Prevalence of Ten Gene Variants Involved in Muscular Phenotypes in a Mexican Mestizo Population
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Study Design
4.2. DNA Isolation and Genotyping
4.3. Statistical Analysis
4.4. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozano, R.; Gomez-Dantes, H.; Garrido-Latorre, F.; Jimenez-Corona, A.; Campuzano-Rincon, J.C.; Franco-Marina, F.; Medina-Mora, M.E.; Borges, G.; Naghavi, M.; Wang, H.; et al. Burden of disease, injuries, risk factors and challenges for the health system in Mexico. Salud Publica Mex. 2013, 55, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.M.; Breitenfeld, L.; Silva, A.J.; Pereira, A.; Izquierdo, M.; Marques, M.C. Genetic inheritance effects on endurance and muscle strength: An update. Sports Med. 2012, 42, 449–458. [Google Scholar] [CrossRef]
- Lappalainen, T.; Scott, A.J.; Brandt, M.; Hall, I.M. Genomic Analysis in the Age of Human Genome Sequencing. Cell 2019, 177, 70–84. [Google Scholar] [CrossRef]
- Peng, C.K.; Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H.E. Long-range correlations in nucleotide sequences. Nature 1992, 356, 168–170. [Google Scholar] [CrossRef]
- Lohrer, H.D.; Tangen, U. Investigations into the molecular effects of single nucleotide polymorphism. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 2000, 68, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y. Genetic information theory—From the standpoint of molecular biology. Nihon Ishikai Zasshi. J. Jpn. Med. Assoc. 1967, 57, 155–175. [Google Scholar]
- Shastry, B.S. SNPs: Impact on gene function and phenotype. Methods Mol. Biol. 2009, 578, 3–22. [Google Scholar] [CrossRef]
- Appel, M.; Zentgraf, K.; Krüger, K.; Alack, K. Effects of Genetic Variation on Endurance Performance, Muscle Strength, and Injury Susceptibility in Sports: A Systematic Review. Front. Physiol. 2021, 12, 694411. [Google Scholar] [CrossRef]
- Clos, E.; Pruna, R.; Lundblad, M.; Artells, R.; Esquirol Caussa, J. ACTN3 single nucleotide polymorphism is associated with non-contact musculoskeletal soft-tissue injury incidence in elite professional football players. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 4055–4061. [Google Scholar] [CrossRef]
- Slager, S.L.; Schaid, D.J. Case-control studies of genetic markers: Power and sample size approximations for Armitage’s test for trend. Hum. Hered. 2001, 52, 149–153. [Google Scholar] [CrossRef]
- Goedecke, J.H.; Chorell, E.; van Jaarsveld, P.J.; Risérus, U.; Olsson, T. Fatty acid metabolism and associations with insulin sensitivity differs between black and white South African women. J. Clin. Endocrinol. Metab. 2020, 106, e140–e151. [Google Scholar] [CrossRef]
- Varillas-Delgado, D.; Morencos, E.; Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Muñoz, A.; Mendoza Láiz, N.; Perucho, T.; Maestro, A.; Tellería-Orriols, J.J. Genetic profiles to identify talents in elite endurance athletes and professional football players. PLoS ONE 2022, 17, e0274880. [Google Scholar] [CrossRef]
- Kollias, H.D.; McDermott, J.C. Transforming growth factor-beta and myostatin signaling in skeletal muscle. J. Appl. Physiol. 2008, 104, 579–587. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef]
- Schuelke, M.; Wagner, K.R.; Stolz, L.E.; Hubner, C.; Riebel, T.; Komen, W.; Braun, T.; Tobin, J.F.; Lee, S.J. Myostatin mutation associated with gross muscle hypertrophy in a child. New Engl. J. Med. 2004, 350, 2682–2688. [Google Scholar] [CrossRef] [PubMed]
