Wine Lees as Alternative Substrate for Microalgae Cultivation: New Opportunity in Winery Waste Biorefinery Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winery Lees Characterization
2.2. Microalgae Strain and Experimental Set-Up
- RUN 1: batch growth of C. vulgaris in WL and RL liquid fractions at a 1:10 dilution ratio;
- RUN 2: batch growth of C. vulgaris in RL at reduced dilution ratios (1:5 and 1:2).
- RUN 3: batch growth of C. vulgaris in filtered RL at 1:5 and 1:2 dilution ratios.
2.3. Biomass Analysis
3. Results and Discussion
3.1. Wine Lees as Substrate for Microalgae Growth
3.1.1. RUN1: 1:10-Diluted WL and RL as Substrate for C. vulgaris Growth
3.1.2. RUN2: RL 1:5 and 1:2 Diluted as Substrate
3.1.3. RUN3: 1:5- and 1:2-Diluted RL (Filtered) as Substrate
3.2. Phytoremediation Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OIV. 2019 Statistical Report on World Vitiviniculture. 2019. Available online: https://www.oiv.int/sites/default/files/documents/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 15 January 2023).
- Bonari, E.; Ercoli, L.; Silvestri, N.; Carcea, G.; Barresi, F. Linee Guida per L’utilizzazione Agronomica Delle Acque di Vegetazione e Delle Acque Reflue da Aziende Agroalimentari; APAT: Rome, Italy, 2007; ISBN 978-88-448-0301-8. [Google Scholar]
- ISTAT. Statistiche on Line: Settore Agricoltura. Vari anni. Available online: https://www.istat.it (accessed on 10 August 2022).
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Serradilla, J.A.; de Castro, M.D.L. Role of lees in wine production: A review. Food Chem. 2008, 111, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Mateo, J.J.; Maicas, S. Valorization of winery and oil mill wastes by microbial technologies. Food Res. Int. 2015, 73, 13–25. [Google Scholar] [CrossRef]
- D. Lgs 479/2008. Disposizioni di Attuazione dei Regolamenti (CE) n. 479/2008 del Consiglio e (CE) n. 555/2008 Della Commissione per Quanto Riguarda L’applicazione Della Misura Della Distillazione dei Sottoprodotti Della Vinificazione. Available online: https://www.tuttocamere.it/files/camcom/2008_11_27.pdf (accessed on 22 November 2022).
- Ministero Delle Polite Agricole Alimentari e Forestali. Testo Unico Della Vite e del Vino. Legge 238 del 12/12/2016. 2016. Masaf—Testo Unico Vite e Vino L. 238/16 (politicheagricole.it). Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/12012 (accessed on 22 November 2022).
- Available online: https://www.caviro.com/en/ (accessed on 13 May 2023).
- De Iseppi, A.; Lomolino, G.; Marangon, M.; Curioni, A. Current and future strategies for wine yeast lees valorization. Food Res. Int. 2020, 137, 109352. [Google Scholar] [CrossRef] [PubMed]
- Ioannidou, S.M.; Pateraki, C.; Ladakis, D.; Papapostolou, H.; Tsakona, M.; Vlysidis, A.; Kookos, I.K.; Koutinas, A. Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresour. Technol. 2020, 307, 123093. [Google Scholar] [CrossRef] [PubMed]
