Characterisation and Fertiliser Potential of Mechanically Dewatered Faecal Sludge from Anaerobic Digestion
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Facility Description
2.2. Study Design and Sampling Strategy
2.2.1. Sample Collection Protocol
2.2.2. Sample Processing and Temporal Compositing
2.2.3. Anaerobic Digestion Setup
2.3. Laboratory Analyses
2.3.1. Physicochemical Characterisation
2.3.2. Nutrient Analysis
2.3.3. Microbiological and Parasitological Analysis
2.3.4. Heavy Metal Analysis
2.4. Statistical Analysis
2.5. Economic Analysis
3. Results
3.1. Characterisation of MDFS
3.1.1. Microbiological Contamination Assessment
3.1.2. Heavy Metal Safety Assessment
3.2. Effect of Anaerobic Digestion
3.2.1. Pathogen Reduction Effectiveness
3.2.2. Heavy Metal Concentration Changes
3.3. Economic Viability Assessment
3.4. Agricultural Application Potential and Safety Considerations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Anaerobic Digestion |
MDFS | Mechanically Dewatered Faecal Sludge |
AD-MDFS | Anaerobic Digested Mechanical Dewatered Faecal Sludge |
FS | Faecal Sludge |
TN | Total Nitrogen |
MC | Moisture Content |
OM | Organic Matter |
WHO | World Health Organization |
UNICEF | United Nations Children’s Fund |
LHFTP | Lavender Hill Faecal Treatment Plant |
NPK | Nitrogen, Phosphorus, Potassium |
CFU | Colony Forming Units |
SDG | Sustainable Development Goals |
GDP | Gross Domestic Product |
COD | Chemical Oxygen Demand |
BOD | Biochemical Oxygen Demand |
VS | Volatile Solids |
TS | Total Solids |
HRT | Hydraulic Retention Time |
SRT | Solids Retention Time |
WASH | Water, Sanitation and Hygiene |
FSM | Faecal Sludge Management |
WWTP | Wastewater Treatment Plant |
FSTP | Faecal Sludge Treatment Plant |
pH | Potential of Hydrogen |
EC | Electrical Conductivity |
GIS | Geographic Information System |
IWA | International Water Association |
IWMI | International Water Management Institute |
References
- UNICEF; WHO. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs. Available online: https://www.who.int/publications/i/item/9789240030848 (accessed on 13 August 2025).
- United Nations Statistics Division. Sustainable Development Goals Report 2025: Goal 6—Clean Water and Sanitation. Available online: https://unstats.un.org/sdgs/report/2025/Goal-06/ (accessed on 13 August 2025).
- Ofori-Amanfo, D.; Rockson, G.N.K.; Arthur, A.; Ahmed, I. Processing dewatered faecal sludge into unpelletized fertilizer for crop production in Greater Accra-Ghana. Int. J. Environ. Monit. Anal. 2018, 6, 28–35. [Google Scholar] [CrossRef]
- Sagoe, G.; Danquah, F.S.; Amofa-Sarkodie, E.S.; Appiah-Effah, E.; Ekumah, E.; Mensah, E.K.; Karikari, K.S. GIS-aided optimisation of faecal sludge management in developing countries: The case of the Greater Accra Metropolitan Area, Ghana. Heliyon 2019, 5, e02505. [Google Scholar] [CrossRef]
- Islam, M.R.; Alam, M.A.U.; Moniruzzaman, M.; Rahman, M.A.; Hasan, M.M.; Ahmed, T. Exploring fecal sludge treatment technologies in humanitarian settings at Cox’s Bazar, Bangladesh: A comprehensive assessment of treatment efficiency through characterization of fecal sludge. Front. Environ. Sci. 2024, 12, 1341176. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Observatory Data Repository: Water, Sanitation and Hygiene. Available online: https://www.who.int/data/gho/data/themes/water-sanitation-and-hygiene (accessed on 13 August 2025).
- United Nations. The Sustainable Development Goals Report 2023. Available online: https://sdgs.un.org/sites/default/files/2023-07/The-Sustainable-Development-Goals-Report-2023_0.pdf (accessed on 13 August 2025).
- World Health Organization. UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS) 2017 Report. Available online: https://iris.who.int/server/api/core/bitstreams/b51034ff-9ca6-422e-8046-6acc1115aded/content (accessed on 13 August 2025).
- Ghana Statistical Service. Ghana 2021 Population and Housing Census: Water and Sanitation Report. Available online: https://census2021.statsghana.gov.gh/subreport.php?readreport=NjMzMzk0MDg5LjAzNg==&Volume-3M-Water-and-Sanitation&utm (accessed on 13 August 2025).
- Ministry of Sanitation and Water Resources. National Environmental Sanitation Strategy and Action Plan. Available online: https://www.ircwash.org/sites/default/files/MLGRD-2010-National.pdf (accessed on 13 August 2025).