- Kostek, M.A.; Angelopoulos, T.J.; Clarkson, P.M.; Gordon, P.M.; Moyna, N.M.; Visich, P.S.; Zoeller, R.F.; Price, T.B.; Seip, R.L.; Thompson, P.D.; et al. Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Med. Sci. Sports Exerc. 2009, 41, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Tsianos, G.I.; Evangelou, E.; Boot, A.; Zillikens, M.C.; van Meurs, J.B.; Uitterlinden, A.G.; Ioannidis, J.P. Associations of polymorphisms of eight muscle- or metabolism-related genes with performance in Mount Olympus marathon runners. J. Appl. Physiol. 2010, 108, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Sarzynski, M.A.; Loos, R.J.; Lucia, A.; Perusse, L.; Roth, S.M.; Wolfarth, B.; Rankinen, T.; Bouchard, C. Advances in Exercise, Fitness, and Performance Genomics in 2015. Med. Sci. Sports Exerc. 2016, 48, 1906–1916. [Google Scholar] [CrossRef]
- Wagoner, L.E.; Craft, L.L.; Zengel, P.; McGuire, N.; Rathz, D.A.; Dorn, G.W., 2nd; Liggett, S.B. Polymorphisms of the beta1-adrenergic receptor predict exercise capacity in heart failure. Am. Heart J. 2002, 144, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Wolfarth, B.; Rankinen, T.; Muhlbauer, S.; Scherr, J.; Boulay, M.R.; Perusse, L.; Rauramaa, R.; Bouchard, C. Association between a beta2-adrenergic receptor polymorphism and elite endurance performance. Metab. Clin. Exp. 2007, 56, 1649–1651. [Google Scholar] [CrossRef]
- Moore, G.E.; Shuldiner, A.R.; Zmuda, J.M.; Ferrell, R.E.; McCole, S.D.; Hagberg, J.M. Obesity gene variant and elite endurance performance. Metab. Clin. Exp. 2001, 50, 1391–1392. [Google Scholar] [CrossRef]
- Large, V.; Hellstrom, L.; Reynisdottir, S.; Lonnqvist, F.; Eriksson, P.; Lannfelt, L.; Arner, P. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J. Clin. Investig. 1997, 100, 3005–3013. [Google Scholar] [CrossRef]
- Dallongeville, J.; Helbecque, N.; Cottel, D.; Amouyel, P.; Meirhaeghe, A. The Gly16→Arg16 and Gln27→Glu27 polymorphisms of beta2-adrenergic receptor are associated with metabolic syndrome in men. J. Clin. Endocrinol. Metab. 2003, 88, 4862–4866. [Google Scholar] [CrossRef] [PubMed]
- Pleskovic, A.; Santl Letonja, M.; Cokan Vujkovac, A.; Starcevic, J.N.; Petrovic, D. Polymorphisms of the PPAR-gamma (rs1801282) and Its Coactivator (rs8192673) Have a Minor Effect on Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus. PPAR Res. 2016, 2016, 4934251. [Google Scholar] [CrossRef] [PubMed]
- Bonfim-Silva, R.; Guimaraes, L.O.; Souza Santos, J.; Pereira, J.F.; Leal Barbosa, A.A.; Souza Rios, D.L. Case-control association study of polymorphisms in the angiotensinogen and angiotensin-converting enzyme genes and coronary artery disease and systemic artery hypertension in African-Brazilians and Caucasian-Brazilians. J. Genet. 2016, 95, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Rankinen, T.; Church, T.; Rice, T.; Markward, N.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Blair, S.N.; Bouchard, C. Effect of endothelin 1 genotype on blood pressure is dependent on physical activity or fitness levels. Hypertension 2007, 50, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Estrada, A.; Gignoux, C.R.; Fernandez-Lopez, J.C.; Zakharia, F.; Sikora, M.; Contreras, A.V.; Acuna-Alonzo, V.; Sandoval, K.; Eng, C.; Romero-Hidalgo, S.; et al. Human genetics. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science 2014, 344, 1280–1285. [Google Scholar] [CrossRef]
- Fairley, S.; Lowy-Gallego, E.; Perry, E.; Flicek, P. The International Genome Sample Resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res. 2020, 48, D941–D947. [Google Scholar] [CrossRef] [PubMed]
- Rubi-Castellanos, R.; Martinez-Cortes, G.; Munoz-Valle, J.F.; Gonzalez-Martin, A.; Cerda-Flores, R.M.; Anaya-Palafox, M.; Rangel-Villalobos, H. Pre-Hispanic Mesoamerican demography approximates the present-day ancestry of Mestizos throughout the territory of Mexico. Am. J. Phys. Anthropol. 2009, 139, 284–294. [Google Scholar] [CrossRef]
- Hong, E.P.; Park, J.W. Sample size and statistical power calculation in genetic association studies. Genom. Inf. 2012, 10, 117–122. [Google Scholar] [CrossRef]
- Li, J.J.; Abecasis, G. GAS Power Calculator. Available online: https://csg.sph.umich.edu/abecasis/gas_power_calculator/index.html (accessed on 16 October 2023).