- Calicchio Berardi, P.; Dias, J.M. How Has the Wine Sector Incorporated the Premises of Circular Economy? J. Environ. Sci. Eng. B 2019, 8, 108–117. [Google Scholar] [CrossRef]
- Salati, S.; D’Imporzano, G.; Menin, B.; Veronesi, D.; Scaglia, B.; Abbruscato, P.; Mariani, P.; Adani, F. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Bioresour. Technol. 2017, 230, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, D.; D’Imporzano, G.; Menin, B.; Salati, S.; Adani, F. Organic wastes/by-products as alternative to CO2 for producing mixotrophic microalgae enhancing lipid production. Bioprocess Biosyst. Eng. 2020, 43, 1911–1919. [Google Scholar] [CrossRef] [PubMed]
- APAT; IRSA/CNR. Metodologie Analitiche per il Controllo della Qualità Delle Acque [Analytical Methodologies for Water Quality Management]; APAT: Roma, Italy, 2003; ISBN 88-448-0083-7. [Google Scholar]
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; ISBN 978-087553-013-0. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Janairo, G.; Linley, M.S.; Yap, L.; Llanos-Lazaro, N.; Robles, J. Determination of the Sensitivity Range of Biuret Test for Undergraduate biochemistry experiments. E-J. Sci. Technol. 2011, 6, 77–83. [Google Scholar]
- Safafar, H.; Hass, M.Z.; Møller, P.; Holdt, S.L.; Jacobsen, C. High-EPA biomass from Nannochloropsis salina cultivated in a flat-panel photo-bioreactor on a process water-enriched growth medium. Mar. Drugs 2016, 14, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids Measurement and UV-VIS characterization Lichtenthaler 2001. Curr. Protoc. Food Anal. Chem. 2001, 1, F4. 3.1–F4. 3.8. [Google Scholar] [CrossRef]
- León-Vaz, A.; León, R.; Díaz-Santos, E.; Vigara, J.; Raposo, S. Using agro-industrial wastes for mixotrophic growth and lipids production by the green microalga Chlorella sorokiniana. New Biotechnol. 2019, 51, 31–38. [Google Scholar] [CrossRef]
- Froissard, M.; Canonge, M.; Pouteaux, M.; Cintrat, B.; Mohand-Oumoussa, S.; Guillouet, S.E.; Chardot, T.; Jacques, N.; Casaregola, S. Lipids containing medium-chain fatty acids are specific to post-whole genome duplication Saccharomycotina yeasts Genome evolution and evolutionary systems biology. BMC Evol. Biol. 2015, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Prasad, R. An overview of lipids of Candida albicans. Prog. Lipid Res. 1990, 29, 65–85. [Google Scholar] [CrossRef] [PubMed]
- INDAM. ACQUE DI SCARICO: Acque Reflue Urbane e Acque Reflue Industriali. All 5, P Terza, DLgs N152 n.d.:152. Available online: https://www.indam.it/fileadmin/user_upload/tabelle/INDAM_acque_scarico.pdf (accessed on 12 January 2023).
