Video Surveillance and Artificial Intelligence for Urban Security in Smart Cities: A Review of a Selection of Empirical Studies from 2018 to 2024 †
Abstract
1. Introduction
2. Related Work
3. Literature Review
4. Methodology
4.1. Data Collection
4.2. Data Exploration and Analysis
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
RNN | Recurrent Neural Network |
LSTM | Long Short-Term Memory |
GAN | Generative Adversarial Network |
ICTs | Information and Communication Technologies |
IEEE | Institute of Electrical and Electronics Engineers |
References
- Yang, Y.; Fu, Z.; Naqvi, S.M. Abnormal event detection for video surveillance using an enhanced two-stream fusion method. Neurocomputing 2023, 553, 126561. [Google Scholar] [CrossRef]
- Liu, L.; Li, C.; Sun, X.; Zhao, J. Event alert and detection in smart cities using anomaly information from remote sensing earthquake data. Comput. Commun. 2020, 153, 397–405. [Google Scholar] [CrossRef]
- Moustaka, V.; Theodosiou, Z.; Vakali, A.; Kounoudes, A.; Anthopoulos, L.G. Enhancing social networking in smart cities: Privacy and security borderlines. Technol. Forecast. Soc. Chang. 2019, 142, 285–300. [Google Scholar] [CrossRef]
- Costa, D.G.; Peixoto, J.P.J.; Jesus, T.C.; Portugal, P.; Vasques, F.; Rangel, E.; Peixoto, M. A Survey of Emergencies Management Systems in Smart Cities. IEEE Access 2022, 10, 61843–61872. [Google Scholar] [CrossRef]
- Kashef, M.; Visvizi, A.; Troisi, O. Smart city as a smart service system: Human-computer interaction and smart city surveillance systems. Comput. Hum. Behav. 2021, 124, 106923. [Google Scholar] [CrossRef]
- Sánchez-Corcuera, R.; Nuñez-Marcos, A.; Sesma-Solance, J.; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.; Azkune, G.; Almeida, A. Smart cities survey: Technologies, application domains and challenges for the cities of the future. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719853984. [Google Scholar] [CrossRef]
- Ismagilova, E.; Hughes, L.; Rana, N.P.; Dwivedi, Y.K. Security, Privacy and Risks Within Smart Cities: Literature Review and Development of a Smart City Interaction Framework. Inf. Syst. Front. 2022, 24, 393–414. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, M.; Abid, A.; Khan, H.U.; Awan, S.M.; Ismail, A.; Ahmed, M.; Ilyas, M.; Mahmood, A. A Review on State-of-the-Art Violence Detection Techniques. IEEE Access 2019, 7, 107560–107575. [Google Scholar] [CrossRef]
- Laufs, J.; Borrion, H.; Bradford, B. Security and the smart city: A systematic review. Sustain. Cities Soc. 2020, 55, 102023. [Google Scholar] [CrossRef]
- Samaila, Y.A.; Sebastian, P.; Singh, N.S.S.; Shuaibu, A.N.; Ali, S.S.A.; Amosa, T.I.; Mustafa Abro, G.E.; Shuaibu, I. Video anomaly detection: A systematic review of issues and prospects. Neurocomputing 2024, 591, 127726. [Google Scholar] [CrossRef]
- Alshamaila, Y.; Papagiannidis, S.; Alsawalqah, H.; Aljarah, I. Effective use of smart cities in crisis cases: A systematic review of the literature. Int. J. Disaster Risk Reduct. 2023, 85, 103521. [Google Scholar] [CrossRef]
- Kumar, H.; Singh, M.K.; Gupta, M.P.; Madaan, J. Moving towards smart cities: Solutions that lead to the Smart City Transformation Framework. Technol. Forecast. Soc. Chang. 2020, 153, 119281. [Google Scholar] [CrossRef]
- Iqbal, Z.; Khan, M.I. Automatic incident detection in smart city using multiple traffic flow parameters via V2X communication. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718815845. [Google Scholar] [CrossRef]
- Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Khelvas, A.; Demyanova, D.; Gilya-Zetinov, A.; Konyagin, E.; Khafizov, R.; Pashkov, R. Adaptive distributed video surveillance system. In Proceedings of the 2020 International Conference on Technology and Entrepreneurship—Virtual (ICTE-V), San Jose, CA, USA, 20–21 April 2020. [Google Scholar]
- Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on Collaborative Smart Drones and Internet of Things for Improving Smartness of Smart Cities. IEEE Access 2019, 7, 128125–128152. [Google Scholar] [CrossRef]
- Mohamed, N.; Al-Jaroodi, J.; Jawhar, I.; Idries, A.; Mohammed, F. Unmanned aerial vehicles applications in future smart cities. Technol. Forecast. Soc. Chang. 2020, 153, 119293. [Google Scholar] [CrossRef]
- Fenil, E.; Manogaran, G.; Vivekananda, G.N.; Thanjaivadivel, T.; Jeeva, S.; Ahilan, A.J.C.N. Real time violence detection framework for football stadium comprising of big data analysis and deep learning through bidirectional LSTM. Comput. Netw. 2019, 151, 191–200. [Google Scholar] [CrossRef]
- Sreenu, G.; Saleem Durai, M.A. Intelligent video surveillance: A review through deep learning techniques for crowd analysis. J. Big Data 2019, 6, 48. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, B.; Gao, F.; Chen, P.; Wang, J.; Hussain, A. A Novel Unsupervised Video Anomaly Detection Framework Based on Optical Flow Reconstruction and Erased Frame Prediction. Sensors 2023, 23, 4828. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Deng, L.; Lee, M.; Wang, H. IoT data feature extraction and intrusion detection system for smart cities based on deep migration learning. Int. J. Inf. Manag. 2019, 49, 533–545. [Google Scholar] [CrossRef]
- Nayak, R.; Pati, U.C.; Das, S.K. A comprehensive review on deep learning-based methods for video anomaly detection. Image Vis. Comput. 2021, 106, 104078. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, W.; Huang, K.; De, S.; Coenen, F. Multi-modal generative adversarial networks for traffic event detection in smart cities. Expert Syst. Appl. 2021, 177, 114939. [Google Scholar] [CrossRef]
- Kustu, T.; Taskin, A. Deep learning and stereo vision based detection of post-earthquake fire geolocation for smart cities within the scope of disaster management: İstanbul case. Int. J. Disaster Risk Reduct. 2023, 96, 103906. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, P.K.; Kumar, Y. An integrated fire detection system using IoT and image processing technique for smart cities. Sustain. Cities Soc. 2020, 61, 102332. [Google Scholar] [CrossRef]
- Sungheetha, A.; Rajendran, R.S. Real Time Monitoring and Fire Detection using Internet of Things and Cloud based Drones. J. Soft Comput. Paradig. 2020, 2, 168–174. [Google Scholar] [CrossRef]
- Santos, C.; Jiménez, J.A.; Espinosa, F. Effect of Event-Based Sensing on IoT Node Power Efficiency. Case Study: Air Quality Monitoring in Smart Cities. IEEE Access 2019, 7, 132577–132586. [Google Scholar] [CrossRef]
- Yong, X.; Xinxin, T.; Su, Z.; Yao, W.; Rui, C. Construction and application of digital creative platform for digital creative industry based on smart city concept. Comput. Electr. Eng. 2020, 87, 106748. [Google Scholar] [CrossRef]
- Hui, C.X.; Dan, G.; Alamri, S.; Toghraie, D. Greening smart cities: An investigation of the integration of urban natural resources and smart city technologies for promoting environmental sustainability. Sustain. Cities Soc. 2023, 99, 104985. [Google Scholar] [CrossRef]
- Muhammed, T.; Mehmood, R.; Albeshri, A.; Katib, I. UbeHealth: A Personalized Ubiquitous Cloud and Edge-Enabled Networked Healthcare System for Smart Cities. IEEE Access 2018, 6, 32258–32285. [Google Scholar] [CrossRef]
- Odendaal, N. Everyday urbanisms and the importance of place: Exploring the elements of the emancipatory smart city. Urban. Stud. 2021, 58, 639–654. [Google Scholar] [CrossRef]
