Trichoderma harzianum Enzyme Production in Stirred Solid-State Bioreactors as a Strategy for Valorizing Water Hyacinth
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Inoculum
2.3. Solid Substrate
2.4. Packed-Bed Experiments
2.5. Stirred-Bed Experiments
2.6. Respirometry Analysis
2.7. Enzyme Assays
2.8. Statistical Analysis
3. Results
3.1. Packed-Bed Bioreactor Processes
3.2. Stirred-Bed Bioreactor Processes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Maximal specific growth rate | |
Carbon dioxide concentration | |
Oxygen concentration | |
Maximum carbon dioxide concentration | |
Initial carbon dioxide concentration | |
Initial oxygen concentration | |
Carbon dioxide production rate (CDPR) | |
Oxygen uptake rate (OUR) | |
Oxygen-carbon dioxide mass yield | |
Carbon dioxide-oxygen molar yield | |
Maintenance coefficient associated with oxygen uptake | |
SSC | Solid-state culture |
PBCB | Packed bed column bioreactor |
ISB | Internal stirred bioreactor |
IM | Impregnated medium |
TOU | Total oxygen uptake |
TCDP | Total carbon dioxide production |
References
- Téllez, T.R.; López, E.; Granado, G.; Pérez, E.; López, R.; Guzmán, J. The Water Hyacinth, Eichhornia crassipes: An Invasive Plant in the Guadiana River Basin (Spain). Aquat. Invasion 2008, 3, 42–53. [Google Scholar] [CrossRef]
- Honlah, E.; Yao Segbefia, A.; Odame Appiah, D.; Mensah, M.; Atakora, P.O. Effects of Water Hyacinth Invasion on the Health of the Communities, and the Education of Children along River Tano and Abby-Tano Lagoon in Ghana. Cogent Soc. Sci. 2019, 5, 1619652. [Google Scholar] [CrossRef]
- Julien, M. Plant Biology and Other Issues That Relate to the Management of Water Hyacinth: A Global Perspective with Focus on Europe 1. EPPO Bull. 2008, 38, 477–486. [Google Scholar] [CrossRef]
- Gunnarsson, C.C.; Petersen, C.M. Water Hyacinths as a Resource in Agriculture and Energy Production: A Literature Review. Waste Manag. 2007, 27, 117–129. [Google Scholar] [CrossRef]
- Hermoso-López Araiza, J.P.; Quecholac-Piña, X.; Beltrán-Villavicencio, M.; Espinosa-Valdemar, R.M.; Vázquez-Morillas, A. Integral Valorization of the Water Hyacinth from the Canals of Xochimilco: Production of Edible Mushrooms and Forage. Waste Biomass Valoriz. 2016, 7, 1203–1210. [Google Scholar] [CrossRef]
- Carlini, M.; Castellucci, S.; Mennuni, A. Water Hyacinth Biomass: Chemical and Thermal Pre-Treatment for Energetic Utilization in Anaerobic Digestion Process. Energy Procedia 2018, 148, 431–438. [Google Scholar] [CrossRef]
- Lay, C.-H.; Sen, B.; Chen, C.-C.; Wu, J.-H.; Lee, S.-C.; Lin, C.-Y. Co-Fermentation of Water Hyacinth and Beverage Wastewater in Powder and Pellet Form for Hydrogen Production. Bioresour. Technol. 2013, 135, 610–615. [Google Scholar] [CrossRef]
- Ma, F.; Yang, N.; Xu, C.; Yu, H.; Wu, J.; Zhang, X. Combination of Biological Pretreatment with Mild Acid Pretreatment for Enzymatic Hydrolysis and Ethanol Production from Water Hyacinth. Bioresour. Technol. 2010, 101, 9600–9604. [Google Scholar] [CrossRef]
