Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review
Abstract
:1. Introduction
2. Adsorption Processes of Heavy Metals
2.1. Adsorption Mechanisms
2.2. Equilibrium Models
2.3. Kinetic Models
2.4. Thermodynamic Parameters
3. Different Adsorbents for Heavy Metal Removal from Wastewater
3.1. Industrial Solid Wastes
3.2. Biomaterials as Metal Biosorbents
3.3. Activated Carbon
3.4. Plant Fiber Components
3.5. Nanomaterials
4. Conclusions and Outlook
- Biological adsorbents, including microbial biomass, algae, and fungi, utilize living or nonliving biomass to bind heavy metals. These bioadsorbents are eco-friendly, easily accessible, and can be regenerated through biomass regeneration or metal recovery procedures. However, their adsorption capacities and selectivity may vary depending on the biomass source and pretreatment techniques. In contrast, nanomaterials, such as nanoparticles and nanocomposites, offer distinct advantages for heavy metal adsorption due to their small dimension, large surface area, and enhanced reactivity. Through magnetic or functionalized modifications, their recyclability and reusability can be improved. Nevertheless, concerns about potential environmental impacts and long-term stability must be addressed;
- Inexpensive adsorbents like agricultural waste materials, such as vegetable and fruit peels, have gained popularity due to their abundant surface functional groups, leading to high metal adsorption capacities. These readily accessible plant-based materials, including plant fibers and other detritus, offer cost-effective and efficient sorbents for metal ions. Utilizing plant-based byproducts as metal sorbents aligns with circular bioeconomy and green chemistry principles, offering economically viable and eco-friendly solutions. However, their application may require pretreatment to enhance adsorption efficiency and stability. A practical application involves using plant fibers as low-cost biowaste for adsorbing heavy metals from polluted water or acid mine drainage generated by mining industries. In this method, fibers can act as adsorbents in a bioreactor, attracting and retaining heavy metal ions (Figure 4);
- Current research in the field of heavy metal adsorption and removal from water primarily focuses on the adsorption of heavy metal cations. However, there is a noticeable lack of specific studies on the adsorption of hydroxy compound ions or other complex ions. In most documents, the adsorption of complex ions is only briefly mentioned or addressed in a limited manner;
- Modeling the biosorption process is challenging due to the diverse physical and chemical processes involved. The nature of active sites in bioadsorbents varies significantly based on their source, making characterization difficult. While successful in validating experimental data for single-component biosorption, real-life scenarios often involve multiple components adsorbing simultaneously on a heterogeneous biosorbent surface. This complexity leads to dynamic interactions between metal ions and functional groups, making the modeling of such systems more intricate;
- Plant-based adsorbents require surface modifications to enhance their surface functionalities and develop suitable pores for effective adsorption. Surface oxidation, sulfonation, amination, and adjustments to pore structures are crucial processes in achieving improved adsorption performance. Various modification procedures, such as chemical, mechanical, thermal, gasification, and combinations of these techniques, are available to tailor the adsorbent properties according to specific contaminant removal needs. By exploring and optimizing these modification methods, plant-based adsorbents can be fine-tuned to be efficient and versatile tools for water and wastewater treatment, contributing to sustainable and eco-friendly solutions;
- Modified carbonaceous materials have shown great promise in achieving high adsorption capacity and efficient removal of heavy metals. However, the process of modification, especially through chemical means, can be quite intricate. This complexity, along with considerations of cost, yield, and operational practicality, poses challenges for their application on an industrial scale. Additionally, the use of some novel modifiers might introduce new sources of pollution, making it essential to carefully assess their environmental impact;
- Further study of selective adsorption and competitive adsorption behavior among heavy metal ions is highly valuable. Understanding the mechanisms that govern the preferential adsorption of specific metal ions and how different ions interact and compete for adsorption sites can significantly enhance the development of efficient and targeted remediation strategies for contaminated water and wastewater;
- In future research, the regeneration of carbon-based materials, particularly plant fibers, holds significant practical importance. Exploring the properties of these materials and understanding the optimal operational conditions for the regeneration process are essential steps. Additionally, the development of effective desorption solutions is crucial for ensuring the full utilization and reusability of carbon-based adsorbents.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 227. [Google Scholar] [CrossRef]
- Türkmen, D.; Bakhshpour, M.; Akgönüllü, S.; Aşır, S.; Denizli, A. Heavy metal ions removal from wastewater using cryogels: A review. Front. Sustain. 2022, 3, 765592. [Google Scholar] [CrossRef]
- Kerur, S.; Bandekar, S.; Hanagadakar, M.S.; Nandi, S.S.; Ratnamala, G.; Hegde, P.G. Removal of hexavalent Chromium-Industry treated water and Wastewater: A review. Mater. Today Proc. 2021, 42, 1112–1121. [Google Scholar] [CrossRef]
- Qasem, N.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Nejad, M.S.; Sheibani, H. Super-efficient removal of arsenic and mercury ions from wastewater by nanoporous biochar-supported poly 2-aminothiophenol. J. Environ. Chem. Eng. 2022, 10, 107363. [Google Scholar] [CrossRef]
- Staszak, K.; Wieszczycka, K. Recovery of metals from wastewater—State-of-the-art solutions with the support of membrane technology. Membranes 2023, 13, 114. [Google Scholar] [CrossRef]
- Martin, D.P.; Seiter, J.M.; Lafferty, B.J.; Bednar, A.J. Exploring the ability of cations to facilitate binding between inorganic oxyanions and humic acid. Chemosphere 2017, 166, 192–196. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, Q.; Huang, X.; Li, T.; Yang, G. Microscopic understanding about adsorption and transport of different Cr (VI) species at mineral interfaces. J. Hazard. Mater. 2021, 414, 125485. [Google Scholar] [CrossRef]
- Zahir, M.H.; Irshad, K.; Rahman, M.M.; Shaikh, M.N.; Rahman, M.M. Efficient capture of heavy metal ions and arsenic with a CaY–carbonate layered double-hydroxide Nanosheet. ACS Omega 2021, 6, 22909–22921. [Google Scholar] [CrossRef]
- Zlati, M.L.; Georgescu, L.P.; Iticescu, C.; Ionescu, R.V.; Antohi, V.M. New approach to modelling the impact of heavy metals on the European Union’s water resources. Int. J. Environ. Res. Public Health 2022, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Shaker, O.A.; Safwat, S.M.; Matta, M.E. Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: Performance investigation, mechanism exploration, and cost analysis. Environ. Sci. Pollut. Res. 2023, 30, 26650–26662. [Google Scholar] [CrossRef]
- Karim, A.; Raji, Z.; Karam, A.; Khalloufi, S. Valorization of fibrous plant-based food waste as biosorbents for remediation of heavy metals from wastewater—A review. Molecules 2023, 28, 4205. [Google Scholar] [CrossRef] [PubMed]
- Madhubashani, A.; Giannakoudakis, D.A.; Amarasinghe, B.; Rajapaksha, A.U.; Kumara, P.T.P.; Triantafyllidis, K.S.; Vithanage, M. Propensity and appraisal of biochar performance in removal of oil spills: A comprehensive review. Environ. Pollut. 2021, 288, 117676. [Google Scholar] [PubMed]
- Chikri, R.; Elhadiri, N.; Benchanaa, M. Efficiency of sawdust as low-cost adsorbent for dyes removal. J. Chem. 2020, 2020, 8813420. [Google Scholar] [CrossRef]
- Bello, O.S.; Bello, I.A.; Adegoke, K.A. Adsorption of dyes using different types of sand: A review. S. Afr. J. Chem. 2013, 66, 117–129. [Google Scholar]
- Anastopoulos, I.; Pashalidis, I. Environmental applications of Luffa cylindrica-based adsorbents. J. Mol. Liq. 2020, 319, 114127. [Google Scholar]
- Saravanan, A.; Kumar, P.S.; Hemavathy, R.; Jeevanantham, S.; Harikumar, P.; Priyanka, G.; Devakirubai, D.R.A. A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment. Sci. Total Environ. 2022, 812, 152456. [Google Scholar]
- Fouda-Mbanga, B.; Prabakaran, E.; Pillay, K. Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: A review. Biotechnol. Rep. 2021, 30, e00609. [Google Scholar] [CrossRef]
- Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A review of water interactions, applications in composites, and water treatment. Chem. Rev. 2023, 123, 2016–2048. [Google Scholar]
- Dey, T.; Bhattacharjee, T.; Nag, P.; Ghati, A.; Kuila, A. Valorization of agro-waste into value added products for sustainable development. Bioresour. Technol. Rep. 2021, 16, 100834. [Google Scholar]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. A review on the heavy metal adsorption capacity of dietary fibers derived from agro-based wastes: Opportunities and challenges for practical applications in the food industry. Trends Food Sci. Technol. 2023, 137, 74–91. [Google Scholar] [CrossRef]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Tripathi, A.; Ranjan, M.R. Heavy metal removal from wastewater using low cost adsorbents. Bioremediat. Biodegrad. 2015, 6, 1000315. [Google Scholar] [CrossRef]
- Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Ayati, A.; Ghanbari, S.; Orooji, Y.; Tanhaei, B.; Karimi, F.; Alizadeh, M.; Rouhi, J.; Fu, L.; Sillanpää, M. Recent advances in removal techniques of Cr (VI) toxic ion from aqueous solution: A comprehensive review. J. Mol. Liq. 2021, 329, 115062. [Google Scholar] [CrossRef]
- Nakano, Y.; Takeshita, K.; Tsutsumi, T. Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel. Water Res. 2001, 35, 496–500. [Google Scholar] [CrossRef]
- Duan, C.; Ma, T.; Wang, J.; Zhou, Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. J. Water Process Eng. 2020, 37, 101339. [Google Scholar] [CrossRef]
- Sarangi, B.; Mishra, S.P. A glance at the potential of Artocarpus genus fruit peels and its derivatives as adsorbent. Bioresour. Technol. Rep. 2023, 21, 101363. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Younas, M.; Shah, M.U.H. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Sep. Purif. Technol. 2021, 278, 119510. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Niazi, N.K.; Hassan, N.E.; Bibi, I.; Wang, H.; Tsang, D.C.; Ok, Y.S.; Bolan, N.; Rinklebe, J. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review. Int. Mater. Rev. 2019, 64, 216–247. [Google Scholar] [CrossRef]
- Huang, D.; Li, B.; Ou, J.; Xue, W.; Li, J.; Li, Z.; Li, T.; Chen, S.; Deng, R.; Guo, X. Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: Preparation, final disposal, mechanism and influencing factors. J. Environ. Manag. 2020, 261, 109879. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M. A review on valorization of biomass in heavy metal removal from wastewater. J. Water Process Eng. 2020, 38, 101602. [Google Scholar] [CrossRef]
- Abdelfattah, I.; Ismail, A.A.; Al Sayed, F.; Almedolab, A.; Aboelghait, K. Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent. Environ. Nanotechnol. Monit. Manag. 2016, 6, 176–183. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.; Li, W.; Chen, Z.; Chen, G.; Yang, W.; Zhang, X.; Liu, X. Investigation of adsorption kinetics and the isotherm mechanism of manganese by modified Diatomite. ACS Omega 2021, 6, 16402–16409. [Google Scholar] [CrossRef]
- Umeh, T.C.; Nduka, J.K.; Akpomie, K.G. Kinetics and isotherm modeling of Pb (II) and Cd (II) sequestration from polluted water onto tropical ultisol obtained from Enugu Nigeria. Appl. Water Sci. 2021, 11, 65. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Seshaiah, K.; Reddy, A.; Rao, M.M.; Wang, M. Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: Equilibrium and kinetic studies. J. Hazard. Mater. 2010, 174, 831–838. [Google Scholar] [CrossRef]
- Zhai, M.; Fu, B.; Zhai, Y.; Wang, W.; Maroney, A.; Keller, A.A.; Wang, H.; Chovelon, J.-M. Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: A critical review. Water Res. 2023, 236, 119924. [Google Scholar] [CrossRef]
- Maity, S.; Patil, P.B.; SenSharma, S.; Sarkar, A. Bioremediation of heavy metals from the aqueous environment using Artocarpus heterophyllus (jackfruit) seed as a novel biosorbent. Chemosphere 2022, 307, 136115. [Google Scholar] [CrossRef]
- Khan, A.A.; Naqvi, S.R.; Ali, I.; Arshad, M.; AlMohamadi, H.; Sikandar, U. Algal-derived biochar as an efficient adsorbent for removal of Cr (VI) in textile industry wastewater: Non-linear isotherm, kinetics and ANN studies. Chemosphere 2023, 316, 137826. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, L.; Pei, Z.; Li, C.; Lv, J.; Xie, J.; Wen, B.; Zhang, S. Adsorption kinetics, isotherms and thermodynamics of Cr (III) on graphene oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 100–106. [Google Scholar] [CrossRef]
- Wibowo, Y.G.; Safitri, H.; Ramadan, B.S. Adsorption test using ultra-fine materials on heavy metals removal. Bioresour. Technol. Rep. 2022, 19, 101149. [Google Scholar] [CrossRef]
- Mustapha, S.; Shuaib, D.; Ndamitso, M.; Etsuyankpa, M.; Sumaila, A.; Mohammed, U.; Nasirudeen, M. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb (II), Cd (II), Zn (II) and Cu (II) ions from aqueous solutions using Albizia lebbeck pods. Appl. Water Sci. 2019, 9, 142. [Google Scholar] [CrossRef]
- Chen, Z.-l.; Zhang, J.-q.; Huang, L.; Yuan, Z.-h.; Li, Z.-j.; Liu, M.-c. Removal of Cd and Pb with biochar made from dairy manure at low temperature. J. Integr. Agric. 2019, 18, 201–210. [Google Scholar] [CrossRef]
- Wang, F.Y.; Wang, H.; Ma, J.W. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. J. Hazard. Mater. 2010, 177, 300–306. [Google Scholar] [CrossRef]
- Shen, L.; Li, J.; Lv, L.; Zhang, L.; Bai, R.; Zheng, T.; Zhang, Q. Comparison of functional and structural properties of ginkgo seed protein dried by spray and freeze process. J. Food Sci. Technol. 2021, 58, 175–185. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, H.; Guo, H.; Ling, C.; Yuan, X.; Li, P. Hydrated titanium oxide nanoparticles supported on natural rice straw for Cu (II) removal from water. Environ. Technol. Innov. 2020, 20, 101143. [Google Scholar] [CrossRef]
- Amar, M.B.; Walha, K.; Salvadó, V. Evaluation of olive stones for Cd (II), Cu (II), Pb (II) and Cr (VI) biosorption from aqueous solution: Equilibrium and kinetics. Int. J. Environ. Res. 2020, 14, 193–204. [Google Scholar] [CrossRef]
- Qi, J.; Li, Y.; Majeed, H.; Goff, H.D.; Rahman, M.R.T.; Zhong, F. Adsorption mechanism modeling using lead (Pb) sorption data on modified rice bran-insoluble fiber as universal approach to assess other metals toxicity. Int. J. Food Prop. 2019, 22, 1397–1410. [Google Scholar] [CrossRef]
- Liu, J.; Hu, C.; Huang, Q. Adsorption of Cu2+, Pb2+, and Cd2+ onto oiltea shell from water. Bioresour. Technol. 2019, 271, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Hu, W.; Guo, M.; Wang, Y.; Jia, J.; Hu, Z. Preparation of cotton-based fibrous adsorbents for the removal of heavy metal ions. Carbohydr. Polym. 2019, 225, 115218. [Google Scholar] [CrossRef] [PubMed]
- El-Sikaily, A.; El Nemr, A.; Khaled, A.; Abdelwehab, O. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J. Hazard. Mater. 2007, 148, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Baby, R.; Hussein, M.Z. Ecofriendly approach for treatment of heavy-metal-contaminated water using activated carbon of kernel shell of oil palm. Materials 2020, 13, 2627. [Google Scholar] [CrossRef] [PubMed]
- Kenessova, A.; Seilkhanova, G.; Rakhym, A.; Mastai, Y. Composite materials based on orange and pomegranate peels for Cu (II) and Zn (II) ions extraction. Int. J. Biol. Chem. 2020, 13, 154–160. [Google Scholar] [CrossRef]
- Özsin, G.; Kılıç, M.; Apaydın-Varol, E.; Pütün, A.E. Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: Equilibrium, kinetic, and thermodynamic studies. Appl. Water Sci. 2019, 9, 56. [Google Scholar] [CrossRef]
- Ani, J.U.; Ochonogor, A.E.; Akpomie, K.G.; Olikagu, C.S.; Igboanugo, C.C. Abstraction of arsenic (III) on activated carbon prepared from Dialium guineense seed shell: Kinetics, isotherms and thermodynamic studies. SN Appl. Sci. 2019, 1, 1304. [Google Scholar] [CrossRef]
- Imran, M.; Anwar, K.; Akram, M.; Shah, G.M.; Ahmad, I.; Samad Shah, N.; Khan, Z.U.H.; Rashid, M.I.; Akhtar, M.N.; Ahmad, S. Biosorption of Pb (II) from contaminated water onto Moringa oleifera biomass: Kinetics and equilibrium studies. Int. J. Phytoremediat. 2019, 21, 777–789. [Google Scholar] [CrossRef]
- Van Hien, N.; Valsami-Jones, E.; Vinh, N.C.; Phu, T.T.; Tam, N.T.T.; Lynch, I. Effectiveness of different biochar in aqueous zinc removal: Correlation with physicochemical characteristics. Bioresour. Technol. Rep. 2020, 11, 100466. [Google Scholar] [CrossRef]
- Dabbagh, R.; Ashtiani Moghaddam, Z.; Ghafourian, H. Removal of cobalt (II) ion from water by adsorption using intact and modified Ficus carica leaves as low-cost natural sorbent. Desalination Water Treat. 2016, 57, 19890–19902. [Google Scholar] [CrossRef]
- Malik, R.; Dahiya, S. An experimental and quantum chemical study of removal of utmostly quantified heavy metals in wastewater using coconut husk: A novel approach to mechanism. Int. J. Biol. Macromol. 2017, 98, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Popoola, L.T.; Grema, A.S. Adsorption of Heavy Metals from Industrial Wastewater using Nanoparticles from Agro Wastes. In Nanopores; IntechOpen: London, UK, 2021. [Google Scholar]
- Van Suc, N.; Son, L.N. Mistletoe leaves as a biosorbent for removal of Pb (II) and Cd (II) from aqueous solution. Desalination Water Treat. 2016, 57, 3606–3618. [Google Scholar] [CrossRef]
- Srivastava, V.C.; Mall, I.D.; Mishra, I.M. Competitive adsorption of cadmium (II) and nickel (II) metal ions from aqueous solution onto rice husk ash. Chem. Eng. Process. Process Intensif. 2009, 48, 370–379. [Google Scholar] [CrossRef]
- Emenike, P.; Omole, D.; Ngene, B.; Tenebe, I. Potentiality of agricultural adsorbent for the sequestering of metal ions from wastewater. Glob. J. Environ. Sci. Manag. 2016, 2, 411–442. [Google Scholar] [CrossRef]
- Lalhruaitluanga, H.; Jayaram, K.; Prasad, M.; Kumar, K. Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—A comparative study. J. Hazard. Mater. 2010, 175, 311–318. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Negm, N.A.; Hefni, H.H.; Wahab, M.M.A. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures. Int. J. Biol. Macromol. 2015, 81, 400–409. [Google Scholar] [CrossRef]
- Mehmood, S.; Mahmood, M.; Núñez-Delgado, A.; Alatalo, J.M.; Elrys, A.S.; Rizwan, M.; Weng, J.; Li, W.; Ahmed, W. A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms. Environ. Res. 2022, 213, 113614. [Google Scholar] [CrossRef]
- Khamwichit, A.; Dechapanya, W.; Dechapanya, W. Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell. Heliyon 2022, 8, e09610. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere 2021, 262, 128379. [Google Scholar] [CrossRef]
