Previous Issue
Volume 3, June
 
 

Waste, Volume 3, Issue 3 (September 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
27 pages, 4306 KiB  
Article
Extrusion-Biodelignification Approach for Biomass Pretreatment
by Delon Konan, Adama Ndao, Ekoun Koffi, Saïd Elkoun, Mathieu Robert, Denis Rodrigue and Kokou Adjallé
Waste 2025, 3(3), 21; https://doi.org/10.3390/waste3030021 - 26 Jun 2025
Viewed by 167
Abstract
This work presents a new approach for lignocellulosic biomass pretreatment. The process is a sequential combination of extrusion (Ex) and semi-solid fermentation (SSF). To assess the Ex-SSF pretreatment efficiency, black spruce chips (wood residues) and corn stover (crop residues) were subjected to the [...] Read more.
This work presents a new approach for lignocellulosic biomass pretreatment. The process is a sequential combination of extrusion (Ex) and semi-solid fermentation (SSF). To assess the Ex-SSF pretreatment efficiency, black spruce chips (wood residues) and corn stover (crop residues) were subjected to the process. The negative controls were the pretreatment of both residues with SSF alone without extrusion. Lignin peroxidase was the main ligninolytic enzyme contributing to the delignification in the negative controls. High lignin peroxide (LiP) activities were recorded for raw black spruce (53.7 ± 2.7 U/L) and corn stover (16.4 ± 0.8 U/L) compared to the Ex-SSF pretreated biomasses where the highest LiP activity recorded was 6.0 ± 0.3 U/L (corn residues). However, with the negative controls, only a maximum of 17% delignification was achieved for both biomasses. As for the Ex-SSF process, the pretreatments were preceded by the optimization of the extrusion (Ex) step and the semi-solid fermentation (SSF) step via experimental designs. The Ex-SSF pretreatments led to interesting results and offered cost-effective advantages compared to existing pretreatments. Biomass delignification reached 59.1% and 65.4% for black spruce and corn stover, respectively. For the analyses performed, it was found that manganese peroxidase (MnP) was the main contributor to delignification during the SSF step. MnP activity was up to 13.8 U/L for Ex-SSF pretreated black spruce, and 32.0 U/L for Ex-SSF pretreated corn stover, while the maximum MnP recorded in the negative controls was 1.4 ± 0.1 U/L. Ex-SSF pretreatment increased the cellulose crystallinity index (CrI) by 13% for black spruce and 4% for corn stover. But enzymatic digestibility of the Ex-SSF pretreated biomasses with 0.25 mL/g of enzyme led to 7.6 mg/L sugar recovery for black spruce, which is 2.3 times the raw biomass yield. The Ex-SSF pretreated corn stover led to 17.0 mg/L sugar recovery, which is a 44% improvement in sugar concentration compared to raw corn stover. However, increasing the enzyme content from 0.25 mL/g to 0.50 mg/L and 0.75 mg/L generated lower hydrolysis efficiency (the sugar recovery decreased). Full article
(This article belongs to the Special Issue Agri-Food Wastes and Biomass Valorization—2nd Edition)
Show Figures

Figure 1

Previous Issue
Back to TopTop