- Yao, F.; Wang, Y. Towards resilient and smart cities: A real-time urban analytical and geo-visual system for social media streaming data. Sustain. Cities Soc. 2020, 63, 102448. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Lemayian, J.P. Intelligence, security, and vehicular sensor networks in internet of things (IoT)-enabled smart-cities: An overview. Comput. Electr. Eng. 2020, 87, 106776. [Google Scholar] [CrossRef]
- Ahmed, S.; Hossain, M.; Kaiser, M.S.; Noor, M.; Mahmud, M.; Chakraborty, C. Artificial Intelligence and Machine Learning for Ensuring Security in Smart Cities. In Data-Driven Mining, Learning and Analytics for Secured Smart Cities. Advanced Sciences and Technologies for Security Applications; Springer: Cham, Switzerland, 2021; pp. 23–47. ISBN 978-3-030-72138-1. [Google Scholar]
- Hamza, A.; Gharakheili, H.H.; Benson, T.A.; Sivaraman, V. Detecting Volumetric Attacks on loT Devices via SDN-Based Monitoring of MUD Activity. In Proceedings of the 2019 ACM Symposium on SDN Research, San Jose, CA, USA, 3–4 April 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 36–48. [Google Scholar]
- Tok, Y.C.; Chattopadhyay, S. Identifying Threats, Cybercrime and Digital Forensic Opportunities in Smart City Infrastructure via Threat Modeling. Forensic Sci. Int. Digit. Investig. 2023, 45, 301540. [Google Scholar] [CrossRef]
- Sadiq, S.; Mehmood, A.; Ullah, S.; Ahmad, M.; Choi, G.S.; On, B.-W. Aggression detection through deep neural model on Twitter. Future Gener. Comput. Syst. 2021, 114, 120–129. [Google Scholar] [CrossRef]
- Adewopo, V.A.; Elsayed, N.; ElSayed, Z.; Ozer, M.; Abdelgawad, A.; Bayoumi, M. A review on action recognition for accident detection in smart city transportation systems. J. Electr. Syst. Inf. Technol. 2023, 10, 57. [Google Scholar] [CrossRef]
- Felici-Castell, S.; García-Pineda, M.; Segura-Garcia, J.; Fayos-Jordan, R.; Lopez-Ballester, J. Adaptive live video streaming on low-cost wireless multihop networks for road traffic surveillance in smart cities. Future Gener. Comput. Syst. 2021, 115, 741–755. [Google Scholar] [CrossRef]
- Kumar, N.; Raubal, M. Applications of deep learning in congestion detection, prediction and alleviation: A survey. Transp. Res. Part. C Emerg. Technol. 2021, 133, 103432. [Google Scholar] [CrossRef]
- Liu, L.; Guevara, A.; Sanchez-Galan, J.E. Identification and classification of road traffic incidents in Panama City through the analysis of a social media stream and machine learning. Intell. Syst. Appl. 2022, 16, 200158. [Google Scholar] [CrossRef]
- Olariu, S.; Popescu, D.C. See-trend: Secure traffic-related event detection in smart communities. Sensors 2021, 21, 7652. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, A.; Sarkar, S.; Maiti, J. A real-time video surveillance system for traffic pre-events detection. Accid. Anal. Prev. 2021, 154, 106019. [Google Scholar] [CrossRef] [PubMed]
- Rathore, M.M.; Paul, A.; Rho, S.; Khan, M.; Vimal, S.; Shah, S.A. Smart traffic control: Identifying driving-violations using fog devices with vehicular cameras in smart cities. Sustain. Cities Soc. 2021, 71, 102986. [Google Scholar] [CrossRef]
- Alani, M.M. HoneyTwin: Securing smart cities with machine learning-enabled SDN edge and cloud-based honeypots. J. Parallel Distrib. Comput. 2024, 188, 104866. [Google Scholar] [CrossRef]
- Gallo, P.; Pongnumkul, S.; Quoc Nguyen, U. BlockSee: Blockchain for IoT Video Surveillance in Smart Cities. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–6. [Google Scholar]