- Pilocastro, G.; Carraturo, F.; Compagnone, M.; Giuda MFabbricino, M. Enhancing hydrogen production from winery wastewater through fermentative microbial culture selection. Bioresour. Technol. Rep. 2022, 19, 101196. [Google Scholar] [CrossRef]
Parameters | WL | RL |
---|---|---|
TS (gTS kg−1) | 95.95 | 126.60 ± 0.03 |
TVS (gTVS kg−1) | 24.50 | 59.38 ± 1.39 |
N (mgN-NH4+ l−1) | 2.75 ± 0.25 | 12.90 ± 0.00 |
PO4− (mg l−1) | 1.50 ± 0.10 | 1985 ± 12.75 |
COD on dry matter (gO2 gTS−1) | 474.39 ± 9.75 | 629.00 ± 58.31 |
pH | 3.37 | 3.01 ± 0.04 |
sCOD (gO2 l−1) | 185.00 ± 3.53 | 137.79 ± 0.58 |
Na+ (mg l−1) | 31.64 ± 1.21 | 64.6 ± 0.14 |
K+ (mg l−1) | 986.32 ± 9.50 | 955.90 ± 16.82 |
Mg2+ (mg l−1) | 65.13 ± 2.04 | 114.70 ± 2.12 |
Ca2+ (mg l−1) | 84.72 ± 1.44 | 127.20 ± 2.68 |
1:10 | |||
---|---|---|---|
Control | WL | RL | |
Growth rate (µ, d−1) | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.10 ± 0.00 |
Dry weight (g l−1) | 1.77 ± 0.09 | 1.71 ± 0.02 | 1.61 ± 0.09 |
Cell density (million cell ml−1) | 59.40 ± 28.95 | 30.22 ± 7.61 | 32.02 ± 6.07 |
Ch a (mg gbiomass−1) | 2.13 ± 0.46 | 2.86 ± 0.41 | 3.90 ± 1.13 |
Ch b (mg gbiomass−1) | 0.27 ± 0.20 | 0.73 ± 0.13 | 1.00 ± 0.13 |
Carotenoidtot (mg gbiomass−1) | 0.40 ± 0.00 | 0.27 ± 0.03 | 1.01 ± 0.42 |
Lipid (%) | 9.11 ± 0.38 | 41.63 ± 10.11 ǂ | 61.27 ± 3.46 ǂ |
Protein (%) | 38.09 ± 3.83 | 44.58 ± 6.30 | 60.60 ± 2.11 ǂ |
Starch (%) | 3.30 ± 0.29 | 3.20 ± 1.07 | 3.16 ± 1.03 |
1:5 | 1:2 | |||
---|---|---|---|---|
Control | RL | Control | RL | |
Growth rate (µ, d−1) | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.02 |
Dry weight (g l−1) | 2.61 ± 0.40 | 1.82 ± 0.03 | 3.00 ± 0.00 | 3.25 ± 1.48 |
Cell density (million cell ml−1) | 76.57 ± 10.33 | - | 104.25 ± 5.14 | - |
Ch a (mg gbiomass−1) | 3.54 ± 0.50 ǂ | 0.07 ± 0.00 | 4.39 ± 0.34 ǂ | 0.44 ± 0.08 |
Ch b (mg gbiomass−1) | 0.67 ± 0.05 | 0.08 ± 0.03 | 0.97 ± 0.05 ǂ | 0.37 ± 0.08 |
Carotenoidtot (mg gbiomass−1) | 0.65 ± 0.04 | 0.00 ± 0.01 | 0.66 ± 0.03 ǂ | 0.00 ± 0.03 |
Lipid (%) | 28.36 ± 0.08 | 34.56 ± 13.70 | 29.36 ± 3.81 | 42.44 ± 1.09 ǂ |
Protein (%) | 24.93 ± 2.12 | 39.73 ± 4.49 | 42.08 ± 7.20 | 53.05 ± 3.41 |
Starch (%) | 3.79 ± 1.24 | 0.27 ± 0.61 | 2.61 ± 0.53 ǂ | 0.72 ± 0.01 |
1:5 | 1:2 | |||
---|---|---|---|---|
Control | RL | Control | RL | |
Growth rate (µ, d−1) | 0.06 ± 0.00 | 0.07 ± 0.00 | 0.02 ± 0.00 | 0.04 ± 0.01 |
Dry weight (g l−1) | 2.13 ± 0.01 | 2.80 ± 0.42 | 2.05 ± 0.04 | 3.40 ± 1.69 |
Cell density (million cell ml−1) | 60.97 ± 11.12 | 48.07 ± 11.15 | 59.02 ± 5.89 | 23.55 ± 3.57 |
Ch a (mg gbiomass−1) | 7.61 ± 0.13 | 6.05 ± 0.30 ǂ | 7.57 ± 0.02 | 0.56 ± 0.11 ǂ |
Ch b (mg gbiomass−1) | 2.00 ± 0.12 | 1.50 ± 0.01 ǂ | 2.09 ± 0.06 | 0.35 ± 0.03 ǂ |
Carotenoidtot (mg gbiomass−1) | 0.85 ± 0.14 | 0.61 ± 0.00 | 0.77 ± 0.04 | 0.00 ± 0.01 ǂ |
Lipid (%) | 32.95 ± 2.64 | 45.26 ± 11.14 | 29.92 ± 0.10 | 13.98 ± 0.13 ǂ |
Protein (%) | 76.89 ± 0.83 | 79.67 ± 2.06 | 89.72 ± 2.23 | 28.85 ± 1.49 ǂ |
