Extrusion-Biodelignification Approach for Biomass Pretreatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Biomass
2.2. Extrusion
2.3. Substrate for Semi-Solid Fermentations
2.4. Fungal Strains, Inoculum, and Maintenance
2.5. Flask Fermentations (250 mL)
2.6. Bioreactor Fermentations (5 L Glass Tank)
2.7. Enzyme Extraction
2.8. Enzymatic Assays
2.9. Delignification
2.10. Fourier Transform Infrared Spectroscopy (FTIR)
2.11. Enzymatic Hydrolysis
3. Results and Discussion
3.1. Biochemical Composition Analysis
3.2. Extrusion
3.3. Flask Fermentations (250 mL)
3.4. Bioreactor Fermentations (5 L Glass Tank)
3.5. Effect of Ex-SSF Pretreatment
3.5.1. Ligninolytic Enzyme Production
3.5.2. Delignification Rate
3.5.3. Crystallinity Index
3.5.4. Enzymatic Digestibility
3.5.5. Effect of Enzyme Load on Enzymatic Digestibility
3.6. Overview of Ex-SSF Techno-Economic Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA, Global EV Outlook 2024. 2024. Available online: https://www.iea.org/reports/global-ev-outlook-2024 (accessed on 1 April 2024).
- Zhao, J.; Wang, B.; Dong, K.; Shahbaz, M.; Ni, G. How do energy price shocks affect global economic stability? Reflection on geopolitical conflicts. Energy Econ. 2023, 126, 107014. [Google Scholar] [CrossRef]
- Råde, I.; Andersson, B.A. Requirement for metals of electric vehicle batteries. J. Power Sources 2001, 93, 55–71. [Google Scholar] [CrossRef]
- Das, P.K.; Bhat, M.Y.; Sajith, S. Life cycle assessment of electric vehicles: A systematic review of literature. Environ. Sci. Pollut. Res. 2024, 31, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Hedges & Company, How Many Cars Are There in the World in 2024? 2024. Available online: https://hedgescompany.com/blog/2021/06/how-many-cars-are-there-in-the-world/#:~:text=CLICK%20TO%20ENLARGE%3A%20This%20graphic,vehicles%20on%20Earth%20in%202023 (accessed on 8 November 2024).
- Abdulkadir, L.N.; Abioye, A.M.; Adisa, B.A.; Abdulkadir, M. Characterization and SI engine testing of gasoline and blends of gasoline and bioethanol produced from co-fermented watermelon and pineapple wastes. Niger. J. Trop. Eng. 2024, 18, 210–222. [Google Scholar] [CrossRef]
- Jain, S.; Kumar, S. A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives. Energy 2024, 296, 131130. [Google Scholar] [CrossRef]
- WHO. Hunger Numbers Stubbornly High for Three Consecutive Years as Global Crises Deepen. UN Report; 2024. Available online: https://www.who.int/news/item/24-07-2024-hunger-numbers-stubbornly-high-for-three-consecutive-years-as-global-crises-deepen--un-report (accessed on 8 November 2024).
- Joshi, M.; Manjare, S. Chemical approaches for the biomass valorisation: A comprehensive review of pretreatment strategies. Environ. Sci. Pollut. Res. 2024, 31, 48928–48954. [Google Scholar] [CrossRef]
- Woźniak, A.; Kuligowski, K.; Świerczek, L.; Cenian, A. Review of Lignocellulosic Biomass Pretreatment Using Physical, Thermal and Chemical Methods for Higher Yields in Bioethanol Production. Sustainability 2025, 17, 287. [Google Scholar] [CrossRef]
- Konan, D.; Koffi, E.; Ndao, A.; Peterson, E.C.; Rodrigue, D.; Adjallé, K. An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass. Energies 2022, 15, 3002. [Google Scholar] [CrossRef]
- Konan, D.; Rodrigue, D.; Koffi, E.; Elkoun, S.; Ndao, A.; Adjallé, K. Combination of Technologies for Biomass Pretreatment: A Focus on Extrusion. Waste Biomass-Valorization 2024, 15, 4519–4540. [Google Scholar] [CrossRef]