- Memos, V.A.; Psannis, K.E.; Ishibashi, Y.; Kim, B.-G.; Gupta, B.B. An Efficient Algorithm for Media-based Surveillance System (EAMSuS) in IoT Smart City Framework. Future Gener. Comput. Syst. 2018, 83, 619–628. [Google Scholar] [CrossRef]
- Ouni, R.; Saleem, K. Secure smart home architecture for ambient-assisted living using a multimedia Internet of Things based system in smart cities. MBE 2024, 21, 3473–3497. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, M.; Nasir, M.; Muhammad, K.; Khan, S.; Jan, Z.; Sangaiah, A.K.; Elhoseny, M.; Baik, S.W. Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Gener. Comput. Syst. 2020, 108, 995–1007. [Google Scholar] [CrossRef]
- Telo, J. Smart City Security Threats and Countermeasures in the Context of Emerging Technologies. Int. J. Intell. Autom. Comput. 2023, 6, 31–45. [Google Scholar]
- Nabijonovich, S.B.; Ahror, K.; Kizi, A.D.B. Unveiling the future of data extraction using python and ai for video-based information recognition. Am. J. Technol. Appl. Sci. 2023, 17, 26–32. [Google Scholar]
- Qadir, Z.; Ullah, F.; Munawar, H.S.; Al-Turjman, F. Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review. Comput. Commun. 2021, 168, 114–135. [Google Scholar] [CrossRef]
- Wan, S.; Xu, X.; Wang, T.; Gu, Z. An Intelligent Video Analysis Method for Abnormal Event Detection in Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4487–4495. [Google Scholar] [CrossRef]
- Alkhatib, M.; El Barachi, M.; Shaalan, K. An Arabic social media based framework for incidents and events monitoring in smart cities. J. Clean. Prod. 2019, 220, 771–785. [Google Scholar] [CrossRef]
- Cesario, E.; Lindia, P.; Vinci, A. A scalable multi-density clustering approach to detect city hotspots in a smart city. Future Gener. Comput. Syst. 2024, 157, 226–236. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Zhang, J.; Zhang, W. Video anomaly detection and localization using motion-field shape description and homogeneity testing. Pattern Recognit. 2020, 105, 107394. [Google Scholar] [CrossRef]
- Zacepins, A.; Komasilovs, V.; Kviesis, A. Implementation of smart parking solution by image analysis. In Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems, Madeira, Portugal, 16–18 March 2018; pp. 666–669. [Google Scholar]
- Basak, S.; Gautam, A. Diffusion-based normality pre-training for weakly supervised video anomaly detection. Expert Syst. Appl. 2024, 251, 124013. [Google Scholar] [CrossRef]
- Tsiktsiris, D.; Dimitriou, N.; Lalas, A.; Dasygenis, M.; Votis, K.; Tzovaras, D. Real-time abnormal event detection for enhanced security in autonomous shuttles mobility infrastructures. Sensors 2020, 20, 4943. [Google Scholar] [CrossRef] [PubMed]
- Ullah, W.; Ullah, A.; Hussain, T.; Muhammad, K.; Heidari, A.A.; Del Ser, J.; Baik, S.W.; De Albuquerque, V.H.C. Artificial Intelligence of Things-assisted two-stream neural network for anomaly detection in surveillance Big Video Data. Future Gener. Comput. Syst. 2022, 129, 286–297. [Google Scholar] [CrossRef]
- Javed, M.H.; Li, T.; Yu, Z.; Hussain, A.; Rajeh, T.M.; Zhang, F. Pyramidal temporal frame prediction for efficient anomalous event detection in smart surveillance systems. Knowl.-Based Syst. 2023, 282, 111111. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; Govea, J.; Jaramillo-Alcazar, A. IoT Anomaly Detection to Strengthen Cybersecurity in the Critical Infrastructure of Smart Cities. Appl. Sci. 2023, 13, 10977. [Google Scholar] [CrossRef]
- Amrutha, C.V.; Jyotsna, C.; Amudha, J. Deep Learning Approach for Suspicious Activity Detection from Surveillance Video. In Proceedings of the 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, 5–7 March 2020; IEEE: Bangalore, India, 2020; pp. 335–339. [Google Scholar]