- Soccol, C.R.; da Costa, E.S.F.; Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; de Souza Vandenberghe, L.P. Recent Developments and Innovations in Solid State Fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Thapa, S.; Mishra, J.; Arora, N.; Mishra, P.; Li, H.; O’Hair, J.; Bhatti, S.; Zhou, S. Microbial Cellulolytic Enzymes: Diversity and Biotechnology with Reference to Lignocellulosic Biomass Degradation. Rev. Environ. Sci. Biotechnol. 2020, 19, 621–648. [Google Scholar] [CrossRef]
- Dahiya, S.; Rapoport, A.; Singh, B. Biotechnological Potential of Lignocellulosic Biomass as Substrates for Fungal Xylanases and Its Bioconversion into Useful Products: A Review. Fermentation 2024, 10, 82. [Google Scholar] [CrossRef]
- Bajaj, P.; Mahajan, R. Cellulase and Xylanase Synergism in Industrial Biotechnology. Appl. Microbiol. Biotechnol. 2019, 103, 8711–8724. [Google Scholar] [CrossRef]
- Klein-Marcuschamer, D.; Oleskowicz-Popiel, P.; Simmons, B.A.; Blanch, H.W. The Challenge of Enzyme Cost in the Production of Lignocellulosic Biofuels. Biotechnol. Bioeng. 2012, 109, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Bajar, S.; Devi, A.; Bishnoi, N.R. Adding Value to Agro-Industrial Waste for Cellulase and Xylanase Production via Solid-State Bioconversion. Biomass Convers. Biorefin. 2023, 13, 7481–7490. [Google Scholar] [CrossRef]
- Legodi, L.M.; La Grange, D.C.; van Rensburg, E.L.J. Production of the Cellulase Enzyme System by Locally Isolated Trichoderma and Aspergillus Species Cultivated on Banana Pseudostem during Solid-State Fermentation. Fermentation 2023, 9, 412. [Google Scholar] [CrossRef]
- Saldaña-Mendoza, S.A.; Palacios-Ponce, A.S.; Ruiz, H.A.; Ascacio-Valdés, J.A.; Aguilar, C.N. Revalorization of Green Tea Waste through the Production of Cellulases by Solid-State Fermentation Using a Aspergillus niger 28A. Biomass Convers. Biorefin. 2024, 14, 16711–16724. [Google Scholar] [CrossRef]
- Afiqah Razali, S.; Rasit, N.; Kuan Ooi, C. Statistical Analysis of Xylanase Production from Solid State Fermentation of Rice Husk Associated Fungus Aspergillus niger. Mater. Today Proc. 2021, 39, 1082–1087. [Google Scholar] [CrossRef]
- Lopes-Perez, C.; Casciatori, F.P.; Thoméo, J.C. Improving Enzyme Production by Solid-State Cultivation in Packed-Bed Bioreactors by Changing Bed Porosity and Airflow Distribution. Bioprocess Biosyst. Eng. 2021, 44, 537–548. [Google Scholar] [CrossRef]
- Camassola, M.; Dillon, A.J.P. Production of Cellulases and Hemicellulases by Penicillium echinulatum Grown on Pretreated Sugar Cane Bagasse and Wheat Bran in Solid-State Fermentation. J. Appl. Microbiol. 2007, 103, 2196–2204. [Google Scholar] [CrossRef]
- Hamrouni, R.; Molinet, J.; Dupuy, N.; Taieb, N.; Carboue, Q.; Masmoudi, A.; Roussos, S. The Effect of Aeration for 6-Pentyl-Alpha-Pyrone, Conidia and Lytic Enzymes Production by Trichoderma asperellum Strains Grown in Solid-State Fermentation. Waste Biomass Valoriz. 2020, 11, 5711–5720. [Google Scholar] [CrossRef]
