scholar] [CrossRef]
- Zwolski, C.; Quatman-Yates, C.; Paterno, M.V. Resistance training in youth: Laying the foundation for injury prevention and physical literacy. Sports Health 2017, 9, 436–443. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Myer, G.D. Resistance training among young athletes: Safety, efficacy and injury prevention effects. Br. J. Sports Med. 2010, 44, 56–63. [Google Scholar] [CrossRef]
- Lehman, G.J. Resistance training for performance and injury prevention in golf. J. Can. Chiropr. Assoc. 2006, 50, 27. [Google Scholar] [PubMed]
- Saeterbakken, A.H.; Stien, N.; Pedersen, H.; Langer, K.; Scott, S.; Michailov, M.L.; Gronhaug, G.; Baláš, J.; Solstad, T.E.J.; Andersen, V. The connection between resistance training, climbing performance, and injury prevention. Sports Med.-Open 2024, 10, 10. [Google Scholar] [CrossRef]
- Junior, N.K.M. Structuring of the periodization in antiquity: The Roman military training. Tanjungpura J. Coach. Res. 2024, 2, 1–12. [Google Scholar] [CrossRef]
- Morente Montero, Á. Sports training in Ancient Greece and its supposed modernity. J. Hum. Sport Exerc. 2019, 15, 163–176. [Google Scholar] [CrossRef]
- Issurin, V. Block periodization versus traditional training theory: A review. J. Sports Med. Phys. Fit. 2008, 48, 65. [Google Scholar]
- Bompa, T.O. Variations of periodization of strength. Strength Cond. J. 1996, 18, 58–61. [Google Scholar] [CrossRef]
- Matveyev, L.P. Periodization of Sports Training; Fiscuttura i Sport: Moscow, Russia, 1996. [Google Scholar]
- Graham, J. Periodization research and an example application. Strength Cond. J. 2002, 24, 62–70. [Google Scholar] [CrossRef]
- Comfort, P.; Jones, P.A.; McMahon, J.J. (Eds.) Performance Assessment in Strength and Conditioning; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Carling, C.; Reilly, T.; Williams, A.M. Performance Assessment for Field Sports; Routledge: New York, NY, USA, 2008. [Google Scholar]
- O’donoghue, P. Research Methods for Sports Performance Analysis; Routledge: New York, NY, USA, 2009. [Google Scholar]
- McGuigan, M. Testing and Evaluation of Strength and Power; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Hornsby, W.G.; Stone, M.H. Training for muscular strength: Methods for monitoring and adjusting training intensity. Sports Med. 2021, 51, 2051–2066. [Google Scholar] [CrossRef] [PubMed]
- Vanrenterghem, J.; Nedergaard, N.J.; Robinson, M.A.; Drust, B. Training load monitoring in team sports: A novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017, 47, 2135–2142. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44 (Suppl. S2), 139–147. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Johnson, Q.R.; Cabarkapa, D.V.; Philipp, N.M.; Eserhaut, D.A.; Fry, A.C. Changes in Countermovement Vertical Jump Force-Time Metrics During a Game in Professional Male Basketball Players. J. Strength Cond. Res. 2024, 38, 1326–1329. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Mann, J.B.; Ivey, P.A.; Sayers, S.P. Velocity-based training in football. Strength Cond. J. 2015, 37, 52–57. [Google Scholar] [CrossRef]
- Haff, G.G. Sport science. Strength Cond. J. 2010, 32, 33–45. [Google Scholar] [CrossRef]
- Balagué, N.; Torrents, C.; Hristovski, R.; Kelso, J. Sport science integration: An evolutionary synthesis. Eur. J. Sport Sci. 2017, 17, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Pol, R.; Balagué, N.; Ric, A.; Torrents, C.; Kiely, J.; Hristovski, R. Training or synergizing? Complex systems principles change the understanding of sport processes. Sports Med.-Open 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Sampaio, J.; Leite, N. Performance indicators in game sports. In Routledge Handbook of Sports Performance Analysis; Routledge: New York, NY, USA, 2013; pp. 115–126. [Google Scholar]
- Wisbey, B.; Montgomery, P.G.; Pyne, D.B.; Rattray, B. Quantifying movement demands of AFL football using GPS tracking. J. Sci. Med. Sport 2010, 13, 531–536. [Google Scholar] [CrossRef]