- Tighadouini, S.; Radi, S.; Roby, O.; Hammoudan, I.; Saddik, R.; Garcia, Y.; Almarhoon, Z.M.; Mabkhot, Y.N. Kinetics, thermodynamics, equilibrium, surface modelling, and atomic absorption analysis of selective Cu (II) removal from aqueous solutions and rivers water using silica-2-(pyridin-2-ylmethoxy) ethan-1-ol hybrid material. RSC Adv. 2022, 12, 611–625. [Google Scholar] [CrossRef]
- Chen, J.; Wei, Y.; Ji, H.; Guo, P.; Wan, D.; Li, B.; Sun, X. Adsorption of nitrate and nitrite from aqueous solution by magnetic Mg/Fe hydrotalcite. Water Supply 2021, 21, 4287–4300. [Google Scholar] [CrossRef]
- Bulut, E.; Özacar, M.; Şengil, İ.A. Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Microporous Mesoporous Mater. 2008, 115, 234–246. [Google Scholar] [CrossRef]
- Santhy, K.; Selvapathy, P. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresour. Technol. 2006, 97, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Canzano, S.; Iovino, P.; Leone, V.; Salvestrini, S.; Capasso, S. Use and misuse of sorption kinetic data: A common mistake that should be avoided. Adsorpt. Sci. Technol. 2012, 30, 217–225. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Azizian, S.; Douven, S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources 2019, 14, 7582–7626. [Google Scholar] [CrossRef]
- Bullen, J.C.; Saleesongsom, S.; Gallagher, K.; Weiss, D.J. A revised pseudo-second-order kinetic model for adsorption, sensitive to changes in adsorbate and adsorbent concentrations. Langmuir 2021, 37, 3189–3201. [Google Scholar] [CrossRef]
- Manirethan, V.; Raval, K.; Rajan, R.; Thaira, H.; Balakrishnan, R.M. Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source: Pseudomonas stutzeri. J. Environ. Manag. 2018, 214, 315–324. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Abed, F.I.; Al-Musawi, T.J. Biosorption of Pb (II) from aqueous solution by spent black tea leaves and separation by flotation. Desalination Water Treat. 2016, 57, 2028–2039. [Google Scholar] [CrossRef]
- Aathithya, R.; Sowparnika, J.R.; Balakrishnan, V. Kinetic studies for the biosorption of chromium using cherry leaves (Muntingia calabura L.). Int. Lett. Nat. Sci. 2014, 20, 6–11. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, Y.; Zhang, M.; Ming, Z.; Yang, S.; Arkin, A.; Fang, P. Functionalized agricultural biomass as a low-cost adsorbent: Utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems. Biochem. Eng. J. 2016, 105, 27–35. [Google Scholar] [CrossRef]
- Batool, F.; Akbar, J.; Iqbal, S.; Noreen, S.; Bukhari, S.N.A. Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis. Bioinorg. Chem. Appl. 2018, 2018, 3463724. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Diao, Y.; Jain, R.; Rene, E.R.; Dutta, S. Adsorption of cadmium from aqueous solutions onto coffee grounds and wheat straw: Equilibrium and kinetic study. J. Environ. Eng. 2016, 142, C4015014. [Google Scholar] [CrossRef]
- Kamsonlian, S.; Suresh, S.; Ramanaiah, V.; Majumder, C.; Chand, S.; Kumar, A. Biosorptive behaviour of mango leaf powder and rice husk for arsenic (III) from aqueous solutions. Int. J. Environ. Sci. Technol. 2012, 9, 565–578. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Amini, M. Adsorption of copper (II) ions onto surfactant-modified oil palm leaf powder. J. Dispers. Sci. Technol. 2011, 32, 1641–1648. [Google Scholar] [CrossRef]
- Jain, C.K.; Malik, D.S.; Yadav, A.K. Applicability of plant based biosorbents in the removal of heavy metals: A review. Environ. Process. 2016, 3, 495–523. [Google Scholar] [CrossRef]
- Aryee, A.A.; Mpatani, F.M.; Du, Y.; Kani, A.N.; Dovi, E.; Han, R.; Li, Z.; Qu, L. Fe3O4 and iminodiacetic acid modified peanut husk as a novel adsorbent for the uptake of Cu (II) and Pb (II) in aqueous solution: Characterization, equilibrium and kinetic study. Environ. Pollut. 2021, 268, 115729. [Google Scholar] [CrossRef]
- Wattanakornsiri, A.; Rattanawan, P.; Sanmueng, T.; Satchawan, S.; Jamnongkan, T.; Phuengphai, P. Local fruit peel biosorbents for lead (II) and cadmium (II) ion removal from waste aqueous solution: A kinetic and equilibrium study. S. Afr. J. Chem. Eng. 2022, 42, 306–317. [Google Scholar] [CrossRef]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- Babakhani, A.; Sartaj, M. Removal of cadmium (II) from aqueous solution using tripolyphosphate cross-linked chitosan. J. Environ. Chem. Eng. 2020, 8, 103842. [Google Scholar] [CrossRef]
- Akram, M.; Bhatti, H.N.; Iqbal, M.; Noreen, S.; Sadaf, S. Biocomposite efficiency for Cr (VI) adsorption: Kinetic, equilibrium and thermodynamics studies. J. Environ. Chem. Eng. 2017, 5, 400–411. [Google Scholar] [CrossRef]
- Azam, M.; Wabaidur, S.M.; Khan, M.R.; Al-Resayes, S.I.; Islam, M.S. Heavy metal ions removal from aqueous solutions by treated ajwa date pits: Kinetic, isotherm, and thermodynamic approach. Polymers 2022, 14, 914. [Google Scholar] [CrossRef] [PubMed]
- Anastopoulos, I.; Kyzas, G.Z. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J. Mol. Liq. 2016, 218, 174–185. [Google Scholar] [CrossRef]
- Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S.K. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J. Water Process Eng. 2020, 33, 101038. [Google Scholar] [CrossRef]
- Chuah, T.G.; Jumasiah, A.; Azni, I.; Katayon, S.; Choong, S.T. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview. Desalination 2005, 175, 305–316. [Google Scholar] [CrossRef]
- Jha, I.; Iyengar, L.; Rao, A.P. Removal of cadmium using chitosan. J. Environ. Eng. 1988, 114, 962–974. [Google Scholar] [CrossRef]
- Huang, C.; Chung, Y.-C.; Liou, M.-R. Adsorption of Cu (II) and Ni (II) by pelletized biopolymer. J. Hazard. Mater. 1996, 45, 265–277. [Google Scholar] [CrossRef]
- Liu, S.; Gao, J.; Zhang, L.; Yang, Y.; Liu, X. Diethylenetriaminepentaacetic acid–thiourea-modified magnetic chitosan for adsorption of hexavalent chromium from aqueous solutions. Carbohydr. Polym. 2021, 274, 118555. [Google Scholar] [CrossRef] [PubMed]
- Keng, P.-S.; Lee, S.-L.; Ha, S.-T.; Hung, Y.-T.; Ong, S.-T. Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ. Chem. Lett. 2014, 12, 15–25. [Google Scholar] [CrossRef]
- Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003, 97, 219–243. [Google Scholar] [CrossRef]
- Gupta, G.; Prasad, G.; Singh, V. Removal of chrome dye from aqueous solutions by mixed adsorbents: Fly ash and coal. Water Res. 1990, 24, 45–50. [Google Scholar] [CrossRef]
- Panday, K.; Prasad, G.; Singh, V. Copper (II) removal from aqueous solutions by fly ash. Water Res. 1985, 19, 869–873. [Google Scholar] [CrossRef]
- Jahangiri, K.; Yousefi, N.; Ghadiri, S.K.; Fekri, R.; Bagheri, A.; Talebi, S.S. Enhancement adsorption of hexavalent chromium onto modified fly ash from aqueous solution; optimization; isotherm, kinetic and thermodynamic study. J. Dispers. Sci. Technol. 2018, 40, 1147–1158. [Google Scholar] [CrossRef]
- Lee, S.; Davis, A.P. Removal of Cu (II) and Cd (II) from aqueous solution by seafood processing waste sludge. Water Res. 2001, 35, 534–540. [Google Scholar] [CrossRef]
- Ajmal, M.; Khan, A.H.; Ahmad, S.; Ahmad, A. Role of sawdust in the removal of copper (II) from industrial wastes. Water Res. 1998, 32, 3085–3091. [Google Scholar] [CrossRef]
- Srivastava, S.; Bhattacharjee, G.; Tyagi, R.; Pant, N.; Pal, N. Studies on the removal of some toxic metal ions from aqueous solutions and industrial waste. Part I (Removal of lead and cadmium by hydrous iron and aluminium oxide). Environ. Technol. Lett. 1988, 9, 1173–1185. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Cheng, Q.; Li, X.; Li, Z. Removal of toxic heavy metal ions (Pb, Cr, Cu, Ni, Zn, Co, Hg, and Cd) from waste batteries or lithium cells using nanosized metal oxides: A review. J. Nanosci. Nanotechnol. 2020, 20, 7231–7254. [Google Scholar] [CrossRef] [PubMed]
- Zamzow, M.; Eichbaum, B.; Sandgren, K.; Shanks, D. Removal of heavy metals and other cations from wastewater using zeolites. Sep. Sci. Technol. 1990, 25, 1555–1569. [Google Scholar] [CrossRef]
- Al-Zboon, K.; Al-Harahsheh, M.S.; Hani, F.B. Fly ash-based geopolymer for Pb removal from aqueous solution. J. Hazard. Mater. 2011, 188, 414–421. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Zhu, Z. Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater. J. Hazard. Mater. 2007, 139, 254–259. [Google Scholar] [CrossRef]
- Srivastava, S.; Gupta, V.; Mohan, D. Removal of lead and chromium by activated slag—A blast-furnace waste. J. Environ. Eng. 1997, 123, 461–468. [Google Scholar] [CrossRef]
- Namasivayam, C.; Yamuna, R. Waste biogas residual slurry as an adsorbent for the removal of Pb (II) from aqueous solution and radiator manufacturing industry wastewater. Bioresour. Technol. 1995, 52, 125–131. [Google Scholar] [CrossRef]
- Carrott, P.; Carrott, M.R. Lignin from natural adsorbent to activated carbon: A review. Bioresour. Technol. 2007, 98, 2301–2312. [Google Scholar] [CrossRef]
- Namasivayam, C.; Ranganathan, K. Effect of organic ligands on the removal of Pb (II), Ni (II) and Cd (II) by ‘waste’Fe (III)/Cr (III) hydroxide. Water Res. 1998, 32, 969–971. [Google Scholar] [CrossRef]
- Gupta, V.K.; Sharma, S. Removal of cadmium and zinc from aqueous solutions using red mud. Environ. Sci. Technol. 2002, 36, 3612–3617. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.C.M.; do Nascimento, R.A.; Amador, I.C.B.; de Sousa Santos, T.C.; Martelli, M.C.; de Faria, L.J.G.; da Paixão Ribeiro, N.F. Chemically activated red mud: Assessing structural modifications and optimizing adsorption properties for hexavalent chromium. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127325. [Google Scholar] [CrossRef]
- Zhu, C.; Luan, Z.; Wang, Y.; Shan, X. Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM). Sep. Purif. Technol. 2007, 57, 161–169. [Google Scholar] [CrossRef]
- Semerjian, L. Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: Equilibrium, kinetic, and thermodynamic studies. Environ. Technol. Innov. 2018, 12, 91–103. [Google Scholar] [CrossRef]