- Lodha, A.; Pawar, S.; Rathod, V. Optimised Cellulase Production from Fungal Co-Culture of Trichoderma reesei NCIM 1186 and Penicillium citrinum NCIM 768 under Solid State Fermentation. J. Environ. Chem. Eng. 2020, 8, 103958. [Google Scholar] [CrossRef]
- Outeiriño, D.; Costa-Trigo, I.; Pinheiro de Souza Oliveira, R.; Pérez Guerra, N.; Salgado, J.M.; Domínguez, J.M. Biorefinery of Brewery Spent Grain by Solid-State Fermentation and Ionic Liquids. Foods 2022, 11, 3711. [Google Scholar] [CrossRef]
- De la Cruz-Quiroz, R.; Robledo-Padilla, F.; Aguilar, C.N.; Roussos, S. Forced Aeration Influence on the Production of Spores by Trichoderma Strains. Waste Biomass Valoriz. 2017, 8, 2263–2270. [Google Scholar] [CrossRef]
- Deshpande, S.K.; Bhotmange, M.G.; Chakrabarti, T.; Shastri, P.N. Production of Cellulase and Xylanase by Trichoderma reesei (QM 9414 Mutant), Aspergillus niger and Mixed Culture by Solid State Fermentation (SSF) of Water Hyacinth (Eichhornia crassipes). Indian J. Chem. Technol. 2008, 15, 449–456. [Google Scholar]
- Arana-Cuenca, A.; Tovar-Jiménez, X.; Favela-Torres, E.; Perraud-Gaime, I.; González-Becerra, A.E.; Martínez, A.; Moss-Acosta, C.L.; Mercado-Flores, Y.; Téllez-Jurado, A. Use of Water Hyacinth as a Substrate for the Production of Filamentous Fungal Hydrolytic Enzymes in Solid-State Fermentation. 3 Biotech 2019, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Finkler, A.T.J.; Weber, M.Z.; Fuchs, G.A.; Scholz, L.A.; de Lima Luz, L.F., Jr.; Krieger, N.; Mitchell, D.A.; de Matos Jorge, L.M. Estimation of Heat and Mass Transfer Coefficients in a Pilot Packed-Bed Solid-State Fermentation Bioreactor. Chem. Eng. J. 2021, 408, 127246. [Google Scholar] [CrossRef]
- Ge, X.; Vasco-Correa, J.; Li, Y. Solid-State Fermentation Bioreactors and Fundamentals. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 381–402. [Google Scholar]
- Durand, A. Bioreactor Designs for Solid State Fermentation. Biochem. Eng. J. 2003, 13, 113–125. [Google Scholar] [CrossRef]
- Grajales, L.M.; Wang, H.; Casciatori, F.P.; Thoméo, J.C. Intensified Rotary Drum Bioreactor for Cellulase Production from Agro-Industrial Residues by Solid-State Cultivation. Chem. Eng. Process.-Process Intensif. 2025, 210, 110223. [Google Scholar] [CrossRef]
- Martínez-Ramírez, C.; Esquivel-Cote, R.; Ferrera-Cerrato, R.; Martínez-Ruiz, J.A.; Rodríguez-Serrano, G.; Saucedo-Castañeda, G. Solid-State Culture of Azospirillum brasilense: A Reliable Technology for Biofertilizer Production from Laboratory to Pilot Scale. Bioprocess Biosyst. Eng. 2021, 44, 1525–1538. [Google Scholar] [CrossRef]
- Mattedi, A.; Sabbi, E.; Farda, B.; Djebaili, R.; Mitra, D.; Ercole, C.; Cacchio, P.; Del Gallo, M.; Pellegrini, M. Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms 2023, 11, 1408. [Google Scholar] [CrossRef]
- Brand, D.; Soccol, C.R.; Sabu, A.; Roussos, S. Production of Fungal Biological Control Agents through Solid State Fermentation: A Case Study on Paecelomyces lilacinus Againts Root-Knot Nematodes. Micol. Apl. Int. 2010, 22, 31–48. [Google Scholar]