- Konan, D.; Ndao, A.; Koffi, E.; Elkoun, S.; Robert, M.; Rodrigue, D.; Adjallé, K. Biodecomposition with Phanerochaete chrysosporium: A review. AIMS Microbiol. 2024, 10, 1068–1101. [Google Scholar] [CrossRef] [PubMed]
- Konan, D.; Ndao, A.; Koffi, E.; Elkoun, S.; Robert, M.; Rodrigue, D.; Adjallé, K. Optimization of Biomass Delignification by Extrusion and Analysis of Extrudate Characteristics. Waste 2025, 3, 12. [Google Scholar] [CrossRef]
- Kameshwar, A.K.S.; Qin, W. Qualitative and Quantitative Methods for Isolation and Characterization of Lignin-Modifying Enzymes Secreted by Microorganisms. BioEnergy Res. 2017, 10, 248–266. [Google Scholar] [CrossRef]
- de Oliveira, P.L.; Duarte, M.C.T.; Ponezi, A.N.; Durrant, L.R. Purification and Partial characterization of manganese peroxidase from Bacillus pumilus AND Paenibacillus sp. Braz. J. Microbiol. 2009, 40, 818–826. [Google Scholar] [CrossRef]
- Arora, D.S.; Gill, P.K. Comparison of two assay procedures for lignin peroxidase. Enzym. Microb. Technol. 2001, 28, 602–605. [Google Scholar] [CrossRef] [PubMed]
- Tien, M.; Kirk, T.K. Lignin peroxidase of Phanerochaete chrysosporium, Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1988; pp. 238–249. [Google Scholar]
- Park, K.M.; Park, S.-S. Purification and characterization of laccase from basidiomycete Fomitella fraxinea. J. Microbiol. Biotechnol. 2008, 18, 670–675. [Google Scholar]
- Xu, Y.; Hu, J.; Yang, H.; Que, S.; Ban, L.; Sun, N.; Li, Y. Determination method of manganese peroxidase during straw degradation. J. Microbiol. Mod. Tech. 2023, 7, 101. [Google Scholar]
- Hrčka, R.; Kučerová, V.; Hýrošová, T.; Hönig, V. Cell Wall Saturation Limit and Selected Properties of Thermally Modified Oak Wood and Cellulose. Forests 2020, 11, 640. [Google Scholar] [CrossRef]
- Abu Darim, R.; Azizan, A.; Salihon, J. Study of Crystallinity Index (CrI) of Oil Palm Frond Pretreatment Using Aqueous [EMIM][OAc] in a Closed System; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012007. [Google Scholar]
- Danisco. Accelerase 1000–Cellulase Enzyme Complex for Lignocellulosic Biomass Hydrolysis; Technical Bulletin no. 1: Saccharification; Danisco Singapore Pte. Ltd.: Singapore, 2007. [Google Scholar]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Wang, Z.; Winestrand, S.; Gillgren, T.; Jönsson, L.J. Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce. Biomass-Bioenergy 2018, 109, 125–134. [Google Scholar] [CrossRef]
- Fang, H.; Deng, J.; Zhang, T. Dilute Acid Pretreatment of Black Spruce Using Continuous Steam Explosion System. Appl. Biochem. Biotechnol. 2011, 163, 547–557. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.-H.; Qu, Y.-S.; Wei, Q.-Y.; Li, H.-Q. Effect of the organizational difference of corn stalk on hemicellulose extraction and enzymatic hydrolysis. Ind. Crops Prod. 2018, 112, 698–704. [Google Scholar] [CrossRef]
- Jiang, B.; Jiao, H.; Guo, X.; Chen, G.; Guo, J.; Wu, W.; Jin, Y.; Cao, G.; Liang, Z. Lignin-Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. Adv. Sci. 2023, 10, 2206055. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.M.; Katahira, R.; Reed, M.; Resch, M.G.; Karp, E.M.; Beckham, G.T.; Román-Leshkov, Y. Reductive Catalytic Fractionation of Corn Stover Lignin. ACS Sustain. Chem. Eng. 2016, 4, 6940–6950. [Google Scholar] [CrossRef]
- Sequeiros, A.; Labidi, J. Characterization and determination of the S/G ratio via Py-GC/MS of agricultural and industrial residues. Ind. Crops Prod. 2017, 97, 469–476. [Google Scholar] [CrossRef]
- Karunanithy, C.; Muthukumarappan, K.; Gibbons, W.R. Extrusion Pretreatment of Pine Wood Chips. Appl. Biochem. Biotechnol. 2012, 167, 81–99. [Google Scholar] [CrossRef]
