Conservation and Zoonotic Risk Implications of Egyptian Fruit Bats Amid Marburg Virus Disease Outbreaks in Tanzania and the Broader Sub-Saharan African Region
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Study Site
2.2. Bat Roosting Sites Surveys
2.3. Selection of Archived Bat Tissue Samples
2.4. DNA Extraction
2.5. qPCR-HRM Bat Species Profiling
2.6. Sequencing, Bat Species Authentication, and Analyses
2.7. Recruitment of Study Participants
3. Results and Discussion
3.1. Geolocations of Major Egyptian Fruit Bat Roosting Sites
3.2. High-Resolution Melting Profiles
3.3. Nucleotide Amplification
3.4. Bat Species Authentication
3.5. African Egyptian Fruit Bat Birthing Seasons
3.6. Study Participants at High-Risk for MARV Exposure
3.7. Potential Human Risk Behaviour Associated with Human–Bat Interaction
3.8. Key Anthropogenic Threats to Egyptian Fruit Bat Colonies
3.9. Persecution Using Burning Car Tyres in Mines
3.10. Electrocution by Overhead Electric Lines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shifflett, K.; Marzi, A. Marburg Virus Pathogenesis—Differences and Similarities in Humans and Animal Models. Virol. J. 2019, 16, 165. [Google Scholar] [CrossRef]
- Biedenkopf, N.; Bukreyev, A.; Chandran, K.; Di Paola, N.; Formenty, P.B.H.; Griffiths, A.; Hume, A.J.; Mühlberger, E.; Netesov, S.V.; Palacios, G.; et al. ICTV Virus Taxonomy Profile: Filoviridae 2024. J. Gen. Virol. 2024, 105, 001955. [Google Scholar] [CrossRef]
- Kinimi, E. Marburg Virus Disease in Sub-Saharan Africa: A Review of Currently Available Comprehensive Genomic Data up to 2024. Zoonotic Dis. 2025, 5, 6. [Google Scholar] [CrossRef]
- Brauburger, K.; Hume, A.J.; Mühlberger, E.; Olejnik, J. Forty-Five Years of Marburg Virus Research. Viruses 2012, 4, 1878–1927. [Google Scholar] [CrossRef]
- Luby, J.P.; Sanders, C.V. Green Monkey Disease (“Marburg Virus” Disease): A New Zoonosis. Ann. Intern. Med. 1969, 71, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, D.; Kutikuppala, L.V.S.; Shanker, P.; Sahoo, R.N.; Pattnaik, G.; Dash, R.; Kandi, V.; Ansari, A.; Mishra, S.; Desai, D.N.; et al. The Neglected Continuously Emerging Marburg Virus Disease in Africa: A Global Public Health Threat. Health Sci. Rep. 2023, 6, e1661. [Google Scholar] [CrossRef] [PubMed]
- Muvunyi, C.M.; Ngabonziza, J.C.S.; Bigirimana, N.; Ndembi, N.; Siddig, E.E.; Kaseya, J.; Ahmed, A. Evidence-Based Guidance for One Health Preparedness, Prevention, and Response Strategies to Marburg Virus Disease Outbreaks. Diseases 2024, 12, 309. [Google Scholar] [CrossRef]
- Musafiri, S.; Siddig, E.E.; Nkuranga, J.B.; Rukundo, A.; Mpunga, T.; Sendegeya, A.; Twagirumugabe, T.; Ahmed, A.; Muvunyi, C.M. Emerging Strategies and Progress in the Medical Management of Marburg Virus Disease. Pathogens 2025, 14, 322. [Google Scholar] [CrossRef]
- Butera, Y.; Mutesa, L.; Parker, E.; Muvunyi, R.; Umumararungu, E.; Ayitewala, A.; Musabyimana, J.P.; Olono, A.; Sesonga, P.; Ogunsanya, O.; et al. Genomic and Transmission Dynamics of the 2024 Marburg Virus Outbreak in Rwanda. Nat. Med. 2024, 31, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Mmbaga, V.; Mrema, G.; Ngenzi, D.; Magoge, W.; Mwakapasa, E.; Jacob, F.; Matimba, H.; Beyanga, M.; Samweli, A.; Kiremeji, M.; et al. Epidemiological Description of Marburg Virus Disease Outbreak in Kagera Region, Northwestern Tanzania. PLoS ONE 2024, 19, e0309762. [Google Scholar] [CrossRef]
- Ezie, K.N.; Takoutsing, B.D.; Modeste, D.; Ines, M.Z.; Sybile, T.N.L.; Caleb, N.M.; Esene, I.N. Marburg Virus Outbreak in Equatorial Guinea: Need for Speed. Ann. Glob. Health 2024, 90, 5. [Google Scholar] [CrossRef]