- Desobgo, S.C.Z.; Mishra, S.S.; Behera, S.K.; Panda, S.K. Scaling-up and Modelling Applications of Solid-State Fermentation and Demonstration in Microbial Enzyme Production Related to Food Industries. In Microbial Enzyme Technology in Food Applications; Ray, R., Rosell, C., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 452–468. [Google Scholar]
- Xue, M.; Liu, D.; Zhang, H.; Qi, H.; Lei, Z. A Pilot Process of Solid State Fermentation from Sugar Beet Pulp for the Production of Microbial Protein. J. Ferment. Bioeng. 1992, 73, 203–205. [Google Scholar] [CrossRef]
- De Vrije, T.; Antoine, N.; Buitelaar, R.M.; Bruckner, S.; Dissevelt, M.; Durand, A.; Gerlagh, M.; Jones, E.E.; Lüth, P.; Oostra, J.; et al. The Fungal Biocontrol Agent Coniothyrium minitans: Production by Solid-State Fermentation, Application and Marketing. Appl. Microbiol. Biotechnol. 2001, 56, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Durand, A.; Chereau, D. A New Pilot Reactor for Solid-State Fermentation: Application to the Protein Enrichment of Sugar Beet Pulp. Biotechnol. Bioeng. 1988, 31, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Saucedo-Castañeda, G.; Favela-Torres, E.; Viniegra-González, G.; Torres-Mancera, M.T.; Figueroa-Montero, A.; Rosales-Zamora, G. Respirometry System with Remote Management for the Inline Monitoring of the Concentration of CO2 and O2 and Flow of the Exhausting Gases in Biological Processes; Instituto Mexicano de la Propiedad Industrial: Mexico City, Mexico, 2016. [Google Scholar]
- Miller, G.L.; Blum, R.; Glennon, W.E.; Burton, A.L. Measurement of Carboxymethylcellulase Activity. Anal. Biochem. 1960, 1, 127–132. [Google Scholar] [CrossRef]
- Kalogeris, E.; Iniotaki, F.; Topakas, E.; Christakopoulos, P.; Kekos, D.; Macris, B.J. Performance of an Intermittent Agitation Rotating Drum Type Bioreactor for Solid-State Fermentation of Wheat Straw. Bioresour. Technol. 2003, 86, 207–213. [Google Scholar] [CrossRef]
- Saucedo-Castañeda, G.; Trejo-Hernández, M.R.; Lonsane, B.K.; Navarro, J.M.; Roussos, S.; Dufour, D.; Raimbault, M. On-Line Automated Monitoring and Control Systems for CO2 and O2 in Aerobic and Anaerobic Solid-State Fermentations. Process Biochem. 1994, 29, 13–24. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; van ’t Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef]
- Méndez-González, F.; Loera, O.; Saucedo-Castañeda, G.; Buenrostro-Figueroa, J.J.; Favela-Torres, E. Improved Packed Bed Column Bioreactor to Produce Fungal Conidia for Biological Control. Syst. Microbiol. Biomanufacturing 2025, 5, 783–794. [Google Scholar] [CrossRef]
- Pedraza-Segura, L.; Rodríguez-Durán, L.V.; Saucedo-Castañeda, G.; de Jesús Cázares-Marinero, J. Application of Microorganisms in Biosurfactant Production. In Bioprospecting of Microorganism-Based Industrial Molecules; Singh, S., Upadhyay, S.K., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 6–30. [Google Scholar]