- Ansarnia, M.S.; Tisserand, E.; Berviller, Y.; Schweitzer, P.; Zidane, M.A. Contextual Detection of Pedestrians and Vehicles in Orthophotography by Fusion of Deep Learning Algorithms. Sensors 2022, 22, 1381. [Google Scholar] [CrossRef] [PubMed]
- Heidari, A.; Navimipour, N.J.; Unal, M. Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: A systematic literature review. Sustain. Cities Soc. 2022, 85, 104089. [Google Scholar] [CrossRef]
- Khan, S.; Muhammad, K.; Mumtaz, S.; Baik, S.W.; de Albuquerque, V.H.C. Energy-Efficient Deep CNN for Smoke Detection in Foggy IoT Environment. IEEE Internet Things J. 2019, 6, 9237–9245. [Google Scholar] [CrossRef]
- Muhammad, K.; Hussain, T.; Baik, S.W. Efficient CNN based summarization of surveillance videos for resource-constrained devices. Pattern Recognit. Lett. 2020, 130, 370–375. [Google Scholar] [CrossRef]
- Muhammad, K.; Khan, S.; Palade, V.; Mehmood, I.; de Albuquerque, V.H.C. Edge Intelligence-Assisted Smoke Detection in Foggy Surveillance Environments. IEEE Trans. Ind. Inform. 2020, 16, 1067–1075. [Google Scholar] [CrossRef]
- Barthélemy, J.; Verstaevel, N.; Forehead, H.; Perez, P. Edge-Computing Video Analytics for Real-Time Traffic Monitoring in a Smart City. Sensors 2019, 19, 2048. [Google Scholar] [CrossRef] [PubMed]
- Shorfuzzaman, M.; Hossain, M.S.; Alhamid, M.F. Towards the sustainable development of smart cities through mass video surveillance: A response to the COVID-19 pandemic. Sustain. Cities Soc. 2021, 64, 102582. [Google Scholar] [CrossRef] [PubMed]
- Ullah, W.; Min Ullah, F.U.; Ahmad Khan, Z.; Wook Baik, S. Sequential attention mechanism for weakly supervised video anomaly detection. Expert Syst. Appl. 2023, 230, 120599. [Google Scholar] [CrossRef]
- Cheng, M.; Cai, K.; Li, M. RWF-2000: An Open Large Scale Video Database for Violence Detection. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR); IEEE: Milan, Italy, 2021; pp. 4183–4190. [Google Scholar]
- Ullah, W.; Ullah, A.; Haq, I.U.; Muhammad, K.; Sajjad, M.; Baik, S.W. CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks. Multimed. Tools Appl. 2021, 80, 16979–16995. [Google Scholar] [CrossRef]
- Alhamed, K.M.; Iwendi, C.; Dutta, A.K.; Almutairi, B.; Alsaghier, H.; Almotairi, S. Building construction based on video surveillance and deep reinforcement learning using smart grid power system. Comput. Electr. Eng. 2022, 103, 108273. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dardour, A.; El Haji, E.; Begdouri, M.A. Video Surveillance and Artificial Intelligence for Urban Security in Smart Cities: A Review of a Selection of Empirical Studies from 2018 to 2024. Comput. Sci. Math. Forum 2025, 10, 15. https://doi.org/10.3390/cmsf2025010015
Dardour A, El Haji E, Begdouri MA. Video Surveillance and Artificial Intelligence for Urban Security in Smart Cities: A Review of a Selection of Empirical Studies from 2018 to 2024. Computer Sciences & Mathematics Forum. 2025; 10(1):15. https://doi.org/10.3390/cmsf2025010015
Chicago/Turabian StyleDardour, Abdellah, Essaid El Haji, and Mohamed Achkari Begdouri. 2025. "Video Surveillance and Artificial Intelligence for Urban Security in Smart Cities: A Review of a Selection of Empirical Studies from 2018 to 2024" Computer Sciences & Mathematics Forum 10, no. 1: 15. https://doi.org/10.3390/cmsf2025010015
APA StyleDardour, A., El Haji, E., & Begdouri, M. A. (2025). Video Surveillance and Artificial Intelligence for Urban Security in Smart Cities: A Review of a Selection of Empirical Studies from 2018 to 2024. Computer Sciences & Mathematics Forum, 10(1), 15. https://doi.org/10.3390/cmsf2025010015