- Subramani, B.S.; Shrihari, S.; Manu, B.; Babunarayan, K. Evaluation of pyrolyzed areca husk as a potential adsorbent for the removal of Fe2+ ions from aqueous solutions. J. Environ. Manag. 2019, 246, 345–354. [Google Scholar] [CrossRef]
- Nuhoğlu, Y.; Ekmekyapar Kul, Z.; Kul, S.; Nuhoğlu, Ç.; Ekmekyapar Torun, F. Pb (II) biosorption from the aqueous solutions by raw and modified tea factory waste (TFW). Int. J. Environ. Sci. Technol. 2021, 18, 2975–2986. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, H.; Li, Y.; Zhang, Z.; Zhang, W. Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: Adsorption kinetics, isotherms, and regeneration assessment. Resour. Conserv. Recycl. 2020, 156, 104688. [Google Scholar] [CrossRef]
- Bian, B.; Lv, L.; Yang, D.; Zhou, L. Migration of heavy metals in vegetable farmlands amended with biogas slurry in the Taihu Basin, China. Ecol. Eng. 2014, 71, 380–383. [Google Scholar] [CrossRef]
- Vu, N.H.; Kristianová, E.; Dvořák, P.; Abramowski, T.; Dreiseitl, I.; Adrysheva, A. Modified leach residues from processing deep-sea nodules as effective heavy metals adsorbents. Metals 2019, 9, 472. [Google Scholar] [CrossRef]
- Escudero, C.; Poch, J.; Villaescusa, I. Modelling of breakthrough curves of single and binary mixtures of Cu (II), Cd (II), Ni (II) and Pb (II) sorption onto grape stalks waste. Chem. Eng. J. 2013, 217, 129–138. [Google Scholar] [CrossRef]
- Selvam, S.; Jesuraja, K.; Venkatramanan, S.; Roy, P.D.; Kumari, V.J. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India. J. Hazard. Mater. 2021, 402, 123786. [Google Scholar] [CrossRef] [PubMed]
- Godoy, V.; Blázquez, G.; Calero, M.; Quesada, L.; Martín-Lara, M. The potential of microplastics as carriers of metals. Environ. Pollut. 2019, 255, 113363. [Google Scholar] [CrossRef]
- Fu, Q.; Tan, X.; Ye, S.; Ma, L.; Gu, Y.; Zhang, P.; Chen, Q.; Yang, Y.; Tang, Y. Mechanism analysis of heavy metal lead captured by natural-aged microplastics. Chemosphere 2021, 270, 128624. [Google Scholar] [CrossRef]
- Zon, N.F.; Iskendar, A.; Azman, S.; Sarijan, S.; Ismail, R. Sorptive behaviour of chromium on polyethylene microbeads in artificial seawater. In Proceedings of the 12th International Civil Engineering Post Graduate Conference (SEPKA)—The 3rd International Symposium on Expertise of Engineering Design (ISEED) (SEPKA-ISEED 2018). In Proceedings of the MATEC Web of Conferences, Johor, Malaysia, 27–28 August 2018; p. 06001. [Google Scholar]
- Dong, Y.; Gao, M.; Song, Z.; Qiu, W. As (III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere 2020, 239, 124792. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Dutta, S.; Saxena, V.K. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environ. Adv. 2020, 2, 100007. [Google Scholar] [CrossRef]
- Osman, A.I.; El-Monaem, E.M.A.; Elgarahy, A.M.; Aniagor, C.O.; Hosny, M.; Farghali, M.; Rashad, E.; Ejimofor, M.I.; López-Maldonado, E.A.; Ihara, I. Methods to prepare biosorbents and magnetic sorbents for water treatment: A review. Environ. Chem. Lett. 2023, 21, 2337–2398. [Google Scholar] [CrossRef]
- Kumar, M.; Kushwaha, A.; Goswami, L.; Singh, A.K.; Sikandar, M. A review on advances and mechanism for the phycoremediation of cadmium contaminated wastewater. Clean. Eng. Technol. 2021, 5, 100288. [Google Scholar] [CrossRef]
- Narayanasamy, S.; Sundaram, V.; Sundaram, T.; Vo, D.-V.N. Biosorptive ascendency of plant based biosorbents in removing hexavalent chromium from aqueous solutions—Insights into isotherm and kinetic studies. Environ. Res. 2022, 210, 112902. [Google Scholar] [CrossRef] [PubMed]
- El-Azazy, M.; El-Shafie, A.S.; Issa, A.A.; Al-Sulaiti, M.; Al-Yafie, J.; Shomar, B.; Al-Saad, K. Potato peels as an adsorbent for heavy metals from aqueous solutions: Eco-structuring of a green adsorbent operating Plackett–Burman design. J. Chem. 2019, 2019, 4926240. [Google Scholar] [CrossRef]
- Maina, I.W.; Obuseng, V.; Nareetsile, F. Use of Moringa oleifera (Moringa) seed pods and Sclerocarya birrea (Morula) nut shells for removal of heavy metals from wastewater and borehole water. J. Chem. 2016, 2016, 9312952. [Google Scholar] [CrossRef]
- Thi Quyen, V.; Pham, T.-H.; Kim, J.; Thanh, D.M.; Thang, P.Q.; Van Le, Q.; Jung, S.H.; Kim, T. Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere 2021, 284, 131312. [Google Scholar] [CrossRef]
- Nieto, L.M.; Alami, S.B.D.; Hodaifa, G.; Faur, C.; Rodríguez, S.; Giménez, J.A.; Ochando, J. Adsorption of iron on crude olive stones. Ind. Crops Prod. 2010, 32, 467–471. [Google Scholar] [CrossRef]
- Singh, R.; Martin, C.; Barr, D.; Rosengren, R. Immobilised apple peel bead biosorbent for the simultaneous removal of heavy metals from cocktail solution. Cogent Environ. Sci. 2019, 5, 1673116. [Google Scholar] [CrossRef]
- Šabanović, E.; Memić, M.; Sulejmanović, J.; Selović, A. Simultaneous adsorption of heavy metals from water by novel lemon-peel based biomaterial. Pol. J. Chem. Technol. 2020, 22, 46–53. [Google Scholar] [CrossRef]
- Bulut, Y.; Tez, Z. Adsorption studies on ground shells of hazelnut and almond. J. Hazard. Mater. 2007, 149, 35–41. [Google Scholar] [CrossRef]
- Feng, N.; Guo, X.; Liang, S.; Zhu, Y.; Liu, J. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Hazard. Mater. 2011, 185, 49–54. [Google Scholar] [CrossRef]
- Massocatto, C.; Paschoal, E.; Buzinaro, N.; Oliveria, T.; Tarley, C.; Caetano, J.; Gonçalves, A., Jr.; Dragunski, D.; Diniz, K. Preparation and evaluation of kinetics and thermodynamics studies of lead adsorption onto chemically modified banana peels. Desalination Water Treat. 2013, 51, 5682–5691. [Google Scholar] [CrossRef]
- Nathan, R.J.; Martin, C.E.; Barr, D.; Rosengren, R.J. Simultaneous removal of heavy metals from drinking water by banana, orange and potato peel beads: A study of biosorption kinetics. Appl. Water Sci. 2021, 11, 116. [Google Scholar] [CrossRef]
- Mohammad, M.; Maitra, S.; Ahmad, N.; Bustam, A.; Sen, T.; Dutta, B.K. Metal ion removal from aqueous solution using physic seed hull. J. Hazard. Mater. 2010, 179, 363–372. [Google Scholar] [CrossRef]
- Xu, X.; Cao, X.; Zhao, L. Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere 2013, 92, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Jibril, H.B.; Salga, S.M.; Ahmed, S.; Saddiq, M. Application of agricultural wastes for the aqueous removal of heavy metals from waste water. Fudma J. Sci. 2021, 5, 231–236. [Google Scholar] [CrossRef]
- Sanka, P.M.; Rwiza, M.J.; Mtei, K. Removal of selected heavy metal ions from industrial wastewater using rice and corn husk biochar. Water Air Soil Pollut. 2020, 231, 244. [Google Scholar] [CrossRef]
- Abdulrasaq, O.O.; Basiru, O.G. Removal of copper (II), iron (III) and lead (II) ions from mono-component simulated waste effluent by adsorption on coconut husk. Afr. J. Environ. Sci. Technol. 2010, 4, 382–387. [Google Scholar] [CrossRef]
- Ideriah, T.; David, O.; Ogbonna, D. Removal of heavy metal ions in aqueous solutions using palm fruit fibre as adsorbent. J. Environ. Chem. Ecotoxicol 2012, 4, 82–90. [Google Scholar] [CrossRef]
- Maheshwari, U.; Gupta, S. Removal of Cr (VI) from wastewater using activated neem bark in a fixed-bed column: Interference of other ions and kinetic modelling studies. Desalination Water Treat. 2016, 57, 8514–8525. [Google Scholar] [CrossRef]
- Chao, H.-P.; Chang, C.-C.; Nieva, A. Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. J. Ind. Eng. Chem. 2014, 20, 3408–3414. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Al-Yasi, H.M.; Galal, T.M.; Hamza, R.Z.; Abdelkader, T.G.; Ali, E.F.; Hassan, S.H. Statistical optimization, kinetic, equilibrium isotherm and thermodynamic studies of copper biosorption onto Rosa damascena leaves as a low-cost biosorbent. Sci. Rep. 2022, 12, 8583. [Google Scholar] [CrossRef]
- Gryko, K.; Kalinowska, M.; Świderski, G. The Use of apple pomace in removing heavy metals from water and sewage. Environ. Sci. Proc. 2021, 9, 24. [Google Scholar]
- Ebrahimi, M.; Langeroodi, N.S.; Hooshmand, S. Biosorption of Fe (III) ions using carrot: Equilibrium, kinetics, and statistical analysis. Prot. Met. Phys. Chem. Surf. 2019, 55, 259–265. [Google Scholar] [CrossRef]
- Nasernejad, B.; Zadeh, T.E.; Pour, B.B.; Bygi, M.E.; Zamani, A. Camparison for biosorption modeling of heavy metals (Cr (III), Cu (II), Zn (II)) adsorption from wastewater by carrot residues. Process Biochem. 2005, 40, 1319–1322. [Google Scholar] [CrossRef]
- Ofudje, E.A.; Akiode, O.K.; Oladipo, G.O.; Adedapo, A.E.; Adebayo, L.O.; Awotula, A.O. Application of raw and alkaline-modified coconut shaft as a biosorbent for Pb2+ removal. BioResources 2015, 10, 3462–3480. [Google Scholar] [CrossRef]
- Wang, H.; Huang, T.; Tu, Z.-c.; Ruan, C.-y.; Lin, D. The adsorption of lead (II) ions by dynamic high pressure micro-fluidization treated insoluble soybean dietary fiber. J. Food Sci. Technol. 2016, 53, 2532–2539. [Google Scholar] [CrossRef]
- Ahmad, S.; Zhu, X.; Wang, Q.; Wei, X.; Zhang, S. Microwave-assisted hydrothermal treatment of soybean residue and chitosan: Characterization of hydrochars and role of N and P transformation for Pb (II) removal. J. Anal. Appl. Pyrolysis 2021, 160, 105330. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.; Altaher, H.; Omar, W. Application of date palm trunk fibers as adsorbents for removal of Cd+2 ions from aqueous solutions. J. Water Reuse Desalination 2013, 3, 47–54. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, J.; Khare, R.; Cameotra, S.S.; Ali, A. Batch sorption dynamics, kinetics and equilibrium studies of Cr (VI), Ni (II) and Cu (II) from aqueous phase using agricultural residues. Appl. Water Sci. 2013, 3, 207–218. [Google Scholar] [CrossRef]
- Karnitz, O., Jr.; Gurgel, L.V.A.; De Melo, J.C.P.; Botaro, V.R.; Melo, T.M.S.; de Freitas Gil, R.P.; Gil, L.F. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol. 2007, 98, 1291–1297. [Google Scholar] [CrossRef]