- Pureco. Ghana: Kumasi, Takoradi and Tamale Start Treating Faecal Sludge. Available online: https://purecoafrica.com/news/takoradi-tamale-are-completed (accessed on 13 August 2025).
- Greater Accra Metropolitan Assembly. Faecal Sludge Management Status Report 2023 (In Press). Available online: https://www.gamaswp.org/household-toilet/ (accessed on 13 August 2025).
- African Development Bank. Africa Water Vision 2025: Progress and Challenges. Available online: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Generic-Documents/african%20water%20vision%202025%20to%20be%20sent%20to%20wwf5.pdf (accessed on 13 August 2025).
- Water Resources Commission. State of Ghana’s Water Resources 2023. Available online: https://wrc-gh.org (accessed on 13 August 2025).
- Environmental Protection Agency. National Water Quality Assessment Report 2023. Available online: https://epa.gov.gh (accessed on 13 August 2025).
- WHO. WHO Global Water, Sanitation and Hygiene: Annual Report 2023. Available online: https://www.who.int/publications/i/item/9789240106079 (accessed on 13 August 2025).
- Pradhan, S.K.; Cofie, O.; Nikiema, J.; Heinonen-Tanski, H. Fecal sludge derived products as fertilizer for lettuce cultivation in urban agriculture. Sustainability 2019, 11, 7101. [Google Scholar] [CrossRef]
- Kalulu, K.; Thole, B.; Mkandawire, T.; Kululanga, G. Resource-Efficient Characterisation of Pit Latrine Sludge for Use in Agriculture. Sustainability 2021, 13, 4702. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Lo, S.L. Sludge: A waste or renewable source for energy and resource recovery? Energy Convers. Manag. 2013, 25, 708–728. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, X.; Ren, X.; Hu, X.; Ji, B. Recent Research on Municipal Sludge as Soil Fertilizer in China: A Review. Water Air Soil Pollut. 2023, 234, 119. [Google Scholar] [CrossRef]
- UNESCO. United Nations World Water Development Report 2024: Water for Prosperity and Peace; UNESCO: Paris, France, 2024; Available online: https://www.unesco.org/reports/wwdr/en/wwdr/en/2024/statistics (accessed on 13 August 2025).
- UN-Water. The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water. Available online: https://www.unwater.org/publications/un-world-water-development-report-2023 (accessed on 10 March 2024).
- World Health Organization. Guidelines for the Safe Use of Wastewater, Excreta and Greywater—Volume 4: Excreta and Greywater Use in Agriculture. Available online: https://www.who.int/publications/i/item/9241546859 (accessed on 13 August 2025).
- Behera, S.; Samal, K. Sustainable approach to manage solid waste through biochar assisted composting. Energy Nexus 2022, 7, 100121. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, R.; Klammsteiner, T.; Kong, X.; Yan, B.; Mihai, F.C.; Liu, T.; Zhang, Z.; Awasthi, M.K. Recent trends and advances in composting and vermicomposting technologies: A review. Bioresour. Technol. 2022, 360, 127591. [Google Scholar] [CrossRef] [PubMed]
- Ward, B.J.; Nguyen, M.T.; Sam, S.B.; Korir, N.; Niwagaba, C.B.; Morgenroth, E.; Strande, L. Particle size as a driver of de-watering performance and its relationship to stabilization in fecal sludge. J. Environ. Manag. 2022, 326, 116801. [Google Scholar] [CrossRef]
- Kalulu, K.; Thole, B.; Mkandawire, T.; Kululanga, G. Application of process intensification in the treatment of pit latrine sludge from informal settlements in Blantyre City, Malawi. Int. J. Environ. Res. Public Health 2020, 17, 3296. [Google Scholar] [CrossRef]
- Strande, L. Integrating recent scientific advances to enhance non-sewered sanitation in urban areas. Nat. Water 2024, 2, 405–418. [Google Scholar] [CrossRef]
- Deligiannis, M.; Gkalipidou, E.; Gatidou, G.; Kostakis, M.G.; Gerokonstantis, D.T.; Arvaniti, O.S.; Thomaidis, N.S.; Vyrides, I.; Hale, S.E.; Arp, H.P.; et al. Study on the fate of per- and polyfluoroalkyl substances during thermophilic anaerobic digestion of sewage sludge and the role of granular activated carbon addition. Bioresour. Technol. 2024, 406, 131013. [Google Scholar] [CrossRef] [PubMed]
- Forbis-Stokes, A.A.; O’Meara, P.F.; Mugo, W.; Simiyu, G.M.; Deshusses, M.A. On-site fecal sludge treatment with the anaerobic digestion pasteurization latrine. Environ. Eng. Sci. 2016, 33, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Moura, E.R.; Machado, V.; Hocevar, L.S.; Pereira, J.S.; Torres, F.A.; Alves, C.T. Characterization of sludge for biogas production using anaerobic digestion: A literature review approach. J. Biotechnol. Health 2024, 7, 45–62. [Google Scholar] [CrossRef]