- Lopez-Ramirez, N.; Volke-Sepulveda, T.; Gaime-Perraud, I.; Saucedo-Castañeda, G.; Favela-Torres, E. Effect of Stirring on Growth and Cellulolytic Enzymes Production by Trichoderma harzianum in a Novel Bench-Scale Solid-State Fermentation Bioreactor. Bioresour. Technol. 2018, 265, 291–298. [Google Scholar] [CrossRef]
- Oriol, E.; Raimbault, M.; Roussos, S.; Viniegra-Gonzales, G. Water and Water Activity in the Solid State Fermentation of Cassava Starch by Aspergillus niger. Appl. Microbiol. Biotechnol. 1988, 27, 498–503. [Google Scholar] [CrossRef]
- Kumar, B.; Kumar, A.; Kumar, A.; Dharm, D. Wheat Bran Fermentation for the Production of Cellulase and Xylanase by Aspergillus niger NFCCI 4113. Res. J. Biotechnol. 2018, 13, 11–18. [Google Scholar]
- Erickson, L.E.; Minkevich, I.G.; Eroshin, V.K. Application of Mass and Energy Balance Regularities in Fermentation. Biotechnol. Bioeng. 1978, 20, 1595–1621. [Google Scholar] [CrossRef]
- Ramírez-Esparza, U.; Ordoñez-Cano, A.J.; Ochoa-Reyes, E.; Méndez-González, F.; Baeza-Jimenez, R.; Alvarado-González, M.; Ascacio-Valdes, J.A.; Buenrostro-Figueroa, J.J. Development of a Bioprocess to Improve the Phenolic Compounds Content and Antioxidant Capacity in Blue Corn Grains. Fermentation 2025, 11, 122. [Google Scholar] [CrossRef]
- Méndez-González, F.; Figueroa-Montero, A.; Saucedo-Castañeda, G.; Loera, O.; Favela-Torres, E. Addition of Spherical-style Packing Improves the Production of Conidia by Metarhizium robertsii in Packed Column Bioreactors. J. Chem. Technol. Biotechnol. 2022, 97, 1517–1525. [Google Scholar] [CrossRef]
- Finkler, A.T.J.; de Lima Luz, L.F.; Krieger, N.; Mitchell, D.A.; Jorge, L.M. A Model-Based Strategy for Scaling-up Traditional Packed-Bed Bioreactors for Solid-State Fermentation Based on Measurement of O2 Uptake Rates. Biochem. Eng. J. 2021, 166, 107854. [Google Scholar] [CrossRef]
- Schutyser, M.A.I.; de Pagter, P.; Weber, F.J.; Briels, W.J.; Boom, R.M.; Rinzema, A. Substrate Aggregation Due to Aerial Hyphae during Discontinuously Mixed Solid-state Fermentation with Aspergillus Oryzae: Experiments and Modeling. Biotechnol. Bioeng. 2003, 83, 503–513. [Google Scholar] [CrossRef]
- Domínguez-Rivera, Á.; Bibián-León, M.E.; Saucedo-Castañeda, G.; Buenrostro-Figueroa, J.J.; Méndez-González, F. From Farm to Industry: Valorization of Agricultural Waste by Solid-State Culture for Sustainable Development. In Agroindustrial Waste Management and Natural Resources Conservation; Apple Academic Press: New York, NY, USA, 2025; pp. 25–50. [Google Scholar]
- Quiroz-Castañeda, R.E.; Pérez-Mejía, N.; Martínez-Anaya, C.; Acosta-Urdapilleta, L.; Folch-Mallol, J. Evaluation of Different Lignocellulosic Substrates for the Production of Cellulases and Xylanases by the Basidiomycete Fungi Bjerkandera adusta and Pycnoporus sanguineus. Biodegradation 2011, 22, 565–572. [Google Scholar] [CrossRef]
Parameter | Incubation Temperature | ||||
---|---|---|---|---|---|
28 °C | 30 °C | 32 °C | 34 °C | 36 °C | |
Logistic model | |||||
× 104 (mg/gidm) | 9.34 | 37.20 | 40.83 | 30.99 | 1772 |