- Johnson, Q.R.; Sealey, D.; Stock, S.; Gleason, D. Wins vs. Losses: Training Periodization Strategies Effect on Competition Outcomes within NCAA Division II Football. In Medicine & Science in Sports & Exercise; Lippincott, Williams & Wilkins: Baltimore, MD, USA, 2023; Volume 55, p. 725. [Google Scholar]
- Cabarkapa, D.; Deane, M.A.; Fry, A.C.; Jones, G.T.; Cabarkapa, D.V.; Philipp, N.M.; Yu, D. Game statistics that discriminate winning and losing at the NBA level of basketball competition. PLoS ONE 2022, 17, e0273427. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Fry, A.C.; Carlson, K.M.; Poggio, J.P.; Deane, M.A. Key kinematic components for optimal basketball free throw shooting performance. Cent. Eur. J. Sport Sci. Med. 2021, 36, 5–15. [Google Scholar] [CrossRef]
- Zamparo, P.; Minetti, A.E.; Di Prampero, P. Interplay among the changes of muscle strength, cross-sectional area and maximal explosive power: Theory and facts. Eur. J. Appl. Physiol. 2002, 88, 193–202. [Google Scholar]
- Bompa, T.O.; Buzzichelli, C. Periodization: Theory and Methodology of Training; Human kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Stone, M.H.; O’Bryant, H.; Garhammer, J. A hypothetical model for strength training. J. Sports Med. Phys. Fit. 1981, 21, 342–351. [Google Scholar]
- McMillan, J.L.; Stone, M.H.; Sartin, J.; Keith, R.; Marples, D.; Brown, C.; Lewis, R.D. 20-hour physiological responses to a single weight-training session. J. Strength Cond. Res. 1993, 7, 9–21. [Google Scholar]
- Plisk, S.S.; Stone, M.H. Periodization strategies. Strength Cond. J. 2003, 25, 19–37. [Google Scholar] [CrossRef]
- Stone, M.H.; Fry, A.C. Increased training volume in strength/power athletes. Overtraining Sport 1998, 87–105. [Google Scholar]
- Kraemer, W.J. Endocrine responses and adaptations to strength training. Strength Power Sport 1992, s292. [Google Scholar]
- Johnson, Q.R. The TFT Approach to MMA Athlete Development: Kearney Combat Sports Crowns Champions. Quincy Johnson Fitness; 2025. Available online: https://quincyjohnsonfitness.com/2025/03/30/the-tft-approach-to-mma-athlete-development-kearney-combat-sports-crowns-champions/ (accessed on 13 May 2025).
- Johnson, Q.R. The TFT Approach to MMA Athlete Development: Jose Hernandez of Kearney Combat Sports Dominates. Quincy Johnson Fitness; 2025. Available online: https://quincyjohnsonfitness.com/2025/03/30/the-tft-approach-to-mma-athlete-development-jose-hernandez-of-kearney-combat-sports-dominates/ (accessed on 13 May 2025).
- Johnson, Q.R. The TFT Approach to MMA Athlete Development: Delfino Benitez of Kearney Combat Sports Dominates. Quincy Johnson Fitness; 2025. Available online: https://quincyjohnsonfitness.com/2025/03/30/the-tft-approach-to-mma-athlete-development-delfino-benitez-of-kearney-combat-sports-dominates/ (accessed on 13 May 2025).
- Johnson, Q.R. The TFT Approach to MMA Athlete Development: Vanessa Chavez of Kearney Combat Sports Dominates. Quincy Johnson Fitness; 2025. Available online: https://quincyjohnsonfitness.com/2025/03/30/the-tft-approach-to-mma-athlete-development-vanessa-chavez-of-kearney-combat-sports-dominates/ (accessed on 13 May 2025).
- Johnson, Q.R. The TFT Approach to Powerlifting Athlete Development: Rylee Bentz of Kearney High School Dominates. Quincy Johnson Fitness; 2025. Available online: https://quincyjohnsonfitness.com/2025/03/30/the-tft-approach-to-powerlifting-athlete-development-rylee-bentz-of-kearney-high-school-dominates/ (accessed on 13 May 2025).
- Johnson, Q.R. The TFT Approach to Powerlifting Athlete Development: Raeghann Mudloff-Behrens of St. Paul High School Dominates. Quincy Johnson Fitness; 2025. Available online: https://quincyjohnsonfitness.com/2025/03/30/the-tft-approach-to-powerlifting-athlete-development-raeghann-mudloff-behrens-of-st-paul-high-school-dominates/ (accessed on 13 May 2025).