- McConville, J.; Niwagaba, C.; Nordin, A.; Ahlström, M.; Namboozo, V.; Kiffe, M. Guide to Sanitation Resource-Recovery Products & Technologies: A Supplement to the Compendium of Sanitation Systems and Technologies; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2020. [Google Scholar]
- Andriessen, N.; Ward, B.J.; Strande, L. To char or not to char? Review of technologies to produce solid fuels for resource recovery from faecal sludge. J. Water Sanit. Hyg. Dev. 2019, 9, 210–224. [Google Scholar] [CrossRef]
- Jothinathan, H.; Singh, A.P. Faecal sludge characterization, treatment, and resource recovery options: A state-of-the-Art review on faecal sludge management. Environ. Sci. Pollut. Res. 2023, 30, 119549–119567. [Google Scholar] [CrossRef]
- Bagalwa Nyamugara, L.; Bigumandondera, P.; Bayumbasire, C.; Bukuru Nyabukara, J.J.; Lina Aleke, A.; Ndagano Kamole, K.E.C. Faecal sludge management in the city of Bukavu, Democratic Republic of Congo. J. Mater. Environ. Sci. 2024, 15, 268–284. [Google Scholar]
- Muoghalu, C.; Semiyaga, S.; Manga, M. Faecal sludge emptying in Sub-Saharan Africa, South and Southeast Asia: A systematic review of emptying technology choices, challenges, and improvement initiatives. Front. Environ. Sci. 2023, 11, 1097716. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Andraskar, J.; Yadav, S.; Khan, D.; Kapley, A. Treatment Options for Municipal Solid Waste by Composting and Its Challenges. Indian J. Microbiol. 2023, 63, 235–243. [Google Scholar] [CrossRef]
- Nartey, E.G.; Sakrabani, R.; Tyrrel, S.; Cofie, O. Assessing consistency in the aerobic co-composting of faecal sludge and food waste in a municipality in Ghana. Environ. Syst. Res. 2023, 12, 33. [Google Scholar] [CrossRef]
- Manga, M.; Camargo-Valero, M.A.; Anthonj, C.; Evans, B.E. Fate of faecal pathogen indicators during faecal sludge composting with different bulking agents in tropical climate. Int. J. Hyg. Environ. Health 2021, 232, 113670. [Google Scholar] [CrossRef]
- Manga, M.; Muoghalu, C.C.; Acheng, P.O. Inactivation of faecal pathogens during faecal sludge composting: A systematic review. Environ. Technol. Rev. 2023, 12, 150–174. [Google Scholar] [CrossRef]
- Verbyla, M.E.; Iriarte, M.M.; Guzmán, A.M.; Coronado, O.; Almanza, M.; Mihelcic, J.R. Pathogens and faecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops. Sci. Total Environ. 2016, 551–552, 429–437. [Google Scholar] [CrossRef]
- Bittencourt, F.L.F.; Martins, M.F. Thermochemically-driven treatment units for faecal matter sanitation: A review addressed to the underdeveloped world. J. Environ. Chem. Eng. 2022, 10, 108732. [Google Scholar] [CrossRef]
- Breukelman, H.; Krikke, H.; Löhr, A. Failing services on urban waste management in developing countries: A review on symptoms, diagnoses, and interventions. Sustainability 2019, 11, 6977. [Google Scholar] [CrossRef]
- Krueger, B.C.; Fowler, G.D.; Templeton, M.R. Critical analytical parameters for faecal sludge characterization informing the application of thermal treatment processes. J. Environ. Manag. 2021, 280, 111658. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lin, K.Y.A.; Jung, S.; Kwon, E.E. Hybrid renewable energy systems involving thermochemical conversion process for waste-to-energy strategy. Chem. Eng. J. 2022, 452, 139218. [Google Scholar] [CrossRef]
- Chandana, N.; Rao, B. A critical review on sludge management from onsite sanitation systems: A knowledge to be revised in the current situation. Environ. Res. 2022, 203, 111812. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.K.; Wang, M.H.S.; Cardenas, R.R.; Sabiani, N.H.M.; Yusoff, M.S.; Hassan, S.H.; Kamaruddin, M.A.; George, F.O.; Hung, Y.T. Composting process for disposal of municipal and agricultural solid wastes. In Solid Waste Engineering and Management; Springer: Cham, Switzerland, 2021; Volume 1, pp. 399–523. [Google Scholar]
- Zhou, S.; Peng, S.; Li, S.; Zhang, D.; Zhu, Y.; Li, X.; Hong, M.; Li, W.; Lu, P. Characterization of microbial communities and functions in shale gas wastewaters and sludge: Implications for pretreatment. J. Hazard. Mater. 2022, 424, 127649. [Google Scholar] [CrossRef] [PubMed]
- Mawejje, M.N.; Pocock, J.; Septien, S. Solar Thermal Drying Kinetics of Faecal Sludge: Effect of Convection Air Stream Conditions and Type of Sludge. Energy Eng. 2025, 120, 3177–3199. [Google Scholar] [CrossRef]
- An-nori, A.; Ezzariai, A.; El Mejahed, K.; El Fels, L.; El Gharous, M.; Hafidi, M. Solar Drying as an Eco-Friendly Technology for Sewage Sludge Stabilization: Assessment of Micropollutant Behavior, Pathogen Removal, and Agronomic Value. Front. Environ. Sci. 2022, 10, 814590. [Google Scholar] [CrossRef]