- Singh, D.; Chen, S. The white-rot fungus Phanerochaete chrysosporium: Conditions for the production of lignin-degrading enzymes. Appl. Microbiol. Biotechnol. 2008, 81, 399–417. [Google Scholar] [CrossRef]
- Hofsten, B.V.; Rydéean, A. Submerged cultivation of a thermotolerant basidiomycete on cereal flours and other substrates. Biotechnol. Bioeng. 1975, 17, 1183–1197. [Google Scholar] [CrossRef]
- Juanarena, L.C.; Ter Heijne, A.; Buisman, C.J.N.; van der Wal, A. Wood Degradation by Thermotolerant and Thermophilic Fungi for Sustainable Heat Production. ACS Sustain. Chem. Eng. 2016, 4, 6355–6361. [Google Scholar] [CrossRef]
- Gervais, P.; Molin, P. The role of water in solid-state fermentation. Biochem. Eng. J. 2003, 13, 85–101. [Google Scholar] [CrossRef]
- Dittmer, J.K.; Patel, N.J.; Dhawale, S.W. Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiol. Lett. 2006, 149, 65–70. [Google Scholar] [CrossRef]
- Singh, J.; Das, A.; Yogalakshmi, K.N. Enhanced laccase expression and azo dye decolourization during co-interaction of Trametes versicolor and Phanerochaete chrysosporium. SN Appl. Sci. 2020, 2, 1095. [Google Scholar] [CrossRef]
- Rodríguez, C.; Santoro, R.; Cameselle, C.; Sanroman, A. Laccase production in semi-solid cultures of Phanerochaete chrysosporium. Biotechnol. Lett. 1997, 19, 995–998. [Google Scholar] [CrossRef]
- Govender, S. Biofilm productivity and concomitant cell autolysis in a membrane bioreactor. Biotechnol. Lett. 2011, 33, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Ürek, R.Ö.; Pazarlioǧlu, N.K. Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium. Process. Biochem. 2005, 40, 83–87. [Google Scholar] [CrossRef]
- Chen, Z.; Li, N.; Lan, Q.; Zhang, X.; Wu, L.; Liu, J.; Yang, R. Laccase inducer Mn2+ inhibited the intracellular degradation of norfloxacin by Phanerochaete chrysosporium. Int. Biodeterior. Biodegradation 2021, 164, 105300. [Google Scholar] [CrossRef]
- Linares, N.C.; Fernández, F.; Loske, A.M.; Gómez-Lim, M.A. Enhanced Delignification of Lignocellulosic Biomass by Recombinant Fungus Phanerochaete chrysosporium Overexpressing Laccases and Peroxidases. Microb. Physiol. 2018, 28, 1–13. [Google Scholar] [CrossRef]
- Chowdhary, P.; More, N.; Yadav, A.; Bharagava, R.N. Chapter 12-Ligninolytic Enzymes: An Introduction and Applications in the Food Industry. In Enzymes in Food Biotechnology; Kuddus, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 181–195. [Google Scholar]
- Mikulski, D.; Kłosowski, G. Delignification efficiency of various types of biomass using microwave-assisted hydrotropic pretreatment. Sci. Rep. 2022, 12, 4561. [Google Scholar] [CrossRef]
- Laureano-Perez, L.; Teymouri, F.; Alizadeh, H.; Dale, B.E. Understanding Factors that Limit Enzymatic Hydrolysis of Biomass: Characterization of Pretreated Corn Stover. Appl. Biochem. Biotechnol. 2005, 124, 1081–1100. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, M.; Zhou, Z.; Zhao, M.; Li, Y. Selective removal of lignin in steam-exploded rice straw by Phanerochaete chrysosporium. Int. Biodeterior. Biodegradation 2012, 75, 89–95. [Google Scholar] [CrossRef]
- Gupta, A.; Tiwari, A.; Ghosh, P.; Arora, K.; Sharma, S. Enhanced lignin degradation of paddy straw and pine needle biomass by combinatorial approach of chemical treatment and fungal enzymes for pulp making. Bioresour. Technol. 2023, 368, 128314. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, J.; Yuan, R.; Shao, X.; Lu, Y.; Sun, W.; Cao, X. Mild Pretreatment Combined with Fed-Batch Strategy to Improve the Enzymatic Efficiency of Apple Pomace at High-Solids Content. BioEnergy Res. 2024, 17, 1674–1688. [Google Scholar] [CrossRef]