- Amman, B.R.; Jones, M.E.B.; Sealy, T.K.; Uebelhoer, L.S.; Schuh, A.J.; Bird, B.H.; Coleman-McCray, J.D.; Martin, B.E.; Nichol, S.T.; Towner, J.S. Oral Shedding of Marburg Virus in Experimentally Infected Egyptian Fruit Bats (Rousettus aegyptiacus). J. Wildl. Dis. 2015, 51, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Murugavel, B.; Kandula, S.; Somanathan, H.; Kelber, A. Home Ranges, Directionality and the Influence of Moon Phases on the Movement Ecology of Indian Flying Fox Males in Southern India. Biol. Open 2023, 12, bio059513. [Google Scholar] [CrossRef]
- Montecino-Latorre, D.; Goldstein, T.; Gilardi, K.; Wolking, D.; Van Wormer, E.; Kazwala, R.; Ssebide, B.; Nziza, J.; Sijali, Z.; Cranfield, M.; et al. Reproduction of East-African Bats May Guide Risk Mitigation for Coronavirus Spillover. One Health Outlook 2020, 2, 2. [Google Scholar] [CrossRef]
- Kasso, M.; Balakrishnan, M. Ecological and Economic Importance of Bats (Order Chiroptera). Int. Sch. Res. Not. 2013, 2013, 187415. [Google Scholar] [CrossRef]
- O’shea, T.J.; Cryan, P.M.; Hayman, D.T.S.; Plowright, R.K.; Streicker, D.G. Multiple Mortality Events in Bats: A Global Review. Mammal Rev. 2016, 46, 175. [Google Scholar] [CrossRef]
- Voigt, C.C.; Kingston, T. Bats in the Anthropocene. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–9. ISBN 978-3-319-25220-9. [Google Scholar]
- Tanalgo, K.; Tabora, J.A.; Hughes, A. Bat Cave Vulnerability Index (BCVI): A Holistic Rapid Assessment Tool to Identify Priorities for Effective Cave Conservation in the Tropics. Ecol. Indic. 2018, 89, 852–860. [Google Scholar] [CrossRef]
- Frick, W.F.; Kingston, T.; Flanders, J. A Review of the Major Threats and Challenges to Global Bat Conservation. Ann. N. Y. Acad. Sci. 2020, 1469, 5–25. [Google Scholar] [CrossRef]
- Amman, B.R.; Nyakarahuka, L.; McElroy, A.K.; Dodd, K.A.; Sealy, T.K.; Schuh, A.J.; Shoemaker, T.R.; Balinandi, S.; Atimnedi, P.; Kaboyo, W.; et al. Marburgvirus Resurgence in Kitaka Mine Bat Population after Extermination Attempts, Uganda. Emerg. Infect. Dis. 2014, 20, 1761–1764. [Google Scholar] [CrossRef]
- Towner, J.S.; Amman, B.R.; Sealy, T.K.; Carroll, S.A.R.; Comer, J.A.; Kemp, A.; Swanepoel, R.; Paddock, C.D.; Balinandi, S.; Khristova, M.L.; et al. Isolation of Genetically Diverse Marburg Viruses from Egyptian Fruit Bats. PLoS Pathog. 2009, 5, e1000536. [Google Scholar] [CrossRef] [PubMed]
- Ham, C.; Donnelly, C.A.; Astley, K.L.; Jackson, S.Y.B.; Woodroffe, R. Effect of Culling on Individual Badger Meles Meles Behaviour: Potential Implications for Bovine Tuberculosis Transmission. J. Appl. Ecol. 2019, 56, 2390–2399. [Google Scholar] [CrossRef]
- Korine, C. IUCN Red List of Threatened Species: Rousettus Aegyptiacus. In IUCN Red List Threatened Species; International Union for Conservation of Nature: Gland, Switzerland, 2016. [Google Scholar]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated Modern Human–Induced Species Losses: Entering the Sixth Mass Extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef]
- Arnaout, Y.; Djelouadji, Z.; Robardet, E.; Cappelle, J.; Cliquet, F.; Touzalin, F.; Jimenez, G.; Hurstel, S.; Borel, C.; Picard-Meyer, E. Genetic Identification of Bat Species for Pathogen Surveillance across France. PLoS ONE 2022, 17, e0261344. [Google Scholar] [CrossRef] [PubMed]
- Boore, J.L. Animal Mitochondrial Genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [PubMed]
- Dule, E.J.; Kinimi, E.; Bakari, G.G.; Max, R.A.; Lyimo, C.M.; Mushi, J.R. Species Authentication in Meat Products Sold in Kilosa District in Tanzania Using HRM-Enhanced DNA Barcoding. J. Für Verbraucherschutz Leb. 2025, 20, 41–52. [Google Scholar] [CrossRef]