- Novais, R.M.; Gameiro, T.; Carvalheiras, J.; Seabra, M.P.; Tarelho, L.A.; Labrincha, J.A.; Capela, I. High pH buffer capacity biomass fly ash-based geopolymer spheres to boost methane yield in anaerobic digestion. J. Clean. Prod. 2018, 178, 258–267. [Google Scholar] [CrossRef]
- Toutian, V.; Barjenbruch, M.; Loderer, C.; Remy, C. Impact of process parameters of thermal alkaline pretreatment on biogas yield and dewaterability of waste activated sludge. Water Res. 2021, 202, 117465. [Google Scholar] [CrossRef]
- Kwapinski, W.; Kolinovic, I.; Leahy, J.J. Sewage sludge thermal treatment technologies with a focus on phosphorus recovery: A review. Waste Biomass Valorization 2021, 12, 5837–5852. [Google Scholar] [CrossRef]
- Oladejo, J.; Shi, K.; Luo, X.; Yang, G.; Wu, T. A review of sludge-to-energy recovery methods. Energies 2019, 12, 60. [Google Scholar] [CrossRef]
- Myszograj, S.; Płuciennik-Koropczuk, E. Thermal Disintegration of Sewage Sludge as a Method of Improving the Biogas Potential. Energies 2023, 16, 559. [Google Scholar] [CrossRef]
- Zheng, W.; Shao, Y.; Qin, S.; Wang, Z. Future Directions of Sustainable Resource Utilization of Residual Sewage Sludge: A Review. Sustainability 2024, 16, 6710. [Google Scholar] [CrossRef]
- Hu, M.; Ye, Z.; Zhang, H.; Chen, B.; Pan, Z.; Wang, J. Thermochemical conversion of sewage sludge for energy and resource recovery: Technical challenges and prospects. Environ. Pollut. Bioavail. 2021, 33, 145–163. [Google Scholar] [CrossRef]
- Khan, I.; Chowdhury, S.; Techato, K. Waste-to-energy in developing countries: A rapid review: Opportunities, challenges, and policies in selected countries of Sub-Saharan Africa and South Asia towards sustainability. Sustainability 2022, 14, 3740. [Google Scholar] [CrossRef]
- Oluoch, B.; Mandizvo, T.; Musazura, W.; Badza, T.; Otieno, B.; Ojwach, S.; Odindo, A. A review of pathogen removal from municipal wastewater using advanced oxidation processes: Agricultural application, regrowth risks, and new perspectives. Heliyon 2024, 10, e39625. [Google Scholar] [CrossRef]
- Krishnan, R.; Yen, P.; Agarwal, R.; Arshinder, K.; Bajada, C. Collaborative innovation and sustainability in the food supply chain: Evidence from farmer producer organisations. Resour. Conserv. Recycl. 2021, 168, 105253. [Google Scholar] [CrossRef]
- Karef, S.; Azlaoui, M.; Boussaid, K.; Batana, F.Z.; Bruzzoniti, M.C.; Fodili, M.; Kettab, A. Fertilizer potential and social perception of the agricultural reuse of sewage sludge and treated wastewater. Desalination Water Treat. 2024, 322, 100186. [Google Scholar] [CrossRef]
- Akpan, V.E.; Omole, D.O.; Bassey, D.E. Assessing the public perceptions of treated wastewater reuse: Opportunities and implications for urban communities in developing countries. Heliyon 2020, 6, e05246. [Google Scholar] [CrossRef]
- Amegah, A.K. Slum decay in Sub-Saharan Africa: Context, environmental pollution challenges, and impact on dweller’s health. Environ. Epidemiol. 2021, 5, e149. [Google Scholar] [CrossRef]
- Amponsah-Doku, B.; Daymond, A.; Robinson, S.; Atuah, L.; Sizmur, T. Improvement soil health and closing the yield gap of cocoa production in Ghana: A review. Sci. Afr. 2022, 15, e01075. [Google Scholar] [CrossRef]
- Daadi, B.E.; Latacz-Lohmann, U. Organic fertilizer use by smallholder farmers: Typology of management approaches in northern Ghana. Renew. Agric. Food Syst. 2021, 36, 192–206. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Energy and resource recovery from excess sewage sludge: A holistic analysis of opportunities and strategies. Resour. Conserv. Recycl. Adv. 2023, 19, 200184. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 24th ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2023. [Google Scholar]
- Amenyeku, G. Anaerobic Co-Digestion of Faecal Sludge with Paper or Fruit Waste for Biogas: A Case in Kumasi, Ghana. Master’s Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2019. [Google Scholar]
- Velkushanova, K.; Strande, L.; Ronteltap, M.; Koottatep, T.; Brdjanovic, D.; Buckley, C. Methods for Faecal Sludge Analysis; IWA Publishing: London, UK, 2021; pp. 236–395. ISBN 9781780409115. [Google Scholar]
- Butte, G.; Niwagaba, C.; Nordin, A. Assessing the microbial risk of faecal sludge use in Ugandan agriculture by comparing field and theoretical model output. Water Res. 2021, 197, 117068. [Google Scholar] [CrossRef]
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/76671.html (accessed on 13 August 2025).