- Dao, C.N.; Tabil, L.G.; Mupondwa, E.; Dumonceaux, T. Microbial pretreatment of camelina straw and switchgrass by Trametes versicolor and Phanerochaete chrysosporium to improve physical quality and enhance enzymatic digestibility of solid biofuel pellets. Renew. Energy 2023, 217, 119147. [Google Scholar] [CrossRef]
- Shrivastava, A.; Sharma, R.K. Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor. Heliyon 2023, 9, e12951. [Google Scholar] [CrossRef]
- Benaddou, M.; Hajjaj, H.; Diouri, M. Fungal Treatment and Wheat Straw Blend for Enhanced Animal Feed from Olive Pulp. J. Ecol. Eng. 2023, 24, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Vydrina, I.; Malkov, A.; Vashukova, K.; Tyshkunova, I.; Mayer, L.; Faleva, A.; Shestakov, S.; Novozhilov, E.; Chukhchin, D. A new method for determination of lignocellulose crystallinity from XRD data using NMR calibration. Carbohydr. Polym. Technol. Appl. 2023, 5, 100305. [Google Scholar] [CrossRef]
- Hurtubise, F.G.; Krassig, H. Classification of Fine Structural Characteristics in Cellulose by Infared Spectroscopy. Use of Potassium Bromide Pellet Technique. Anal. Chem. 1960, 32, 177–181. [Google Scholar] [CrossRef]
- Nelson, M.L.; O’COnnor, R.T. Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J. Appl. Polym. Sci. 1964, 8, 1311–1324. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, M.; Su, J.; Hu, H.; Yang, M.; Huang, Z.; Chen, D.; Wu, J.; Feng, Z. Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose. Biotechnol. Biofuels 2019, 12, 12. [Google Scholar] [CrossRef]
- Karimi, K.; Taherzadeh, M.J. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresour. Technol. 2016, 200, 1008–1018. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Sganzerla, W.G.; Larnaudie, V.; Veersma, R.J.; van Erven, G.; Shiva; Ríos-González, L.J.; Rodríguez-Jasso, R.M.; Rosero-Chasoy, G.; Ferrari, M.D.; et al. Advances in process design, techno-economic assessment and environmental aspects for hydrothermal pretreatment in the fractionation of biomass under biorefinery concept. Bioresour. Technol. 2023, 369, 128469. [Google Scholar] [CrossRef]
- Jang, S.-K.; Jeong, H.; Choi, I.-G. The Effect of Cellulose Crystalline Structure Modification on Glucose Production from Chemical-Composition-Controlled Biomass. Sustainability 2023, 15, 5869. [Google Scholar] [CrossRef]
- Li, W.; Tan, X.; Miao, C.; Zhang, Z.; Wang, Y.; Ragauskas, A.J.; Zhuang, X. Mild organosolv pretreatment of sugarcane bagasse with acetone/phenoxyethanol/water for enhanced sugar production. Green Chem. 2023, 25, 1169–1178. [Google Scholar] [CrossRef]
- Chinwatpaiboon, P.; Doolayagovit, I.; Boonsombuti, A.; Savarajara, A.; Luengnaruemitchai, A. Comparison of acid-, alkaline-, and ionic liquid–treated Napier grass as an immobilization carrier for butanol production by Clostridium beijerinckii JCM 8026. Biomass Convers. Biorefinery 2020, 10, 1071–1082. [Google Scholar] [CrossRef]
- Wang, J.; Xin, D.; Hou, X.; Wu, J.; Fan, X.; Li, K.; Zhang, J. Structural properties and hydrolysabilities of Chinese Pennisetum and Hybrid Pennisetum: Effect of aqueous ammonia pretreatment. Bioresour. Technol. 2016, 199, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, H.; Simmons, B.A.; Gladden, J.M. Comparative Study on the Pretreatment of Aspen and Maple With 1-Ethyl-3-methylimidazolium Acetate and Cholinium Lysinate. Front. Energy Res. 2022, 10, 868181. [Google Scholar] [CrossRef]