- Ouso, D.O.; Otiende, M.Y.; Jeneby, M.M.; Oundo, J.W.; Bargul, J.L.; Miller, S.E.; Wambua, L.; Villinger, J. Three-Gene PCR and High-Resolution Melting Analysis for Differentiating Vertebrate Species Mitochondrial DNA for Biodiversity Research and Complementing Forensic Surveillance. Sci. Rep. 2020, 10, 4741. [Google Scholar] [CrossRef] [PubMed]
- Lasso, G.; Grodus, M.; Valencia, E.; DeJesus, V.; Liang, E.; Delwel, I.; Bortz, R.H.; Lupyan, D.; Ehrlich, H.Y.; Castellanos, A.A.; et al. Decoding the Blueprint of Receptor Binding by Filoviruses through Large-Scale Binding Assays and Machine Learning. Cell Host Microbe 2025, 33, 294–313.e11. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Yang, M.; Ma, B.; Wang, B. Grid-Scale Impact of Climate Change and Human Influence on Soil Erosion within East African Highlands (Kagera Basin). Int. J. Environ. Res. Public. Health 2021, 18, 2775. [Google Scholar] [CrossRef]
- Tolo, C.U.; Majule, E.A.; Perfect, J. Changing Trends of Natural Resources Degradation in Kagera Basin: Case Study of Kagera Sub-Basin, Uganda. Nat. Resour. 2012, 3, 95–106. [Google Scholar] [CrossRef]
- Kingdon, J. The Kingdon Pocket Guide to African Mammals, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2020; ISBN 978-0-691-20352-2. [Google Scholar]
- Tafur-Culqui, J.; Calderon, M.S.; Bustamante, D.E. Identification of Commercial Meats from Amazonas, Peru Using PCR-RFLP of Mitochondrial 12S rRNA Gene. Braz. J. Food Technol. 2020, 23, e2019274. [Google Scholar] [CrossRef]
- Suluba, E.; Masaganya, J.; Liang, W.; Masala, M.; Mbugi, E.; Mselle, T.; Majani, N.; Kubhoja, S.; Mutayoba, B.M.; Shuwei, L. TBX 5 Gene Mutation Analysis among Tanzanian Children with Congenital Heart Diseases Using High-Resolution Melting Assays. Anat. J. Afr. 2022, 11, 2240–2251. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Amman, B.R.; Carroll, S.A.; Reed, Z.D.; Sealy, T.K.; Balinandi, S.; Swanepoel, R.; Kemp, A.; Erickson, B.R.; Comer, J.A.; Campbell, S.; et al. Seasonal Pulses of Marburg Virus Circulation in Juvenile Rousettus Aegyptiacus Bats Coincide with Periods of Increased Risk of Human Infection. PLoS Pathog. 2012, 8, e1002877. [Google Scholar] [CrossRef]
- Okia, N.O. Reproductive Cycles of East African Bats. J. Mammal. 1987, 68, 138–141. [Google Scholar] [CrossRef]
- Benda, P.; Vallo, P.; Hulva, P.; Horáček, I. The Egyptian Fruit Bat Rousettus Aegyptiacus (Chiroptera: Pteropodidae) in the Palaearctic: Geographical Variation and Taxonomic Status. Biologia 2012, 67, 1230–1244. [Google Scholar] [CrossRef]
- Seltzer, C.E.; Ndangalasi, H.J.; Cordeiro, N.J. Seed Dispersal in the Dark: Shedding Light on the Role of Fruit Bats in Africa. Biotropica 2013, 45, 450–456. [Google Scholar] [CrossRef]
- Bernard, R.T.F.; Tsita, J.N. Seasonally Monoestrous Reproduction in the Molossid Bat, Tadarida Aegyptiaca from Low Temperate Latitudes (33°S) in South Africa. S. Afr. J. Zool. 1995, 30, 18–22. [Google Scholar] [CrossRef]
- Mutere, F.A. The Breeding Biology of the Fruit Bat Rousettus Aegyptiacus E. Geoffroy Living at o Degrees 22’S. Acta Trop. 1968, 25, 97–108. [Google Scholar]
- Weinberg, M.; Nissan, Y.; Yovel, Y. Egyptian Fruit Bat Rousettus Aegyptiacus (Geoffroy, 1810). In Handbook of the Mammals of Europe; Hackländer, K., Zachos, F.E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–26. ISBN 978-3-319-65038-8. [Google Scholar]
- Bausch, D.G.; Nichol, S.T.; Muyembe-Tamfum, J.J.; Borchert, M.; Rollin, P.E.; Sleurs, H.; Campbell, P.; Tshioko, F.K.; Roth, C.; Colebunders, R.; et al. Marburg Hemorrhagic Fever Associated with Multiple Genetic Lineages of Virus. N. Engl. J. Med. 2006, 355, 909–919. [Google Scholar] [CrossRef]