- Royo, J.L. Hardy Weinberg Equilibrium Disturbances in Case-Control Studies Lead to Non-Conclusive Results. Cell J. 2021, 22, 572–574. [Google Scholar] [CrossRef]
- Jones, M.R.; Wilson, S.G.; Mullin, B.H.; Mead, R.; Watts, G.F.; Stuckey, B.G. Polymorphism of the follistatin gene in polycystic ovary syndrome. Mol. Hum. Reprod. 2007, 13, 237–241. [Google Scholar] [CrossRef] [PubMed]
- dbSNP Short Genetic Variations. Available online: https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ss.cgi?subsnp_id=ss2229352 (accessed on 6 November 2023).
- Curiel-Cervantes, V.; Solís-Sáinz, J.C.; Costa-Urrutia, P.; Aguilar-Galarza, A.; Flores-Viveros, K.L.; García-Gasca, T.J.; Anaya-Loyola, M.A. The myostatin rs1805086 variant is associated with obesity in Mexican adults, independently of metabolic risk factors. Biomarkers 2020, 25, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Gustincich, S.; Manfioletti, G.; Del Sal, G.; Schneider, C.; Carninci, P. A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 1991, 11, 298–300, 302. [Google Scholar] [PubMed]
- Pearl, S.; Dorothy, A. Hardy-Weinberg Equilibrium Calculator for 2 Alleles. Available online: https://www.had2know.org/academics/hardy-weinberg-equilibrium-calculator-2-alleles.html (accessed on 6 November 2023).
- Campos-Nonato, I.; Oviedo-Solís, C.; Vargas-Meza, J.; Ramírez-Villalobos, D.; Medina-García, C.; Gómez-Álvarez, E.; Hernández-Barrera, L.; Barquera, S. Prevalencia, tratamiento y control de la hipertensión arterial en adultos mexicanos: Resultados de la Ensanut 2022. Salud Pública México 2023, 65, s169–s180. [Google Scholar] [CrossRef] [PubMed]
Variable | Female | Male | p-Value |
---|---|---|---|
Age | 37.08 ± 11.75 | 37.23 ± 11.5 | p = 0.96 |
Smoking | p = 0.017 | ||
(N) | 60 | 125 | |
(Y) | 18 | 79 | |
Alcoholism | p < 0.0001 | ||
(N) | 59 | 88 | |
(Y) | 19 | 116 | |
BMI | 27.35 ± 4.37 | 27.91 ± 8.3 | p = 0.25 |
Hypertension | p = 0.72 | ||
(N) | 78 | 203 | |
(Y) | 0 | 1 | |
Diabetes | p = 0.72 | ||
(N) | 78 | 203 | |
(Y) | 0 | 1 | |
Family History of Cancer | p = 0.05 | ||
(N) | 51 | 157 | |
(Y) | 27 | 47 |
Gene Polymorphism (Variant Nucleotide) | Effect and/or Associations |
---|---|
MSTN | Muscle hypertrophy most associated with allele T [13,14] |
rs1805085 | |
c.163C > T | |
p.Ala55Thr | |
MSTN | Muscle hypertrophy most associated with allele C [15] |
rs1805086 | |
c.458T > C | |
p.Lys153Arg | |
FST | Association of the muscle size and the strength response to resistance training with allele T [16] |
rs1423560 | |
c.-860G > T | |
BDKRB2 | Genotype TT implicated in endurance performance among habitual runners [17] |
rs1799722 | |
c.-192C > T | |
ACTN3 | Runners’ performance associated with increases in muscle strength in response to resistance training
|
rs1815739 | |
c.1729C > T | |
p.Arg577X | |
ADRB2 |
|
rs1042713 | |
c.46G > A | |
p.Gly16Arg | |
ADRB2 | Genotype CC contributes to metabolic syndrome and obesity susceptibility [22,23] |
rs1042714 | |
c.79G > C | |
p.Gln27Glu | |
GRB14 | Minor effect on carotid intima media thickness progression in the 3.8-year follow-up in Caucasians with T2DM Patients [24] |
rs8192673 | |
c.1159 + 9C > T | |
AGT | Polymorphism rs699 was associated with essential hypertension risk in Caucasians [25] |