- Moodley, P.; Wilkinson, E.; Connolly, C.; Asafu-Adjei, D.; Sturm, A.W. Standard Methods for the Recovery and Enumeration of Helminth Ova in Wastewater, Sludge, Compost and Urine-Diversion Waste in South Africa. Available online: https://www.wrc.org.za/wp-content/uploads/mdocs/TT%20322-web.pdf (accessed on 13 August 2025).
- Ravindran, V.B.; Shahsavari, E.; Soni, S.K.; Ball, A.S. Viability determination of Ascaris ova in raw wastewater: A comparative evaluation of culture-based, BacLight Live/Dead staining and PMA-qPCR methods. Water Sci. Technol. 2019, 80, 817–826. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Method 1600: Enterococci in Water by Membrane Filtration Using Membrane-Enterococcus Indoxyl-β-D-Glucoside Agar (mEI). Available online: https://www.epa.gov/sites/default/files/2015-08/documents/method_1600_2009.pdf (accessed on 13 August 2025).
- US Environmental Protection Agency. Method 1623.1: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. Available online: https://www.epa.gov/sites/default/files/2021-05/documents/method_1623_1.pdf (accessed on 13 August 2025).
- Cai, X.; Du, C. Thermal plasma treatment of medical waste. Plasma Chem. Plasma Process. 2021, 41, 1–46. [Google Scholar] [CrossRef]
- NIST. Certificate of Analysis: Standard Reference Material 2781 Domestic Sludge; National Institute of Standards and Technology. Available online: https://tsapps.nist.gov/srmext/certificates/2781.pdf (accessed on 13 August 2025).
- Strande, L.; Ronteltap, M.; Brdjanovic, D. Faecal Sludge Management: Systems Approach for Implementation and Operation; IWA Publishing: London, UK, 2014. [Google Scholar] [CrossRef]
- Strande, L.; Schoebitz, L.; Bischoff, F.; Ddiba, D.; Okello, F.; Englund, M.; Ward, B.J.; Niwagaba, C.B. Methods to Reliably Estimate Faecal Sludge Quantities and Qualities for the Design of Treatment Technologies and Management Solutions. J. Environ. Manag. 2018, 223, 898–907. [Google Scholar] [CrossRef]
- Englund, M.; Strande, L. Faecal Sludge Management Highlights and Exercises; Eawag: Dübendorf, Switzerland, 2019. [Google Scholar]
- Gold, M.; Dayer, P.; Faye, M.C.A.S.; Clair, G.; Seck, A.; Niang, S.; Morgenroth, E.; Strande, L. Locally produced natural conditioners for dewatering of faecal sludge. Environ. Technol. 2016, 37, 2802–2814. [Google Scholar] [CrossRef]
- Brooker, M.R. Advanced Characterization of Organic Waste Streams for Resource Recovery. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2023. [Google Scholar]
- Capps, K.A.; Bentsen, C.N.; Ramírez, A. Environmental impacts and resource recovery potential from urban waste streams in developing countries. Freshw. Sci. 2016, 35, 429–435. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, K.; Yang, J.; Yu, Z.; Yu, W.; Xu, Q.; Wu, Q.; Liang, S.; Hu, J.; Hou, H.; et al. Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron-rich sludge: A potential phosphorus fertilizer. Water Res. 2020, 174, 115629. [Google Scholar] [CrossRef]
- Wanda, C.; Kengne, E.S.; Wafo, G.V.D.; Nzouebet, W.A.L.; Nbendah, P.; Ngandjui, Y.A.T.; Zapfack, L.; Noumsi, I.M.K. Quantification and characterisation of faecal sludge from on-site sanitation systems prior the design of a treatment plant in Bangangte, West Region of Cameroon. Environ. Chall. 2021, 5, 100236. [Google Scholar] [CrossRef]