- El-Shafey, E. Removal of Zn (II) and Hg (II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. J. Hazard. Mater. 2010, 175, 319–327. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I.; Hosseini-Bandegharaei, A.; Giannakoudakis, D.A.; Robalds, A.; Usman, M.; Escudero, L.B.; Zhou, Y.; Colmenares, J.C.; Núñez-Delgado, A. Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. J. Mol. Liq. 2019, 295, 111684. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Senthamarai, C.; Sai Deepthi, A.; Bharani, R. Adsorption isotherms, kinetics and mechanism of Pb (II) ions removal from aqueous solution using chemically modified agricultural waste. Can. J. Chem. Eng. 2013, 91, 1950–1956. [Google Scholar] [CrossRef]
- Shukla, S.; Pai, R.S.; Shendarkar, A.D. Adsorption of Ni (II), Zn (II) and Fe (II) on modified coir fibres. Sep. Purif. Technol. 2006, 47, 141–147. [Google Scholar] [CrossRef]
- Ajjabi, L.C.; Chouba, L. Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J. Environ. Manag. 2009, 90, 3485–3489. [Google Scholar] [CrossRef] [PubMed]
- Pavasant, P.; Apiratikul, R.; Sungkhum, V.; Suthiparinyanont, P.; Wattanachira, S.; Marhaba, T.F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour. Technol. 2006, 97, 2321–2329. [Google Scholar] [CrossRef]
- Arivalagan, P.; Singaraj, D.; Haridass, V.; Kaliannan, T. Removal of cadmium from aqueous solution by batch studies using Bacillus cereus. Ecol. Eng. 2014, 71, 728–735. [Google Scholar] [CrossRef]
- Quintelas, C.; Rocha, Z.; Silva, B.; Fonseca, B.; Figueiredo, H.; Tavares, T. Removal of Cd (II), Cr (VI), Fe (III) and Ni (II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng. J. 2009, 149, 319–324. [Google Scholar] [CrossRef]
- Chellaiah, E.R. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A minireview. Appl. Water Sci. 2018, 8, 154. [Google Scholar] [CrossRef]
- Puyen, Z.M.; Villagrasa, E.; Maldonado, J.; Diestra, E.; Esteve, I.; Solé, A. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresour. Technol. 2012, 126, 233–237. [Google Scholar] [CrossRef]
- Abdel-Monem, M.; Al-Zubeiry, A.; Al-Gheethi, A. Biosorption of nickel by Pseudomonas cepacia 120S and Bacillus subtilis 117S. Water Sci. Technol. 2010, 61, 2994–3007. [Google Scholar] [CrossRef]
- Adel, A.; Lalung, J.; Efaq, A.; Ismail, N. Removal of cephalexin antibiotic and heavy metals from pharmaceutical effluents using Bacillus subtilis strain. Expert Opin. Environ. Biol. 2015, 4, 1000117. [Google Scholar] [CrossRef]
- Politaeva, N.; Smyatskaya, Y.A.; Tatarintseva, E. Using adsorption material based on the residual biomass of Chlorella sorokiniana microalgae for wastewater purification to remove heavy metal ions. Chem. Pet. Eng. 2020, 55, 907–912. [Google Scholar] [CrossRef]
- Sandau, E.; Sandau, P.; Pulz, O. Heavy metal sorption by microalgae. Acta Biotechnol. 1996, 16, 227–235. [Google Scholar] [CrossRef]
- Negm, N.A.; Abd El Wahed, M.G.; Hassan, A.R.A.; Abou Kana, M.T. Feasibility of metal adsorption using brown algae and fungi: Effect of biosorbents structure on adsorption isotherm and kinetics. J. Mol. Liq. 2018, 264, 292–305. [Google Scholar] [CrossRef]
- Lesmana, S.O.; Febriana, N.; Soetaredjo, F.E.; Sunarso, J.; Ismadji, S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J. 2009, 44, 19–41. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R.; Fan, L.; Cui, L.; Zhang, Y.; Cheng, J.; Wu, X.; Zeng, W.; Tian, Q.; Shen, L. Construction of fungi-microalgae symbiotic system and adsorption study of heavy metal ions. Sep. Purif. Technol. 2021, 268, 118689. [Google Scholar] [CrossRef]
- Srinivasa Rao, P.; Kalyani, S.; Suresh Reddy, K.; Krishnaiah, A. Comparison of biosorption of nickel (II) and copper (II) ions from aqueous solution by sphaeroplea algae and acid treated sphaeroplea algae. Sep. Sci. Technol. 2005, 40, 3149–3165. [Google Scholar] [CrossRef]
- Shen, L.; Wang, J.; Li, Z.; Fan, L.; Chen, R.; Wu, X.; Li, J.; Zeng, W. A high-efficiency Fe2O3@ Microalgae composite for heavy metal removal from aqueous solution. J. Water Process Eng. 2020, 33, 101026. [Google Scholar] [CrossRef]
- Alotaibi, B.S.; Khan, M.; Shamim, S. Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms 2021, 9, 1628. [Google Scholar] [CrossRef]
- Yue, Z.-B.; Li, Q.; Li, C.-c.; Chen, T.-h.; Wang, J. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria. Bioresour. Technol. 2015, 194, 399–402. [Google Scholar] [CrossRef]
- Ansari, M.I.; Malik, A. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour. Technol. 2007, 98, 3149–3153. [Google Scholar] [CrossRef]
- Mohite, B.V.; Patil, S.V. Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications. J. Biomater. Sci. Polym. Ed. 2014, 25, 2053–2065. [Google Scholar] [CrossRef]
- Yousefi, N.; Jones, M.; Bismarck, A.; Mautner, A. Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water. Carbohydr. Polym. 2021, 253, 117273. [Google Scholar] [CrossRef] [PubMed]
- Alsharari, S.F.; Tayel, A.A.; Moussa, S.H. Soil emendation with nano-fungal chitosan for heavy metals biosorption. Int. J. Biol. Macromol. 2018, 118, 2265–2268. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Bahkali, A.H.; Khiyami, M.A.; Alfadul, S.M.; Wabaidur, S.M.; Alam, M.; Alfarhan, B.Z. Low cost biosorbents from fungi for heavy metals removal from wastewater. Sep. Sci. Technol. 2020, 55, 1766–1775. [Google Scholar] [CrossRef]
- Kumar, R.; Bishnoi, N.R.; Bishnoi, K. Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. J. 2008, 135, 202–208. [Google Scholar] [CrossRef]
- Lu, N.; Hu, T.; Zhai, Y.; Qin, H.; Aliyeva, J.; Zhang, H. Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis. Environ. Res. 2020, 182, 109061. [Google Scholar] [CrossRef]
- Karim, A.; Gerliani, N.; Aïder, M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int. J. Food Microbiol. 2020, 333, 108818. [Google Scholar] [CrossRef]
- Karim, A.; Islam, M.A.; Khalid, Z.B.; Yousuf, A.; Khan, M.M.R.; Faizal, C.K.M. Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture. Renew. Energy 2021, 176, 106–114. [Google Scholar] [CrossRef]
- Acosta-Rodríguez, I.; Cárdenas-González, J.F.; Rodríguez Pérez, A.S.; Oviedo, J.T.; Martínez-Juárez, V.M. Bioremoval of different heavy metals by the resistant fungal strain Aspergillus niger. Bioinorg. Chem. Appl. 2018, 2018, 3457196. [Google Scholar] [CrossRef]
- Massoud, R.; Khosravi-Darani, K.; Sharifan, A.; Asadi, G.H. Lead bioremoval from milk by Saccharomyces cerevisiae. Biocatal. Agric. Biotechnol. 2019, 22, 101437. [Google Scholar] [CrossRef]
- Bhainsa, K.C.; D’souza, S. Removal of copper ions by the filamentous fungus, Rhizopus oryzae from aqueous solution. Bioresour. Technol. 2008, 99, 3829–3835. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Yousuf, A.; Karim, A.; Pirozzi, D.; Khan, M.R.; Ab Wahid, Z. Bioremediation of palm oil mill effluent and lipid production by Lipomyces starkeyi: A combined approach. J. Clean. Prod. 2018, 172, 1779–1787. [Google Scholar] [CrossRef]
- Han, R.; Li, H.; Li, Y.; Zhang, J.; Xiao, H.; Shi, J. Biosorption of copper and lead ions by waste beer yeast. J. Hazard. Mater. 2006, 137, 1569–1576. [Google Scholar] [CrossRef]
- Tan, X.; Zhu, S.; Show, P.L.; Qi, H.; Ho, S.-H. Sorption of ionized dyes on high-salinity microalgal residue derived biochar: Electron acceptor-donor and metal-organic bridging mechanisms. J. Hazard. Mater. 2020, 393, 122435. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. Biochar for wastewater treatment—Conversion technologies and applications. Appl. Sci. 2020, 10, 3492. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Krukowska, J.; Thomas, P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 2017, 307, 353–363. [Google Scholar] [CrossRef]
- Yu, K.L.; Show, P.L.; Ong, H.C.; Ling, T.C.; Lan, J.C.-W.; Chen, W.-H.; Chang, J.-S. Microalgae from wastewater treatment to biochar–feedstock preparation and conversion technologies. Energy Convers. Manag. 2017, 150, 1–13. [Google Scholar] [CrossRef]
- Angın, D.; Sarikulce, S. The effect of activation temperature on properties of activated carbon prepared from wine industry pressing waste. Desalination Water Treat. 2017, 73, 373–379. [Google Scholar] [CrossRef]
- Zakaria, Z.A.; Suratman, M.; Mohammed, N.; Ahmad, W.A. Chromium (VI) removal from aqueous solution by untreated rubber wood sawdust. Desalination 2009, 244, 109–121. [Google Scholar] [CrossRef]
- Wong, K.; Lee, C.; Low, K.; Haron, M. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 2003, 50, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Bernard, E.; Jimoh, A.; Odigure, J. Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Res. J. Chem. Sci. 2013, 3, 3–9. [Google Scholar]
- Demirbas, E.; Dizge, N.; Sulak, M.; Kobya, M. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem. Eng. J. 2009, 148, 480–487. [Google Scholar] [CrossRef]
- Issabayeva, G.; Aroua, M.K.; Sulaiman, N.M. Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination 2010, 262, 94–98. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef]
- Kongsuwan, A.; Patnukao, P.; Pavasant, P. Binary component sorption of Cu (II) and Pb (II) with activated carbon from Eucalyptus camaldulensis Dehn bark. J. Ind. Eng. Chem. 2009, 15, 465–470. [Google Scholar] [CrossRef]
- Khan, N.A.; Ibrahim, S.; Subramaniam, P. Elimination of heavy metals from wastewater using agricultural wastes as adsorbents. Malays. J. Sci. 2004, 23, 43–51. [Google Scholar]
- Lo, S.-F.; Wang, S.-Y.; Tsai, M.-J.; Lin, L.-D. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem. Eng. Res. Des. 2012, 90, 1397–1406. [Google Scholar] [CrossRef]
- Park, H.G.; Kim, T.W.; Chae, M.Y.; Yoo, I.-K. Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics. Process Biochem. 2007, 42, 1371–1377. [Google Scholar] [CrossRef]