rs699 | |
c.803T > C | |
p.Met268Thr | |
EDN1 | Homozygous TT genotype was associated with higher risk of hypertension [26] |
rs5370 | |
c.594G > T | |
p.Lys198Asn |
SNPS | Genotype Frequency | Allele Frequency | ||||
---|---|---|---|---|---|---|
n = 282 | % | n = 564 | % | |||
MSTN | CC | 280 | 99.29 | C | 562 | 99.65 |
rs1805085 | CT | 2 | 0.71 | T | 2 | 0.35 |
p = 0.9523 | TT | - | - | |||
MSTN | TT | 270 | 95.74 | T | 551 | 97.70 |
rs1805086 | TC | 11 | 3.90 | C | 13 | 2.30 |
p = 0.0246 | CC | 1 | 0.36 | |||
FST | GG | 241 | 85.46 | G | 514 | 91.13 |
rs1423560 | GT | 32 | 11.35 | T | 50 | 8.87 |
p < 0.01 | TT | 9 | 3.19 | |||
BDKRB2 | CC | 84 | 29.79 | C | 293 | 51.95 |
rs1799722 | CT | 125 | 44.32 | T | 271 | 48.05 |
p = 0.0597 | TT | 73 | 25.89 | |||
ACTN3 | CC | 27 | 9.57 | C | 154 | 27.30 |
rs1815739 | CT | 100 | 35.47 | T | 410 | 72.70 |
p = 0.073 | TT | 155 | 54.96 | |||
ADRB2 | GG | 80 | 28.37 | G | 302 | 53.55 |
rs1042713 | AG | 142 | 50.35 | A | 262 | 46.45 |
p = 0.8379 | AA | 60 | 21.28 | |||
ADRB2 | GG | 7 | 2.48 | G | 65 | 11.52 |
rs1042714 | GC | 51 | 18.09 | C | 499 | 88.48 |
p = 0.0574 | CC | 224 | 79.43 | |||
GRB14 | CC | 19 | 6.74 | C | 156 | 27.66 |
rs8192673 | CT | 118 | 41.84 | T | 408 | 7 2.34 |
p = 0.4436 | TT | 145 | 51.42 | |||
AGT | GG | 170 | 60.29 | A | 443 | 78.55 |
rs699 | GA | 103 | 36.52 | G | 121 | 21.45 |
p = 0.1596 | AA | 9 | 3.19 | |||
EDN1 | GG | 218 | 77.30 | G | 497 | 88.12 |
rs5370 | GT | 61 | 21.63 | T | 67 | 11.88 |
p = 0.5774 | TT | 3 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Hernández, L.B.; Avila-Ramírez, G.; Del Villar-Morales, A.; Anaya-Segura, M.A.; Montes-Almanza, L.A.; García-Martínez, F.A.; Miranda-Duarte, A.; Sosa-Flores, C.A.; Rodríguez-Arellano, M.E.; Chavez-Maisterra, I.; et al. Prevalence of Ten Gene Variants Involved in Muscular Phenotypes in a Mexican Mestizo Population. Muscles 2023, 2, 389-399. https://doi.org/10.3390/muscles2040030
López-Hernández LB, Avila-Ramírez G, Del Villar-Morales A, Anaya-Segura MA, Montes-Almanza LA, García-Martínez FA, Miranda-Duarte A, Sosa-Flores CA, Rodríguez-Arellano ME, Chavez-Maisterra I, et al. Prevalence of Ten Gene Variants Involved in Muscular Phenotypes in a Mexican Mestizo Population. Muscles. 2023; 2(4):389-399. https://doi.org/10.3390/muscles2040030
Chicago/Turabian StyleLópez-Hernández, Luz Berenice, Guillermina Avila-Ramírez, Ariadna Del Villar-Morales, Mónica Alejandra Anaya-Segura, Luis Angel Montes-Almanza, Froylan Arturo García-Martínez, Antonio Miranda-Duarte, Carlos Antonio Sosa-Flores, Martha Eunice Rodríguez-Arellano, Ileana Chavez-Maisterra, and et al. 2023. "Prevalence of Ten Gene Variants Involved in Muscular Phenotypes in a Mexican Mestizo Population" Muscles 2, no. 4: 389-399. https://doi.org/10.3390/muscles2040030
APA StyleLópez-Hernández, L. B., Avila-Ramírez, G., Del Villar-Morales, A., Anaya-Segura, M. A., Montes-Almanza, L. A., García-Martínez, F. A., Miranda-Duarte, A., Sosa-Flores, C. A., Rodríguez-Arellano, M. E., Chavez-Maisterra, I., Luna-Angulo, A. B., Casillas-Ávila, M. P., & Gómez-Díaz, B. (2023). Prevalence of Ten Gene Variants Involved in Muscular Phenotypes in a Mexican Mestizo Population. Muscles, 2(4), 389-399. https://doi.org/10.3390/muscles2040030