- Ward, B.J.; Andriessen, N.; Tembo, J.M.; Kabika, J.; Grau, M.; Scheidegger, A.; Morgenroth, E.; Strande, L. Predictive models using “cheap and easy” field measurements: Can they fill a gap in planning, monitoring, and implementing fecal sludge management solutions? Water Res. 2021, 197, 116997. [Google Scholar] [CrossRef] [PubMed]
- Berendes, D.M.; Kirby, A.E.; Clennon, J.A.; Agbemabiese, C.; Ampofo, J.A.; Armah, G.E.; Baker, K.K.; Liu, P.; Reese, H.E.; Robb, K.A.; et al. Urban sanitation coverage and environmental faecal contamination: Links between the household and public environments of Accra, Ghana. PLoS ONE 2018, 13, e0199304. [Google Scholar] [CrossRef]
- Kengne, E.S.; Tekamdjo, S.L.T.; Nzouebet, W.A.L.; Wanda, C.; Nbendah, P.; Tchuifon, D.R.T.; Kengne, I.M.; Nola, M.; Djuikom, E. Treatment of Fecal Sludge (FS) Using Combined Bio-Digester and Stabilization Pond in a Tropical Urban Area. Int. J. Water Wastewater Treat. 2024, 5, 2. [Google Scholar] [CrossRef]
- Manga, M.; Muoghalu, C.; Camargo-Valero, M.A.; Evans, B.E. Effect of Turning Frequency on the Survival of Fecal Indicator Microorganisms during Aerobic Composting of Fecal Sludge with sawdust. Int. J. Environ. Res. Public Health 2023, 20, 2668. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, M.K. Water, Sanitation and Hygiene (WASH) Practices and the Incidence of WASH Related Diseases Within the Tamale Metropolitan Area. Master’s Thesis, University for Development Studies, Tamale, Ghana, 2020. [Google Scholar]
- Ahogle, A.M.A.; Letema, S.; Schaab, G.; Ngure, V.; Mwesigye, A.R.; Korir, N.K. Heavy metals and trace elements contamination risks in peri-urban agricultural soils in Nairobi city catchment, Kenya. Front. Soil Sci. 2023, 2, 1048057. [Google Scholar] [CrossRef]
- Czembor, E.; Tratwal, A.; Pukacki, J.; Krystek, M.; Czembor, J.H. Managing fungal pathogens of field crops in sustainable agriculture and AgroVariety internet application as a case study. J. Plant Prot. Res. 2025, 65, 1–26. [Google Scholar] [CrossRef]
- Di Costanzo, N.; Cesaro, A.; Di Capua, F.; Esposito, G. Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review. Energies 2021, 14, 8149. [Google Scholar] [CrossRef]
- Alhelal, I.; Loetscher, L.; Sharvelle, S.; Reardon, K. Nitrogen Recovery from Anaerobic Digestate Via Ammonia Stripping and Absorbing with a Nitrified Solution. SSRN Electron. J. 2022, 10, 107826. [Google Scholar] [CrossRef]
- Chen, W.; Grimberg, S.; Rogers, S.; Kim, T. Bipolar membrane electrodialysis for nutrient recovery from anaerobic digestion dewatering sidestream. Chem. Eng. J. 2024, 488, 150834. [Google Scholar] [CrossRef]
- Silva, J.R.; Quinta-Ferreira, R.M.; Castro, L.M. Biological Treatments for VOC-Contaminated Off-Gas: Advances, Challenges, and Energetic Valorization Opportunities. Sustainability 2025, 17, 4802. [Google Scholar] [CrossRef]
- Seruga, P.; Krzywonos, M.; Paluszak, Z.; Urbanowska, A.; Pawlak-Kruczek, H.; Niedźwiecki, Ł.; Pińkowska, H. Enhanced pathogen reduction in anaerobic digestion of organic waste. Molecules 2020, 25, 275. [Google Scholar] [CrossRef]
- Drechsel, P.; Qadir, M.; Galibourg, D. The WHO Guidelines for Safe Wastewater Use in Agriculture: A Review of Implementation Challenges and Possible Solutions in the Global South. Water 2022, 14, 864. [Google Scholar] [CrossRef]