(mg/gidm) | 72.98 | 115.02 | 113.94 | 113.10 | 95.83 |
(1/h) | 0.18 | 0.17 | 0.16 | 0.15 | 0.06 |
Typical error | 1.28 | 2.76 | 2.63 | 1.32 | 0.96 |
84.73 | 395.22 | 366.08 | 91.35 | 48.24 | |
× 102 | 99.83 | 99.69 | 99.71 | 99.90 | 99.56 |
Logistic-Pirt model | |||||
(mg/gidm) | 64.25 | 91.96 | 93.69 | 85.00 | 52.84 |
(mgO2/mgCO2) | 0.69 | 0.66 | 0.60 | 0.68 | 1.02 |
(mmolCO2/mmolO2) | 1.05 | 1.09 | 1.21 | 1.07 | 0.71 |
(mgO2) | 2.24 | 2.36 | 3.97 | 2.37 | 1.85 |
× 103 (mgO2/mgCO2 h) | 5.44 | 3.53 | 5.59 | 3.10 | 1.20 |
Typical error | 0.85 | 0.87 | 2.22 | 1.00 | 0.70 |
37.22 | 39.53 | 256.58 | 52.17 | 25.40 | |
× 102 | 98.01 | 98.04 | 97.86 | 98.01 | 97.92 |
Parameter | Initial Moisture Content | |||
---|---|---|---|---|
65% | 70% | 75% | 80% | |
Logistic model | ||||
× 104 (mg/gidm) | 0.48 | 13.40 | 18.66 | 0.34 |
(mg/gidm) | 55.12 | 97.77 | 121.55 | 117.42 |
(1/h) | 0.23 | 0.21 | 0.20 | 0.22 |
Typical error | 0.78 | 2.71 | 4.49 | 2.96 |
77.50 | 935.49 | 2567.15 | 1114.35 | |
× 102 | 99.89 | 99.61 | 99.32 | 99.61 |
Logistic-Pirt model | ||||
(mg/gidm) | 40.91 | 73.83 | 93.23 | 88.37 |
(mgO2/mgCO2) | 0.70 | 0.68 | 0.67 | 0.68 |
(mmolCO2/mmolO2) | 1.03 | 1.06 | 1.09 | 1.06 |
(mgO2) | 0.25 | 0.78 | 1.40 | 1.38 |
× 103 (mgO2/mgCO2 h) | 1.05 | 1.65 | 2.34 | 2.58 |
Typical error | 0.49 | 1.71 | 2.75 | 1.94 |
30.44 | 373.54 | 963.38 | 479.90 | |
× 102 | 99.16 | 99.06 | 98.96 | 99.00 |
Parameter | Agitation Type | |
---|---|---|
Intermittent | Continuous | |
Logistic model | ||
× 102 (mg/gidm) | 3.39 | 2.80 |
(mg/gidm) | 153.14 | 147.38 |
(1/h) | 0.14 | 0.18 |
Typical error | 4.23 | 3.81 |
2976.10 | 2210.09 | |
× 102 | 99.14 | 99.18 |
Logistic-Pirt model | ||
(mg/gidm) | 106.89 | 109.64 |
(mgO2/mgCO2) | 0.57 | 0.70 |
(mmolCO2/mmolO2) | 1.28 | 1.04 |
(mgO2) | 4.14 | 0.84 |
× 103 (mgO2/mgCO2 h) | 3.82 | 1.01 |
Typical error | 2.15 | 2.55 |
762.59 | 981.85 | |
× 102 | 99.23 | 99.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Ramírez, N.; Favela-Torres, E.; Volke-Sepúlveda, T.; Méndez-González, F. Trichoderma harzianum Enzyme Production in Stirred Solid-State Bioreactors as a Strategy for Valorizing Water Hyacinth. Waste 2025, 3, 30. https://doi.org/10.3390/waste3040030
López-Ramírez N, Favela-Torres E, Volke-Sepúlveda T, Méndez-González F. Trichoderma harzianum Enzyme Production in Stirred Solid-State Bioreactors as a Strategy for Valorizing Water Hyacinth. Waste. 2025; 3(4):30. https://doi.org/10.3390/waste3040030
Chicago/Turabian StyleLópez-Ramírez, Nohemi, Ernesto Favela-Torres, Tania Volke-Sepúlveda, and Fernando Méndez-González. 2025. "Trichoderma harzianum Enzyme Production in Stirred Solid-State Bioreactors as a Strategy for Valorizing Water Hyacinth" Waste 3, no. 4: 30. https://doi.org/10.3390/waste3040030
APA StyleLópez-Ramírez, N., Favela-Torres, E., Volke-Sepúlveda, T., & Méndez-González, F. (2025). Trichoderma harzianum Enzyme Production in Stirred Solid-State Bioreactors as a Strategy for Valorizing Water Hyacinth. Waste, 3(4), 30. https://doi.org/10.3390/waste3040030