- Kundu, C.; Samudrala, S.P.; Kibria, M.A.; Bhattacharya, S. One-step peracetic acid pretreatment of hardwood and softwood biomass for platform chemicals production. Sci. Rep. 2021, 11, 11183. [Google Scholar] [CrossRef]
- Fatriasari, W.; Syafii, W.; Wistara, N.; Syamsu, K.; Prasetya, B.; Anita, S.H.; Risanto, L. Fiber Disruption of Betung Bamboo (Dendrocalamus asper) by Combined Fungal and Microwave Pretreatment. BIOTROPIA 2016, 22, 81–94. [Google Scholar] [CrossRef]
- Agarwal, U.P.; Zhu, J.; Ralph, S.A. Enzymatic hydrolysis of loblolly pine: Effects of cellulose crystallinity and delignification. Holzforschung 2013, 67, 371–377. [Google Scholar] [CrossRef]
- Ioelovich, M.; Morag, E. Study of enzymatic hydrolysis of pretreated biomass at increased solids loading. BioResources 2012, 7, 4672–4682. [Google Scholar] [CrossRef]
- Kristensen, J.B.; Felby, C.; Jørgensen, H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol. Biofuels 2009, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N.D.; Felby, C.; Thygesen, L.G. Enzymatic hydrolysis is limited by biomass–water interactions at high-solids: Improved performance through substrate modifications. Biotechnol. Biofuels 2019, 12, 3. [Google Scholar] [CrossRef]
- Ramchandran, D.; Rajagopalan, N.; Strathmann, T.J.; Singh, V. Use of treated effluent water in ethanol production from cellulose. Biomass-Bioenergy 2013, 56, 22–28. [Google Scholar] [CrossRef]
- Prade, R.A. Xylanases: From Biology to BioTechnology. Biotechnol. Genet. Eng. Rev. 1996, 13, 101–132. [Google Scholar] [CrossRef]
- Anoop Kumar, V.; Suresh Chandra Kurup, R.; Snishamol, C.; Nagendra Prabhu, G. Role of Cellulases in Food, Feed, and Beverage Industries. In Green Bio-processes: Enzymes in Industrial Food Processing; Parameswaran, B., Varjani, S., Raveendran, S., Eds.; Springer: Singapore, 2019; pp. 323–343. [Google Scholar]
- Hu, J.; Arantes, V.; Saddler, J.N. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect? Biotechnol. Biofuels 2011, 4, 36. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Chowdhury, S.N.; Nahrin, M.; Rafa, N.; Chowdhury, A.T.; Nuzhat, S.; Ong, H.C. Pathways of lignocellulosic biomass deconstruction for biofuel and value-added products production. Fuel 2022, 318, 123618. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Cho, J.; Talaiekhozani, A.; Sabbagh, F.; Hashemi, B.; Rupani, P.F.; Mohammadi, A.A. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 2020, 199, 117457. [Google Scholar] [CrossRef]
- Hjorth, M.; Gränitz, K.; Adamsen, A.P.; Møller, H.B. Extrusion as a pretreatment to increase biogas production. Bioresour. Technol. 2011, 102, 4989–4994. [Google Scholar] [CrossRef]
- Liu, C.; van der Heide, E.; Wang, H.; Li, B.; Yu, G.; Mu, X. Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnol. Biofuels 2013, 6, 97. [Google Scholar] [CrossRef]
- Suzuki, H.; MacDonald, J.; Syed, K.; Salamov, A.; Hori, C.; Aerts, A.; Henrissat, B.; Wiebenga, A.; A Vankuyk, P.; Barry, K.; et al. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genom. 2012, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Rowell, R.M. Composite Materials from Forest Biomass: A Review of Current Practices, Science, and Technology; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2007; pp. 76–92. [Google Scholar]
- Madhankumar, S.; Viswanathan, K. A Review of the Utilization of Biomass-Based Materials in Food Packaging. In Plant Biomass Applications; Jawaid, M., Khan, A., Asiri, A.M.A., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 77–108. [Google Scholar]