Starch (%) | 0.53 ± 0.01 | 2.79 ± 0.07 ǂ | 4.97 ± 0.94 | 0.13 ± 0.02ǂ |
(a) | RUN 1 | |||
---|---|---|---|---|
WL 1:10 | RL 1:10 | |||
Out | Removal (%) | Out | Removal (%) | |
sCOD (gO2 l−1) | 0.17 ± 0.01 | 99.05 ± 0.06 | 0.28 ± 0.05 | 97.92 ± 0.41 |
Polyphenols (mg l−1) | 8.40 ± 0.14 | 71.83 ± 0.47 | 20.40 ± 0.98 | 86.41 ± 0.65 |
Na+ (mg l−1) | 114.35 ± 2.19 | - | 120.90 ± 1.13 | - |
NH4+ (mg l−1) | 0.00 ± 0.00 | 100.00 ± 0.00 | 0.00 ± 0.00 | 100.00 ± 0.00 |
K+ (mg l−1) | 65.55 ± 2.33 | - | 118.25 ± 8.83 | - |
Mg2+ (mg l−1) | 27.05 ± 0.21 | - | 30.45 ± 1.34 | - |
Ca2+ (mg l−1) | 56.15 ± 4.21 | - | 58.45 ± 2.05 | - |
(b) | RUN 2 | |||
RL 1:5 | RL 1:2 | |||
Out | Removal (%) | Out | Removal (%) | |
sCOD (gO2 l−1) | 0.02 ± 0.00 | 99.95 ± 0.00 | 0.06 ± 0.00 | 99.95 ± 0.00 |
Polyphenols (mg l−1) | 23.10 ± 0.00 | 92.31 ± 0.00 | 75.60 ± 5.23 | 89.93 ± 0.69 |
Na+ (mg l−1) | 304.21 ± 0.14 | 43.41 ± 2.43 | 263.74 ± 0.33 | 77.32 ± 0.43 |
NH4+ (mg l−1) | 0.00 ± 0.00 | 100.00 ± 0.00 | 0.00 ± 0.00 | 100.00 ± 0.00 |
K+ (mg l−1) | 234.10 ± 6.86 | 27.14 ± 2.13 | 503.76 ± 37.41 | 49.53 ± 4.80 |
Mg2+ (mg l−1) | 195.36 ± 3.31 | 46.54 ± 0.90 | 214.98 ± 3.66 | 76.95 ± 0.48 |
Ca2+ (mg l1) | 499.16 ± 4.23 | 43.91 ± 1.55 | 504.73 ± 3.09 | 77.54 ± 0.22 |
(c) | RUN 3 | |||
RL 1:5 | RL 1:2 | |||
Out | Removal (%) | Out | Removal (%) | |
sCOD (gO2 l−1) | 0.44 ± 0.07 | 99.27 ± 0.11 | 0.81 ± 0.14 | 99.47 ± 0.09 |
Polyphenols (mg l−1) | 61.03 ± 0.84 | 79.68 ± 0.28 | 20.13 ± 0.98 | 97.31 ± 0.13 |
Na+ (mg l−1) | 380.22 ± 1.10 | - | 342.48 ± 15.96 | - |
NH4+ (mg l−1) | 0.00 ± 0.00 | 100.00 ± 0.00 | 0.00 ± 0.00 | 100.00 ± 0.00 |
K+ (mg l−1) | 190.53 ± 11.31 | 58.43 ± 0.94 | 532.86 ± 6.47 | - |
Mg2+ (mg l−1) | 51.18 ± 7.90 | 75.04 ± 5.09 | 202.26 ± 23.62 | 2.06 ± 6.60 |
Ca2+ (mg l−1) | 37.33 ± 1.35 | 66.07 ± 1.97 | 18.60 ± 5.80 | 82.81 ± 6.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarponi, P.; Bravi, M.; Cavinato, C. Wine Lees as Alternative Substrate for Microalgae Cultivation: New Opportunity in Winery Waste Biorefinery Application. Waste 2023, 1, 631-639. https://doi.org/10.3390/waste1030037
Scarponi P, Bravi M, Cavinato C. Wine Lees as Alternative Substrate for Microalgae Cultivation: New Opportunity in Winery Waste Biorefinery Application. Waste. 2023; 1(3):631-639. https://doi.org/10.3390/waste1030037
Chicago/Turabian StyleScarponi, Paolina, Marco Bravi, and Cristina Cavinato. 2023. "Wine Lees as Alternative Substrate for Microalgae Cultivation: New Opportunity in Winery Waste Biorefinery Application" Waste 1, no. 3: 631-639. https://doi.org/10.3390/waste1030037
APA StyleScarponi, P., Bravi, M., & Cavinato, C. (2023). Wine Lees as Alternative Substrate for Microalgae Cultivation: New Opportunity in Winery Waste Biorefinery Application. Waste, 1(3), 631-639. https://doi.org/10.3390/waste1030037