- Manga, M.; Evans, B.E.; Ngasala, T.M.; Camargo-Valero, M.A. Recycling of Faecal Sludge: Nitrogen, Carbon and Organic Matter Transformation during Co-Composting of Faecal Sludge with Different Bulking Agents. Int. J. Environ. Res. Public Health 2022, 19, 10592. [Google Scholar] [CrossRef]
- European Union. Directive 2018/851 on Waste and Circular Economy: Heavy Metal Standards for Organic Amendments; EU: Brussels, Belgium, 2018. [Google Scholar]
- O’Brien, P.L.; DeSutter, T.M.; Casey, F.X.; Khan, E.; Wick, A.F. Thermal remediation alters soil properties: A review. J. Environ. Manag. 2018, 206, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Pausta, C.M.; Kalbar, P.; Saroj, D. Life cycle assessment of nutrient recovery strategies from domestic wastewaters to quantify environmental performance and identification of trade-offs. Sci. Rep. 2024, 14, 3678. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Qin, Y. Research Progress of Low-Temperature Plasma Technology in the Treatment of Malodorous Gases. Int. J. Appl. Sci. 2021, 8, 92–98. [Google Scholar] [CrossRef]
- Ebenezer, A.A.; Abdul-Wahab, D.; Archibold, B.K.; Rafeah, W.; Zainab, N.; Charles, K.K.; Ibrahim, K.K.; Crentsil, K.B. Climate change, soil health, and governance challenges in Ghana: A review. Land Use Policy 2025, 157, 107684. [Google Scholar] [CrossRef]
- Habib, A.A. Municipal Capacity Building for Integrated Waste Management in Ghana. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2023. [Google Scholar]
- Rohilla, S.K.; Agyenim, F.B.; Luthra, B.; Padhi, S.K.; Quashie, A.S.; Yadav, A. Integrated Wastewater and Faecal Sludge Management for Ghana Draft Guidelines. Available online: https://cspace.csirgh.com/items/show/999 (accessed on 13 August 2025).
- Hotez, P.J. Forgotten People, Forgotten Diseases: The Neglected Tropical Diseases and Their Impact on Global Health and Development; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
Parameter | Unit | Mean ± SD | Min | Max | TV | p-Value * | |
---|---|---|---|---|---|---|---|
Physicochemical | pH | 7.24 ± 0.20 | 6.69 | 7.84 | |||
MC | % | 60.20 ± 8.57 | 54.14 | 66.26 | |||
OM | % | 28.50 ±2.62 | 20.50 | 34.65 | |||
Organic Carbon | % | 14.83 ± 0.72 | 12.98 | 16.42 | |||
Conductivity | μS/cm | 528.62 ± 16.71 | 478.78 | 572.21 | |||
Nutrient | TN | mg/kg | 2141.05 ± 27.37 | 2081.64 | 2219.08 | 2000 | <0.001 |
P2O5 | mg/kg | 190.08 ± 3.34 | 180.80 | 200.53 | 150 | <0.001 | |
K2O | mg/kg | 4434.88 ± 35.88 | 4340.18 | 4527.94 | 4000 | <0.001 | |
Microbial | Total Coliforms | cfu/100 g | 148,808.70 ± 223.15 | 148,298.36 | 149,364.33 | <1000 | |
Enterococci | cfu/100 g | 37,185.48 ± 242.11 | 36,577.61 | 37,786.97 | <1000 | ||
Escherichia coli | cfu/100 g | 9286.30 ± 131.12 | 8969.29 | 9684.42 | <1000 | ||
Salmonella spp. | cfu/100 g | 1899.86 ± 90.26 | 1688.92 | 2148.26 | 0 | ||
Faecal Streptococci | cfu/100 g | 37,194.34 ± 233.12 | 36,629.73 | 37,795.93 | <1000 | ||
Parasitology | Strongyloides stercoralis | eggs/L | 25.02 ± 0.65 | 23.34 | 26.73 | <1 | |
Ascaris lumbricoides | eggs/L | 12.08 ± 1.71 | 6.80 | 15.99 | <1 | ||
Giardia lamblia | eggs/L | 7.97 ± 2.41 | 2.09 | 15.86 | <1 | ||
Cryptosporidium parvum | eggs/L | 5.07 ± 1.20 | 1.88 | 8.72 | <1 | ||
Trichuris trichiura | eggs/L | 5.00 ± 0.03 | 4.92 | 5.11 | <1 | ||
Heavy metal | Lead | mg/kg | 45.43 ± 0.56 | 43.91 | 46.71 | 300 | |