- Üçer, A.; Uyanik, A.; Aygün, Ş. Adsorption of Cu (II), Cd (II), Zn (II), Mn (II) and Fe (III) ions by tannic acid immobilised activated carbon. Sep. Purif. Technol. 2006, 47, 113–118. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Matsumoto, Y.; Machida, M. Adsorption of Zn (II) and Cd (II) ions onto magnesium and activated carbon composite in aqueous solution. Appl. Surf. Sci. 2010, 256, 1619–1623. [Google Scholar] [CrossRef]
- Ahn, C.K.; Park, D.; Woo, S.H.; Park, J.M. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. J. Hazard. Mater. 2009, 164, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Mariana, M.; HPS, A.K.; Mistar, E.; Yahya, E.B.; Alfatah, T.; Danish, M.; Amayreh, M. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J. Water Process Eng. 2021, 43, 102221. [Google Scholar] [CrossRef]
- Stor, M.; Czelej, K.; Krasiński, A.; Gradoń, L. Exceptional Sorption of Heavy Metals from Natural Water by Halloysite Particles: A New Prospect of Highly Efficient Water Remediation. Nanomaterials 2023, 13, 1162. [Google Scholar] [CrossRef]
- Karim, A.; Raji, Z.; Habibi, Y.; Khalloufi, S. A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: Opportunities and challenges for their application in the food industry. Crit. Rev. Food Sci. Nutr. 2023, 1–35. [Google Scholar] [CrossRef]
- Shaghaleh, H.; Xu, X.; Wang, S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv. 2018, 8, 825–842. [Google Scholar] [CrossRef]
- Fakhre, N.A.; Ibrahim, B.M. The use of new chemically modified cellulose for heavy metal ion adsorption. J. Hazard. Mater. 2018, 343, 324–331. [Google Scholar] [CrossRef]
- Yu, X.; Tong, S.; Ge, M.; Wu, L.; Zuo, J.; Cao, C.; Song, W. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J. Environ. Sci. 2013, 25, 933–943. [Google Scholar] [CrossRef]
- Peng, X.-W.; Zhong, L.-X.; Ren, J.-L.; Sun, R.-C. Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J. Agric. Food Chem. 2012, 60, 3909–3916. [Google Scholar] [CrossRef]
- Lian, Y.; Zhang, J.; Li, N.; Ping, Q. Preparation of hemicellulose-based hydrogel and its application as an adsorbent towards heavy metal ions. BioResources 2018, 13, 3208–3218. [Google Scholar] [CrossRef]
- Hernández-Martínez, A.R.; Molina, G.A.; Jiménez-Hernández, L.F.; Oskam, A.H.; Fonseca, G.; Estevez, M. Evaluation of inulin replacing chitosan in a polyurethane/polysaccharide material for Pb2+ removal. Molecules 2017, 22, 2093. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, T.-T.; Rao, Q.-Q.; Shui, S.-W.; Li, W.-W.; He, H.-B.; Yao, R.-S. Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal. J. Environ. Sci. 2017, 53, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, R.; Pang, Y.; Qiu, X.; Yang, D. Microwave-assisted synthesis of high carboxyl content of lignin for enhancing adsorption of lead. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 187–194. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, S.; Liu, P.; Gao, W.; Li, J.; Mo, L. Adsorption of Cu (II) ions in aqueous solution by aminated lignin from enzymatic hydrolysis residues. RSC Adv. 2017, 7, 44751–44758. [Google Scholar] [CrossRef]
- Shen, B.; Guo, Z.; Huang, B.; Zhang, G.; Fei, P.; Hu, S. Preparation of hydrogels based on pectin with different esterification degrees and evaluation of their structure and adsorption properties. Int. J. Biol. Macromol. 2022, 202, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Arachchige, M.P.M.; Mu, T.; Ma, M. Effect of high hydrostatic pressure-assisted pectinase modification on the Pb2+ adsorption capacity of pectin isolated from sweet potato residue. Chemosphere 2021, 262, 128102. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Yang, J.; Hu, D.; Wang, Z. Removing Pb2+ with a pectin-rich fiber from sisal waste. Food Funct. 2021, 12, 2418–2427. [Google Scholar] [CrossRef]
- Garcia-Reyes, R.B.; Rangel-Mendez, J.R. Contribution of agro-waste material main components (hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution. J. Chem. Technol. Biotechnol. 2009, 84, 1533–1538. [Google Scholar] [CrossRef]
- Kumari, P.; Sharma, P.; Srivastava, S.; Srivastava, M. Arsenic removal from the aqueous system using plant biomass: A bioremedial approach. J. Ind. Microbiol. Biotechnol. 2005, 32, 521–526. [Google Scholar] [CrossRef]
- Pejic, B.; Vukcevic, M.; Kostic, M.; Skundric, P. Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition. J. Hazard. Mater. 2009, 164, 146–153. [Google Scholar] [CrossRef]
- Hu, G.; Huang, S.; Chen, H.; Wang, F. Binding of four heavy metals to hemicelluloses from rice bran. Food Res. Int. 2010, 43, 203–206. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Li, J.; Salamh, Y.; Al-Laqtah, N.; Walker, G.; Ahmad, M.N. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J. Hazard. Mater. 2010, 176, 510–520. [Google Scholar] [CrossRef]
- Lee, B.-G.; Rowell, R.M. Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers. J. Nat. Fibers 2004, 1, 97–108. [Google Scholar] [CrossRef]
- Kartel, M.T.; Kupchik, L.A.; Veisov, B.K. Evaluation of pectin binding of heavy metal ions in aqueous solutions. Chemosphere 1999, 38, 2591–2596. [Google Scholar] [CrossRef] [PubMed]
- Khotimchenko, M.Y.; Kolenchenko, E.; Khotimchenko, Y.S. Zinc-binding activity of different pectin compounds in aqueous solutions. J. Colloid Interface Sci. 2008, 323, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Priya, A.; Kumar, P.S.; Hoang, T.K.; Sekar, K.; Chong, K.Y.; Khoo, K.S.; Ng, H.S.; Show, P.L. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere 2022, 303, 135146. [Google Scholar] [CrossRef] [PubMed]
- Melezhyk, A.; Kotov, V.; Tkachev, A. Optical properties and aggregation of graphene nanoplatelets. J. Nanosci. Nanotechnol. 2016, 16, 1067–1075. [Google Scholar] [CrossRef]
- Darwish, A.D. Fullerenes. Annu. Rep. Sect. A (Inorg. Chem.) 2013, 106, 356–375. [Google Scholar] [CrossRef]
- Burakov, A.; Romantsova, I.; Kucherova, A.; Tkachev, A. Removal of heavy-metal ions from aqueous solutions using activated carbons: Effect of adsorbent surface modification with carbon nanotubes. Adsorpt. Sci. Technol. 2014, 32, 737–747. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; González-Melgoza, L.L.; García-Depraect, O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. Chemosphere 2021, 270, 129421. [Google Scholar] [CrossRef]
- Chen, M.; Shafer-Peltier, K.; Randtke, S.J.; Peltier, E. Modeling arsenic (V) removal from water by micellar enhanced ultrafiltration in the presence of competing anions. Chemosphere 2018, 213, 285–294. [Google Scholar] [CrossRef]
- Khan, F.S.A.; Mubarak, N.M.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Mazari, S.A.; Nizamuddin, S.; Karri, R.R. Magnetic nanoadsorbents’ potential route for heavy metals removal—A review. Environ. Sci. Pollut. Res. 2020, 27, 24342–24356. [Google Scholar] [CrossRef]
- Singh, N.; Nagpal, G.; Agrawal, S. Water purification by using adsorbents: A review. Environ. Technol. Innov. 2018, 11, 187–240. [Google Scholar] [CrossRef]
- Abu-Nada, A.; McKay, G.; Abdala, A. Recent advances in applications of hybrid graphene materials for metals removal from wastewater. Nanomaterials 2020, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Almomani, F.; Bhosale, R.; Khraisheh, M.; Almomani, T. Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Appl. Surf. Sci. 2020, 506, 144924. [Google Scholar] [CrossRef]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Mainali, B.; Angove, M.J. Manganese oxides and their application to metal ion and contaminant removal from wastewater. J. Water Process Eng. 2018, 26, 264–280. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl. Mater. Interfaces 2018, 10, 18619–18629. [Google Scholar] [CrossRef]
- Saleem, H.; Rafique, U.; Davies, R.P. Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous Mesoporous Mater. 2016, 221, 238–244. [Google Scholar] [CrossRef]
- Khoso, W.A.; Haleem, N.; Baig, M.A.; Jamal, Y. Synthesis, characterization and heavy metal removal efficiency of nickel ferrite nanoparticles (NFN’s). Sci. Rep. 2021, 11, 3790. [Google Scholar] [CrossRef]
- Houston, R.L.; Waclawik, E.R.; Sarina, S. Application of Alumina Nanofibers as Adsorbents for the Removal of Mercury (II) and Lead (II) from Aqueous Solutions. Minerals 2023, 13, 654. [Google Scholar] [CrossRef]
- Sharma, A.; Anjana; Rana, H.; Goswami, S. A comprehensive review on the heavy metal removal for water remediation by the application of lignocellulosic biomass-derived nanocellulose. J. Polym. Environ. 2022, 30, 1–18. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kadam, A.; Shinde, S.; Saratale, R.G.; Patra, J.; Ghodake, G. Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. J. Sci. Food Agric. 2018, 98, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, G.; Soleimanian, Y.; Mhamadi, M.; Turgeon, S.L.; Khalloufi, S. The applications of conventional and innovative mechanical technologies to tailor structural and functional features of dietary fibers from plant wastes: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2149–2199. [Google Scholar] [CrossRef] [PubMed]
- Mautner, A. Nanocellulose water treatment membranes and filters: A review. Polym. Int. 2020, 69, 741–751. [Google Scholar] [CrossRef]
- Camparotto, N.G.; Paixão, G.R.; de Vargas Brião, G.; Oliveira, R.L.; Prediger, P.; Vieira, M.G.A. Comparative effect of mesoporous carbon doping on the adsorption of pharmaceutical drugs in water: Theoretical calculations and mechanism study. Environ. Toxicol. Pharmacol. 2023, 99, 104105. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Ali, S.S.; Hossain, S.S.; Asif, M. A review of the dynamic mathematical modeling of heavy metal removal with the biosorption process. Processes 2022, 10, 1154. [Google Scholar] [CrossRef]
- Hafsa, N.; Rushd, S.; Al-Yaari, M.; Rahman, M. A generalized method for modeling the adsorption of heavy metals with machine learning algorithms. Water 2020, 12, 3490. [Google Scholar] [CrossRef]