- Stone, M.H.; Pierce, K.C.; Sands, W.A.; Stone, M.E. Weightlifting: Program design. Strength Cond. J. 2006, 28, 10–17. [Google Scholar] [CrossRef]
Emphasis | GPP | SPP | CP |
---|---|---|---|
1. | 10-repetition range | 5-repetition range | 3-repetition range |
2. | 5-repetition range | 3-repetition range | 5-repetition range |
3. | 3-repetition range | 10-repetition range | 10-repetition range |
Quality | Regression 1 | Base Exercise | Progression 1 |
---|---|---|---|
Strength | Multi-joint/compound bodyweight movements | Multi-joint/compound loaded movements | Multi-joint/compound fast loaded movements |
Power | Position and technique | Force-dominant Olympic weightlifting variations | Power-dominant Olympic weightlifting variations |
Plyometrics | Landing mechanics | Single response/non-countermovement | Multi-response/countermovement |
Exercise Order | Ten | Five | Three |
---|---|---|---|
1. | Incline pushup | Barbell back squat | Jump landing technique |
2. | Kettlebell goblet squat | Incline dumbbell chest press | Depth drop |
3. | Inverted row | Dumbbell row | Box jump |
Lower Body | Upper Body | Total Body |
---|---|---|
Back squat | Bench press | Hang clean |
Front squat | Dumbbell bench press | Split clean, hang |
Box squat | Incline press | Clean pull, hang |
Safety bar squat | Dumbbell incline press | Hang snatch |
Bear squat | Modified grip bench press | Split snatch, hang |
Leg press | Standing shoulder press | Snatch pull, hang |
High step-up 16″ | Nelder press | Jerk, split catch |
Low step-up 6″ | Bent over row | Jerk, power catch |
Barbell lunge | Shrug | Push press |
Romanian deadlift | Dumbbell lateral raise | Dumbbell clean, hang |
Single-leg squat | Dip | Dumbbell snatch, hang |
Leg curl | Chin-up | Dumbbell jerk |
Leg extension | Triceps extension | |
Calf raises | Biceps curl |
Mesocycle | 1 | 2 | 3 |
---|---|---|---|
Sets | 210 | 290 | 268 |
% Change | 38.10% | −7.59% | |
Repetitions | 2070 | 2074 | 2780 |
% Change | 0.19% | 34.04% | |
Repetitions/Set | 9.86 | 7.15 | 10.37 |
% Change | −27.45% | 45.04% | |
Sessions/Day | 1 | 1 | 1 |
Days/Week | 2 | 2 | 2 |
Intensity Cycle | 3/1 | 3/1 | 3/1 |
Mesocycle | 1 | 2 | 3 |
Sets | 210 | 290 | 268 |
Mesocycle | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Sets | 140 | 117 | 160 | 80 | 275 | 304 |
% Change | −16.43% | 36.75% | −50.00% | 243.75% | 10.55% | |
Repetitions | 1613 | 1076 | 815 | 750 | 2555 | 2834 |
% Change | −33.29% | −24.26% | −7.98% | 240.67% | 10.92% | |
Repetitions/Set | 11.52 | 9.20 | 5.09 | 9.38 | 9.29 | 9.32 |
% Change | −20.18% | −44.61% | 84.05% | −0.90% | 0.34% | |
Sessions/Day | 1–2 | 1–2 | 1–2 | 1–2 | 1–2 | 1–2 |
Days/Week | 3 | 3 | 3 | 3 | 3 | 3 |
Intensity Cycle | 2–3/1 | 2–3/1 | 2–3/1 | 2–3/1 | 2–3/1 | 2–3/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, Q.R. Part I: Development and Implementation of the Ten, Five, Three (TFT) Model for Resistance Training. Muscles 2025, 4, 14. https://doi.org/10.3390/muscles4020014
Johnson QR. Part I: Development and Implementation of the Ten, Five, Three (TFT) Model for Resistance Training. Muscles. 2025; 4(2):14. https://doi.org/10.3390/muscles4020014
Chicago/Turabian StyleJohnson, Quincy R. 2025. "Part I: Development and Implementation of the Ten, Five, Three (TFT) Model for Resistance Training" Muscles 4, no. 2: 14. https://doi.org/10.3390/muscles4020014
APA StyleJohnson, Q. R. (2025). Part I: Development and Implementation of the Ten, Five, Three (TFT) Model for Resistance Training. Muscles, 4(2), 14. https://doi.org/10.3390/muscles4020014