Nickel | mg/kg | 9.01 ± 0.34 | 8.04 | 10.08 | 420 | ||
Cadmium | mg/kg | 1.17 ± 0.01 | 1.15 | 1.19 | 39 | ||
Arsenic | mg/kg | 0.17 ± 0.00 | 0.16 | 0.17 | 41 | ||
Mercury | mg/kg | 0.11 ± 0.00 | 0.10 | 0.12 | 17 | ||
Chromium | mg/kg | <0.500 | <0.500 | <0.500 | 1200 |
Dependent Variable | R2 | Adjusted R2 | F-Statistic | p-Value * |
---|---|---|---|---|
Total Nitrogen | 0.823 | 0.801 | 45.276 | <0.001 |
P2O5 | 0.768 | 0.742 | 38.453 | <0.001 |
K2O | 0.795 | 0.773 | 42.891 | <0.001 |
Parameter | Unit | M1 | M2 | M3 | Mean ± SD | p-Value | |
---|---|---|---|---|---|---|---|
Physicochemical | pH | - | 7.7 | 7.8 | 7.8 | 7.8 ± 0.06 | |
Moisture Content | % | 67 | 62 | 9 | 66 ± 3.61 | ||
Organic Matter Content | % | 60.5 | 50.71 | 45.43 | 52.21 ± 7.65 | ||
Organic Carbon | % | 27 | 31 | 41 | 33 ± 7.2 | ||
Conductivity | μS/cm | 201 | 132 | 184 | 172.33 ± 35.95 | ||
Nutrient | Total Nitrogen (TN) | mg/kg | 954 | 705 | 540 | 733 ± 208.32 | |
P2O5 | mg/kg | 3985 | 4003 | 4012 | 4000 ± 13.75 | ||
K2O | mg/kg | 120 | 185 | 210 | 171.67 ± 46.46 | ||
Microbial | Total Coliforms | cfu/100 g | 1211 | 214 | 55 | 493.33 ± 626.58 | <0.001 |
Enterococci | cfu/100 g | 423 | 83 | 32 | 179.33 ± 212.56 | <0.001 | |
Escherichia coli | cfu/100 g | 902 | 57 | 45 | 334.67 ± 491.36 | <0.001 | |
Salmonella spp. | cfu/100 g | 253 | 54 | 33 | 113.33 ± 121.41 | <0.001 | |
Faecal Streptococci | cfu/100 g | 421 | 121 | 51 | 197.67 ± 196.55 | <0.001 | |
Parasitology | Strongyloides stercoralis | eggs/L | 8 | 5 | 1 | 5.67 ± 1.51 | |
Ascaris lumbricoides | eggs/L | 5 | 3 | 2 | 3.33 ± 1.53 | ||
Giardia lamblia | eggs/L | 2 | 1 | 0 | 1 ± 1.00 | ||
Cryptosporidium parvum | eggs/L | 3 | 0 | 0 | 1 ± 1.73 | ||
Trichuris trichiura | eggs/L | 2 | 0 | 0 | 0.67 ± 1.15 | ||
Heavy metals | Lead | mg/kg | 58.34 | 42.11 | 32.67 | 42.04 ± 10.47 | |
Nickel | mg/kg | 83.24 | 75.31 | 62.12 | 73.56 ± 10.67 | ||
Cadmium | mg/kg | 1.96 | 1.42 | 0.15 | 1.18 ± 0.98 | ||
Arsenic | mg/kg | 0.52 | 0.41 | 0.21 | 0.38 ± 0.16 | ||
Mercury | mg/kg | 0.21 | 0.15 | 0.1 | 0.15 ± 0.06 | ||
Chromium | mg/kg | 2.12 | 0.91 | 0.51 | 1.18 ± 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ofori-Amanfo, D.; Appiah-Effah, E.; Gyapong-Korsah, B.; Awuah, E.; Essandoh, H.M.K.; Appiah-Brempong, M.; Ahmed, I. Characterisation and Fertiliser Potential of Mechanically Dewatered Faecal Sludge from Anaerobic Digestion. Waste 2025, 3, 31. https://doi.org/10.3390/waste3040031
Ofori-Amanfo D, Appiah-Effah E, Gyapong-Korsah B, Awuah E, Essandoh HMK, Appiah-Brempong M, Ahmed I. Characterisation and Fertiliser Potential of Mechanically Dewatered Faecal Sludge from Anaerobic Digestion. Waste. 2025; 3(4):31. https://doi.org/10.3390/waste3040031
Chicago/Turabian StyleOfori-Amanfo, Dennis, Eugene Appiah-Effah, Barbara Gyapong-Korsah, Esi Awuah, Helen M. K. Essandoh, Miriam Appiah-Brempong, and Issahaku Ahmed. 2025. "Characterisation and Fertiliser Potential of Mechanically Dewatered Faecal Sludge from Anaerobic Digestion" Waste 3, no. 4: 31. https://doi.org/10.3390/waste3040031
APA StyleOfori-Amanfo, D., Appiah-Effah, E., Gyapong-Korsah, B., Awuah, E., Essandoh, H. M. K., Appiah-Brempong, M., & Ahmed, I. (2025). Characterisation and Fertiliser Potential of Mechanically Dewatered Faecal Sludge from Anaerobic Digestion. Waste, 3(4), 31. https://doi.org/10.3390/waste3040031