- Rani, L.; Kaushal, J.; Srivastav, A.L.; Mahajan, P. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. Environ. Sci. Pollut. Res. 2020, 27, 44771–44796. [Google Scholar] [CrossRef]
- Dotto, G.L.; McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 2020, 8, 103988. [Google Scholar] [CrossRef]
Models | Adsorbents | Heavy Metals | Main Findings | References |
---|---|---|---|---|
Langmuir : amount of adsorbed metal ions per unit mass of adsorbent at equilibrium (mg/g) Ce: metal ion concentration in solution at equilibrium (mg/L) : Langmuir binding constant (L/mg) qmax: maximum amount of metal adsorbed per unit weight of adsorbent (mg/g) | Orange peel, Pomegranate peel, Banana peel | Cd2+, |
| [45,46] |
Peanut Husk | Cu2+, Pb2+ | [47] | ||
Rice straw | Cu2+, Ni2+, Cr6+ | [48] | ||
Olive stones | Cu2+, Cd2+, Pb2+ | [49] | ||
Modified rice bran | Pb2+ | [50] | ||
Oil tea shell | Cu2+, Cd2+ | [51] | ||
Cotton fiber | Cu2+, Cr3+, Pb2+ | [52] | ||
Green Alga (Ulva lactuca) and its activated carbon | Cr3+, Cr6+ | [53] | ||
Freundlich : amount of adsorbed metal ions per unit mass of adsorbent at equilibrium (mg/g) Ce: metal ion concentration in solution at equilibrium (mg/L) Freundlich isotherm constant (mg/g) related to adsorption capacity n: constant related to adsorption intensity | Palm kernel shell, | Cd2+ |
| [54] |
Orange peel, Pomegranate peel | Cu2+ | [55] | ||
Chickpea husk | Pb2+ | [56] | ||
Activated carbon | AsFIGURE3+ | [57] | ||
Moringa oleifera leaves | Pb2+ | [58] | ||
Oil tea shell | Pb2+ | [51] | ||
Rice husk, Bamboo biochar | Zn2+ | [59] | ||
Temkin : amount of adsorbed metal ions per unit weignt of adsorbent at equilibrium (mg/g) Ce: metal ion concentration in solution at equilibrium (mg/L) : Temkin isotherm equilibrium binding constant (L/mg) corresponding to the maximum binding energy : Temkin isotherm constant R: universal gas constant (8.314 J/mol K) T: absolute temperature (°K) | Olive stones | Cr6+ |
| [49] |
Dubinin–Radushkevich : the amount of adsorbed metal ions per unit mass of adsorbent at equilibrium (mg/g) : theoretical adsorption capacity/the maximum amount of ion that can be adsorbed by unit weight of adsorbent (mg/g) β: Dubinin–Radushkevich constant related to the mean free energy of adsorption (mol2/J2) : Polanyi potential = ) R: universal gas constant (8.314 J/mol K) T: absolute temperature (°K) Ce: metal ion concentration in solution at equilibrium (mg/L) | F. Carica leaves | Co2+ |
| [50,60] |
Coconut husk | Cu2+, Ni2+, Zn2+, Pb2+ | [61,62] | ||
Redlich–Peterson : amount of metal adsorbed per unit weight of adsorbent at equilibrium (mg/g) KR (L/g), (L/mg) and β (between 0 and 1) are empirical parameters of the R-P isotherm without physical meaning. When β = 1, the equation is reduced to the Langmuir isotherm. Ce: metal ion concentration in solution at equilibrium (mg/L) | Mistletoe leaves | Pb2+, Cd2+ |
| [63] |
Koble–Corrigan model : amount of adsorbed metal ions per unit weight of adsorbent (mg/g) Ce: metal ion concentration in solution at equilibrium (mg/L) a, b, and n are Koble–Corrigan model constant | Activated carbon | Cr6+ |
| [53] |
Tóth : amount of adsorbed metal ions per unit weight of adsorbent (mg/g) Ce: metal ion concentration in solution at equilibrium (mg/L) a: Tóth maximum adsorption capacity (mg/g) : Tóth equilibrium constant : Tóth model exponent | Rice husk ash | Ni2+, Cd2+ |
| [64,65] |
Models | Adsorbents | Heavy Metals | Main Findings | References |
---|---|---|---|---|
Pseudo-first order Nonlinear form: qt = qe (1 − ) Linear form: : amount of adsorbed metal ions per unit mass of adsorbent at equilibrium : amount of adsorbed metal ions per unit mass of adsorbent at time t (min) k1 (min−1): pseudo-first-order rate constant | Palm kernel shell | Cd2+ |
| [54,69,71,78] |
Chickpea Husk | Pb2+ | [56] | ||
Black tea leaves | Pb2+ | [79] | ||
Cherry leaves | Cr6+ | [80] | ||
Pseudo-second order Nonlinear form: Linear form: (mg/g): adsorption capacity at equilibrium (mg/g): adsorption capacity at time t (min) k2 (g/mg min): pseudo-second-order rate constant | Rice straw | Cu2+, Ni2+ |
| [48,69,71,78,81,82] |
Oil tea shell | Pb2+ | [51,83] | ||
Cotton fiber | Cu2+, Cr3+, Pb2+ | [52] | ||
Rice husk, Bamboo biochar | Zn2+ | [59] | ||
Bamboo charcoal | Cd2+ | [46] | ||
Mango | As3+ | [84] | ||
Oil palm | Cu2+ | [85] | ||
Intra-particle diffusion kinetics models (mg/g): amount of adsorbed metal ions at time t (min) (mg/g min0.5): intra-particle diffusion constant Ci: thickness of the boundary layer | Raw maize cob | Cu2+, Pb2+ |
| [69,71,78] |
Rice husk | Cd2+ | [86] | ||
Mistletoe leaves | Cd2+, Pb2+ | [63] | ||
Elovich (mg/g): adsorption capacity at time t (min) α (mg/g min): initial adsorption rate β (g/mg): desorption constant α and β are related to the fraction of the surface covered and chemisorption activation energy | Peanut husk | Cu2+, Pb2+ |
| [87] |
Adsorbents | Heavy Metals Removed | Comments | References |
---|---|---|---|
Agricultural wastes (such as rice husk and wheat bran) | As3+, Au2+, Cr3+, Cu2+, Pb2+, Zn2+, Cd2+, Fe2+ | On the adsorbents surface, functional groups (such as −OH, −COOH, –O–, and −CO–NH–) react with heavy metal ions to remove them from aqueous solution. | [95] |
Carbon-based materials (biochar/activated carbon) | Hg2+, Cr6+, Cu2+, Pb2+, Cd2+, Ni2+, Zn2+ | Chemical and physical modification can improve heavy metals removal rate. High operating cost. Low selectivity. Regeneration issues could cause secondary pollution. | [29] |
Chitosan | Hg2+, Cr3+, Cu2+, Cd2+, Zn2+ | Chitosan has a molecular structure similar to cellulose and able to bind ions. The presence of EDTA can decrease heavy metals removal by chitosan (EDTA makes a stronger chelating agent than chitosan). | [96,97,98] |
Clay minerals | Zn2+, Cd2+, Cr6+, Cu2+, Pb2+, Sr2+ | Clay is 20 times cheaper than activated carbon. Temperature and pH had a positive effect on heavy metals removal. | [99,100] |
Coal | Cd2+, Cr6+, Hg2+ | Pre-treatment with nitric acid was necessary. Removal efficiency decreased with increasing temperature. | [101] |
Fly ash | Cu2+, Cr6+, Hg2+ | It is one of the cheapest adsorbents with high heavy metals removal ability. | [102,103] |
Industrial wastes such as slurry and sawdust | Hg2+, Cr6+, Cu2+, Pb2+ | Inexpensive abundant materials. Temperature had a positive impact on heavy metal adsorption. | [104,105] |
Natural oxide (iron oxide, aluminum oxide, zinc oxide) | Cd2+, Cr6+, Pb2+, As3+, As5+ | Good chemical and physical stability. Low cost. Large specific surface area. High porosity. | [106,107] |
Peat moss | Zn2+, Cd2+, Cu2+, Ni2+, Cr6+ | A complex soil material contains lignin and cellulose. The adsorption is higher at lower pH. | [29] |
Zeolites | Pb2+: 1.6 > Cd2+: 1.2 > Cu2+: 0.82 > Co2+: 0.71 > Cr3+: 0.32 > Zn2+: 0.25 > Ni2+: 0.24 > Hg2+: 0 | Less costly than activated carbon and 15 times cheaper than chitosan. | [100,108] |
Adsorbents | Heavy Metal Removed | Adsorption Conditions | Modification Method | Adsorption Capacity (mg/g) | References |
---|---|---|---|---|---|
Apple pomace | Pb2+, Ni2+, Cd2+ | pH 5 IC: 100 mg/L SD: 80 mg to 0.04 g | Chemically modified by nanoparticles such as hydroxyapatite | Pb2+: 303 Ni2+: 250 Cd2+: 100 | [153] |
Apple pomace | Pb2+ | pH 4 SD 0.8 g 80 min IC: 100 mg/L | Xanthate | Pb2+: 165 | [153] |
Carrot | Fe3+ | pH 1–5 20–260 min IC: 50–200 mg/L | None | Fe3+: 24.33 | [154] |
Carrot | Cr3+, Zn2+, Cu2+ | pH 2–5 24 h IC: 20–500 mg/L for Zn2+, Cu2+ IC: 20–1350 mg/L for Cr3+ | None | Cr3+: 1.66 Zn2+: 1.65 Cu2+: 1.82 | [155] |
Coconut Shaft | Pb2 | pH: 1–10 AD: 0.1–1.5 g 20–120 min IC: 25–150 mg/L | KOH | Pb2: 22.1 | [156] |
Chickpea (activated carbon) | Pb2+, Cr6+, Cu2+ | pH 2–10 AC 2–6 g/L 360 min 20–40 °C IC: 100–400 mg/L | KOH and K2CO3 | Pb2+: 135.8 Cr6+: 59.6 Cu2+: 56.2 | [56] |
Dragon fruit peel | Pb2+, Cd2+ | pH 3–7 30 °C 15–180 min IC: 100–500 mg/L | H2SO4 | Pb2+: 37.16 Cd2+: 38.04 | [88] |
Orange peel | Pb2+, Ni2+ Cd2+ | pH: 2–7 3 h 30 °C IC: 5–1200 mg/L | Methyl acrylate | Pb2+: 476.1 Ni2+: 162.6 Cd2+: 293.3 | [141] |
Soybean residue | Pb2+ | pH 2–7 60 min 37 °C 80 MPa | DHPM | Pb2+: 261.4 | [157] |
Soybean residue | Pb2+ | 24 h 30 °C IC: 10–200 mg/L | Microwave-assisted hydrothermal treatment | Pb2+: 65 | [158] |
Rambutan peel | Pb2+, Cd2+ | pH 3–7 30 °C 15–180 min IC: 100–500 mg/L | H2SO4 | Pb2+: 39.16 Cd2+: 37.60 | [88] |
Passion fruit peel | Pb2+, Cd2+ | pH 3–7 30 °C 15–180 min IC: 100–500 mg/L | H2SO4 | Pb2+: 37.80 Cd2+: 34.72 | [88] |
Date palm fiber | Cd2+ | pH: 2–8 12–35 °C 250 min IC 10–100mg/L | Pulverization | Cd2+: 51.1 Cd2+: 3.71 | [159] |
Plant leaves (Syzygium cumini and Poplus deltoides) | Cu2+, Ni2+, Cr6+ | pH: 1–7 AD: 0.5, 1.0, 1.5, 2.0 g/L) 12 h 10–35 °C IC: 50–200 mg/L | HCl | Cu2+, Ni2+, Cr6+ (80–100%) | [160] |
Sugarcane bagasse | Pb2+, Cu2+ Cd2+ | pH: 5–7 10–90 min IC: 200 mg/L | Sodium bicarbonate | Pb2+: 194 Cu2+: 189 Cd2+: 114 | [161] |
Rice husk | Zn2+, Hg2+ | pH: 1.5–6 25–45 °C IC: for Zn: 25–300 mg/L IC: for Hg: 100–1500 mg/L | H2SO4 | Zn2+: 19.3 Hg2+: 384.6 | [162] |
Watermelon | As3+ | pH 2–7 NaOH 0.1 M 20–720 min IC: 5–100 mg/L AD: 5–25 g/L | None | As2+: 18.43 | [163] |
Types of Microorganisms | Strains | Heavy Metal Adsorption Capacity (mg/g) | Main Findings | References |
---|---|---|---|---|
Algae/Macroalgae/Microalgae | Chlorella Sorokiniana | Cu2+: 8.59 Pb2+: 18.35 | The presence of functional groups in the composition of the adsorption material (–C–O; –NH; –C=O; –OH; –CH2) suggests a chemisorption mechanism for heavy metal removal from wastewater. | [174] |
Chlorella vulgaris | Cd2+: 12.45 Zn2+: 6.42 Cu2+: 10.90 Pb2+: 17.13 | Viable and non-viable microalgae biomass were used. Heavy metals adsorption increased significantly with rising initial ion concentration. | [175] | |