- Amman, B.R.; Schuh, A.J.; Albariño, C.G.; Towner, J.S. Marburg Virus Persistence on Fruit as a Plausible Route of Bat to Primate Filovirus Transmission. Viruses 2021, 13, 2394. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, N.; Bird, B.H.; VanWormer, E.; Sijali, Z.; Kilonzo, C.; Msigwa, A.; Ekiri, A.B.; Samson, A.; Epstein, J.H.; Wolking, D.J.; et al. Fruit Bats in Flight: A Look into the Movements of the Ecologically Important Eidolon Helvum in Tanzania. One Health Outlook 2020, 2, 16. [Google Scholar] [CrossRef] [PubMed]
- Musila, S.; Prokop, P.; Gichuki, N. Knowledge and Perceptions of, and Attitudes to, Bats by People Living around Arabuko-Sokoke Forest, Malindi-Kenya. Anthrozoös 2018, 31, 247–262. [Google Scholar] [CrossRef]
- Ninsiima, L.R.; Nyakarahuka, L.; Kisaka, S.; Atuheire, C.G.K.; Mugisha, L.; Odoch, T.; Romano, J.S.; Klein, J.; Mor, S.M.; Kankya, C. Knowledge, Perceptions, and Exposure to Bats in Communities Living around Bat Roosts in Bundibugyo District, Uganda: Implications for Viral Haemorrhagic Fever Prevention and Control. BMC Infect. Dis. 2024, 24, 311. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.F.J.; Struebig, M.J.; Willig, M.R. Responses of Tropical Bats to Habitat Fragmentation, Logging, and Deforestation. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 63–103. ISBN 978-3-319-25220-9. [Google Scholar]
- Mickleburgh, S.; Waylen, K.; Racey, P. Bats as Bushmeat: A Global Review. Oryx 2009, 43, 217–234. [Google Scholar] [CrossRef]
- Tella, J.L.; Hernández-Brito, D.; Blanco, G.; Hiraldo, F. Urban Sprawl, Food Subsidies and Power Lines: An Ecological Trap for Large Frugivorous Bats in Sri Lanka? Diversity 2020, 12, 94. [Google Scholar] [CrossRef]
- Tidemann, C.R.; Nelson, J.E. Life Expectancy, Causes of Death and Movements of the Grey-Headed Flying-Fox (Pteropus Poliocephalus) Inferred from Banding. Acta Chiropterologica 2011, 13, 419–429. [Google Scholar] [CrossRef]
Caves/Mines | Districts | Geolocations |
---|---|---|
Rubya | Muleba | S01°44′31.5″, E031°37′21.8″ |
Makinga | Muleba | S01°50′46.8″, E031°40’52.2″ |
Kanyangeleko | Bukoba rural | S01°26′36.1″, E031°47′04.5″ |
Chabyondogoro | Kyerwa | S01°06′04.2″, E030°40′49.7″ |
Rwamapopo | Kyerwa | S01°22′81.8″, E030°48′21.6″ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinimi, E.; Joo-Yeon, L.; Jeong-Su, L.; Hee-Young, L.; Yim, M.S.; Misinzo, G. Conservation and Zoonotic Risk Implications of Egyptian Fruit Bats Amid Marburg Virus Disease Outbreaks in Tanzania and the Broader Sub-Saharan African Region. Zoonotic Dis. 2025, 5, 30. https://doi.org/10.3390/zoonoticdis5040030
Kinimi E, Joo-Yeon L, Jeong-Su L, Hee-Young L, Yim MS, Misinzo G. Conservation and Zoonotic Risk Implications of Egyptian Fruit Bats Amid Marburg Virus Disease Outbreaks in Tanzania and the Broader Sub-Saharan African Region. Zoonotic Diseases. 2025; 5(4):30. https://doi.org/10.3390/zoonoticdis5040030
Chicago/Turabian StyleKinimi, Edson, Lee Joo-Yeon, Lee Jeong-Su, Lim Hee-Young, Min Su Yim, and Gerald Misinzo. 2025. "Conservation and Zoonotic Risk Implications of Egyptian Fruit Bats Amid Marburg Virus Disease Outbreaks in Tanzania and the Broader Sub-Saharan African Region" Zoonotic Diseases 5, no. 4: 30. https://doi.org/10.3390/zoonoticdis5040030
APA StyleKinimi, E., Joo-Yeon, L., Jeong-Su, L., Hee-Young, L., Yim, M. S., & Misinzo, G. (2025). Conservation and Zoonotic Risk Implications of Egyptian Fruit Bats Amid Marburg Virus Disease Outbreaks in Tanzania and the Broader Sub-Saharan African Region. Zoonotic Diseases, 5(4), 30. https://doi.org/10.3390/zoonoticdis5040030