- Weyhrich, C.W.; Petrova, S.P.; Edgar, K.J.; Long, T.E. Renewed interest in biopolymer composites: Incorporation of renewable, plant-sourced fibers. Green Chem. 2023, 25, 106–129. [Google Scholar] [CrossRef]
Parameter | Setup |
---|---|
Extruder type | Twin-screw |
Screw type | Fully segmented, co-rotating |
Screw diameter | 11 mm |
Max speed | 1000 rpm |
Torque per shaft | 6 Nm |
Max temperature | 350 °C |
Barrel zone | 7 × 5 L/D electrically heated |
Length (L) | 82 cm |
Barrel length L/D | 40 |
Die | 3 mm die * |
Output | 20 g to 2.5 kg/h |
Parameter | Black Spruce | Corn Stover | ||||
---|---|---|---|---|---|---|
T | Inoculum | [NH4Cl] | T | Inoculum | [NH4Cl] | |
Unit | °C | mL/g | w/w (%) | °C | mL/g | w/w (%) |
−alpha | 26.6 | 0.16 | 0 | 26.6 | 0.16 | 0 |
Low level (−1) | 30 | 0.5 | 2 | 30 | 0.5 | 2 |
High level (+1) | 40 | 1.5 | 8 | 40 | 1.5 | 8 |
+alpha | 43.4 | 1.84 | 10 | 43.4 | 1.84 | 10 |
Std | Run | Space Type | Temperature (°C) | Inoculum (mL/g) | [NH4Cl] w/w (%) |
---|---|---|---|---|---|
2 | 1 | Factorial | 40 | 0.5 | 0.5 |
3 | 2 | Factorial | 30 | 1.5 | 0.5 |
13 | 3 | Axial | 35 | 1 | 0 |
5 | 4 | Factorial | 30 | 0.5 | 2 |
14 | 5 | Axial | 35 | 1 | 2.5 |
10 | 6 | Axial | 43.4 | 1 | 1.25 |
8 | 7 | Factorial | 40 | 1.5 | 2 |
7 | 8 | Factorial | 30 | 1.5 | 2 |
15 | 9 | Center | 35 | 1 | 1.25 |
9 | 10 | Axial | 26.6 | 1 | 1.25 |
1 | 11 | Factorial | 30 | 0.5 | 0.5 |
6 | 12 | Factorial | 40 | 0.5 | 2 |
12 | 13 | Axial | 35 | 1.8 | 1.25 |
11 | 14 | Axial | 35 | 0.16 | 1.25 |
4 | 15 | Factorial | 40 | 1.5 | 0.5 |
Run | Conditions | BSE Growth | CRME Growth | ||
---|---|---|---|---|---|
Temp. (°C) | Inoculum (ml/g) | [NH4Cl] w/w (%) | |||
1 | 40 | 0.5 | 0.5 | – | – |
2 | 30 | 1.5 | 0.5 | +++ | +++ |
3 | 35 | 1 | 0 | + | – |
4 | 30 | 0.5 | 2. | ++ | – |
5 | 35 | 1 | 2.5 | + | – |
6 | 43.4 | 1. | 1.25 | – | – |
7 | 40 | 1.5 | 2 | – | – |
8 | 30 | 1.5 | 2 | – | ++ |
9 | 35 | 1 | 1.25 | – | – |
10 | 26.6 | 1 | 1.25 | + | – |
11 | 30 | 0.5 | 0.5 | – | – |
12 | 40 | 0.5 | 2 | – | – |
13 | 35 | 1.8 | 1.25 | + | – |
14 | 35 | 0.16 | 1.25 | – | – |
15 | 40 | 1.5 | 0.5 | – | – |
+++ Intense growth | ++ Medium growth | + Low growth | – No growth |
Parameter | Black Spruce Chips (BS) | Corn Stover (CS) | ||||
---|---|---|---|---|---|---|
Raw BS | BSE 2 | BSE 5 | Raw CS | CSE 2 | CSE 8 | |
A1427 | 0.02599 | 0.08621 | 0.07261 | 0.04692 | 0.03778 | 0.01599 |
A893 | 0.04744 | 0.12715 | 0.11247 | 0.10006 | 0.07431 | 0.03226 |
CrI (%) | 54.7% | 67.8% | 64.5% | 46.8% | 50.8% | 49.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konan, D.; Ndao, A.; Koffi, E.; Elkoun, S.; Robert, M.; Rodrigue, D.; Adjallé, K. Extrusion-Biodelignification Approach for Biomass Pretreatment. Waste 2025, 3, 21. https://doi.org/10.3390/waste3030021
Konan D, Ndao A, Koffi E, Elkoun S, Robert M, Rodrigue D, Adjallé K. Extrusion-Biodelignification Approach for Biomass Pretreatment. Waste. 2025; 3(3):21. https://doi.org/10.3390/waste3030021
Chicago/Turabian StyleKonan, Delon, Adama Ndao, Ekoun Koffi, Saïd Elkoun, Mathieu Robert, Denis Rodrigue, and Kokou Adjallé. 2025. "Extrusion-Biodelignification Approach for Biomass Pretreatment" Waste 3, no. 3: 21. https://doi.org/10.3390/waste3030021
APA StyleKonan, D., Ndao, A., Koffi, E., Elkoun, S., Robert, M., Rodrigue, D., & Adjallé, K. (2025). Extrusion-Biodelignification Approach for Biomass Pretreatment. Waste, 3(3), 21. https://doi.org/10.3390/waste3030021