Spirulina platensis | Cd2+: 12.08 Zn2+: 7.36 Cu2+: 10.33 Pb2+: 16.97 | |||
Cystosiera compressa | Pb2+: 98.8 * Cu2+: 99.6 * | Brown algae have the highest removal tendency. The adsorption increased by increasing the pH. | [176] | |
Sargassum vulgare | Pb2+: 98.3 * Cu2+: 99.1 * | |||
Turbinaria | Pb2+: 97 * Cu2+: 99 * | |||
Laminaria hyperborea and Fucus spiralis | Zn2+: 0.15–0.24 ** Cd2+: 0.28–0.48 ** Pb2+: 0.23–0.35 ** | Fast adsorption (75% removal of the total amount occurred in the first 10 min for all algal species). | [177] | |
Mycelial pellets, Aspergillus fumigatus, and Synechocystis sp. PCC6803 | Cd2+: 37.3 | The fungi–microalgae symbiosis can significantly enhance the resistance of microalgae to Cd2+ and increase the adsorption efficiency. | [178] | |
Sphaeroplea algae | Ni2+: 4.15 ** Cu2+: 3.41 ** | The metal ion uptake increased with increasing of initial metal ion concentration at pH 4–6. | [179] | |
Synechocystis sp. PCC6803 + Fe2O3 | Cr5+: 69.77 Pb2+: 62.63 Cd2+: 42.12 Cu2+: 38.68 | Microalgae and Fe2O3 had a higher adsorption capacity for all four ions than that of Fe2O3 or microalgae alone. | [180] | |
Bacteria | Bacillus sp. | Cr5+: 32–83.30 * Zn2+: 30–78.15 * Ni2+: 55.06–99.20 * Cd2+: 66–98.34 * Hg2+: 40–96.40 * | Biosorption mechanism through the cell wall, as it is comprised of organic macromolecules (polypeptides, polysaccharides, and proteins), which can adsorb heavy metals via electrostatic forces, including van der Waal’s forces, covalent or ionic bonds. | [181] |
Desulfovibrio desulfuricans | Cu2+: 200 Zn2+: 1700 Cd2+: 800 | Metal biosorption by bacteria involves physicochemical interactions between the metal and the functional groups on the cell surface. | [182] | |
Escherichia coli | Ni2+: 55.31 Cd2+: 45.37 | The biosorption of Cd2+ and Ni2+ was dependent on the concentrations of metal ions. Adsorption efficiency followed the Freundlich adsorption isotherm. | [183] | |
Gluconoacetobacter hansenii | Pb2+: 82 * Cd2+: 41 * Ni2+: 33 * | Bio-filtration: utilized heavy metals rapidly due to their small size and high surface-to-volume ratio. Biosorption: included covalent bonding, electrostatic interaction, redox interaction, van der Waals forces. | [184] | |
Fungi | Agaricus bisporus (white button mushroom) | Cu2+: 43.4 | Fungal chitin nanofibers as a film exhibited dynamic Cu2+ adsorption capacities, with membrane separation mechanism because of its naturally porous structure. | [185] |
Agaricus campestris | Pb2+: 99.7 * Cu2+: 98.9 * | Biosorbent amounts, immersion time, initial metal ions concentration, and pH had a great effect on heavy metal adsorption. | [176] | |
Cunninghamella elegans | Pb2+: 278.24 Cu2+: 264.88 | Chitosan nanoparticles were more effective than bulk fungal chitosan for the remediation and biosorption of contaminant metals. | [186] | |
Penicillium chrysogenum | Cd2+: 180 Cu2+: 190 Pb2+: 180 | Biosorption capacity of the biomass increased with increasing initial metal ion concentration. Temperature, pH, and contact time had a great impact on heavy metal adsorption. | [187] | |
Aspergillus ustus | Cd2+: 185 Cu2+: 185 Pb2+: 190 | |||
Penicillium janthinellum | Cr6+: 1.77 | Langmuir and Freundlich models were used to correlate the experimental data. Removal of Cr6+ from electroplating wastewater observed was less than from synthetic solution. | [188] | |
Phanerochaete chrysosporium | Pb2+: 81.93 Cu2+: 48.23 | Biosorption was a mixture mode with physisorption and chemisorption. | [189] |
Plant Fiber Components | Heavy Metals | Adsorption Condition | Adsorption Capacity (mg/g) | Modifications | References |
---|---|---|---|---|---|
Cellulose | Cd2+, Zn2+, Ni2+, Pb2+ and Cu2+ | 60 min 2–4 mg/L SLR *: 0.1:10 | 32–40 | Chemically modified by di benzo-18-crown-6 in 5 mL chloroform. | [219] |
Pb2+ and Cd2+ | 300 mg/L for Pb2+ 200 mg/L for Cd2+ pH: 5.5–6.5 | Pb2+: 465.1 Cd2+: 344.8 | Chemically modified with succinic anhydride. | [220] | |
Hemicellulose | Pb2+, Cd2+ and Zn2+ | 120 min Room temperature 50–800 mg/L pH: 3.5–6.5 SLR: 10:50 | Pb2+: 859 Cd2+: 495 Zn2: 274 | Chemically modified by microporous xylan-rich hemicelluloses-based hydrogel. | [221] |
Pb2+ | Time: 6 h Temp: 30–50 °C Initial concentration:1–20 mg/L SLR: 0.01:20 | Pb2+: 5.88 | Modified by acrylamide to make hydrogel-based hemicellulose. | [222] | |
Inulin | Pb2+ | 20–80 °C 100 mg/L pH: 7.8 | Pb2+: 89.38 * | Novel treatment inulin-chitosan. | [223] |
Lignin from rice straw | Pb2+ | 8 h 20–80 °C 50–2000 mg/L pH: 2–7 SLR: 0.1:100 | Pb2+: 95 * | Chemical modified by SO3 gas (micro-thermal-explosion process). | [224] |
Lignin | Pb2+ | 1–8 h 25 °C 50–350 mg/L pH: 2–6.5 SLR: 0.02:35 | Pb2+: 323.6 | Chemical modified: microwave-assisted carboxymethyl lignin. | [225] |
Lignin | Cu2+ | 20–60 °C 120 min 100 mg/L pH: 3–5.5 SLR:0.1:50 | Cu2+: 37.14 | Chemically modified as Aminated lignin by Mannich reaction. | [226] |
Pectin (commercial) | Cu2+ | 0–540 min 25 to 55 °C 50 mg/L SLR:0.03:10 | Cu2+: 12.38 | Hydrogels prepared from pectin lead to increase heavy metal adsorption efficiency. | [227] |
Pectin from sweet potato residue | Pb2+ | 25–100 °C 10–180 min 100 mg/L pH: 2–9 | Pb2+: 263.15 | Modified by high hydrostatic pressure-assisted pectinase. | [228] |
Pectin from sisal waste | Pb2+ | 30 min Ultrasound 60 °C Cellulase 88 U/g SLR: 1:15 | Pb2+: 184 | Modified with enzymatic and ultrasound. | [229] |
Nano-Adsorbents | Heavy Metals Removed | Main Findings | References |
---|---|---|---|
Aluminum oxide (Al2O3) | As3+, As5+, Cd2+, Cr6+, Pb2+ | The highest adsorption of Cr6+ was at pH 4. Adsorption of As3+, As5+ was observed at a pH range of 2–8. Initial ion concentration showed a positive correlation with metal adsorption efficiency. | [106] |
Carbon nanotube (multi-walled carbon nanotube functionalized and sulfonated) | Co2+, Zn2+ | Using nanofiltration. 98% removal of Zn2+ due to the reduction of membranes’ pore size. Functionalization was critical. Removal efficiency was dependent on zeta potential, hydrophilicity of the fillers, and oxygen functional groups on the surface of this membrane. | [242] |
Cellulose (micellar-enhanced ultrafiltration) | As3+, Cd2+ | Using nanofiltration. >90% removal of As3+ at pH > 7. Competing anions decreased removal rate. | [243] |
Copper oxide (CuO) | Pb2+, Co2+ | High specific surface area. Uniform size distribution. High purity. pH affected the distribution of metal ions and surface activity. | [107] |
Ferric oxide (Fe3O4) | Cu2+ | Using cyclodextrin as host substance. Very fast adsorption. β-cyclodextrin polymer crosslinked with utilized aromatic groups. | [244,245] |
Graphene oxide (GO) | Cd2+, Cr3+, Cu2+, Hg2+, Ni2+, Pb2+, Zn2+ | High cost Reusable High selectivity | [246] |
Graphene oxide (GO: modified magnetic graphene oxide filled polyethersulfone) | Co2+, Cu2+ | Using nanofiltration. Led to a significant increase in the pure water flux due to changes in surface roughness and hydrophilicity of polyethersulfone 92% removal. | [242] |
Graphitic carbon nitride (g-C3N4) | Cd2+, Ni2+, Pb2+, Zn2+ | Challenges for cheap raw material Requirement of a specific reactor. High selectivity Limited reusability | [246] |
Iron oxide (Fe3O4) | As3+, As5+, Cd2+, Cr6+, Pb2+ | The removal of Cd2+ and Pb2+ by this adsorbent is greater than aluminum oxide. The highest adsorption of Cr6+ was at pH 4. Adsorption of As3+ and As5+ were observed at pH 2–8. | [106] |
Iron oxide (magnetic Fe3O4) | Al3+, Cu2+, Ni2+ | pH-dependent Nitrogen dependent Adsorption mechanism includes surface binding and molecular diffusion. | [247] |
Manganese oxide (MnO2) | Cd2+, Cu2+, Ni2+, Pb2+ | High redox potential, possible layer structures, and negatively charged surface in neutral pH. An efficient adsorbent for toxic metal ions, including Cd2+, Cu2+, Ni2+, Pb2+, etc. Adsorption of ions was not only on its surface but also intercalated the interlayers of MnO2. | [24,248] |
Metal-organic framework-based nanocomposite | Cd2+, Cr3+, Hg2+, Pb2+, Zn2+ | Poor stability in water. Lack of information about regeneration. No competitive adsorption between coexisting heavy metals was unknown. | [26,249,250] |
Nickel–ferrite (magnetic NiFe2O4) | Cr6+, Cd2+, Pb2+ | Adsorbent dosage and contact time had a positive correlation with removal efficiency. pH showed a negative effect on heavy metals removal. | [251] |
Nickle oxide (NiO) | Pb2+, Co2+ | Increase porosity. Increase hydrophilicity of membrane. Higher negative zeta potential. Higher Pb2+ removal than the precipitation method. | [107] |
Titanium Carbide (Ti3C2Tx) | Cu2+, Hg2+, Pb2+ | Limited reusability Lower durability High selectivity | [24] |
Halloysite | Pb2+, Cd2+ | Sulfuric acid pretreatment Low energy consumption Higher efficiency at higher pH levels | [216] |
Alumina nanofibers | Hg2+, Pb2+ | The effects of initial concentration, contact time, and selectivity of the nanofibers were assessed. The removal efficiency was 98% for Hg2+ ions and 90% for Pb2+ ions. Most ion contaminants were eliminated within the first hour. The data best fit a pseudo-second-order model. | [252] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 2023, 1, 775-805. https://doi.org/10.3390/waste1030046
Raji Z, Karim A, Karam A, Khalloufi S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste. 2023; 1(3):775-805. https://doi.org/10.3390/waste1030046
Chicago/Turabian StyleRaji, Zarifeh, Ahasanul Karim, Antoine Karam, and Seddik Khalloufi. 2023. "Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review" Waste 1, no. 3: 775-805. https://doi.org/10.3390/waste1030046
APA StyleRaji, Z., Karim, A., Karam, A., & Khalloufi, S. (2023). Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste, 1(3), 775-805. https://doi.org/10.3390/waste1030046