Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways
Abstract
:1. Introduction
2. T-2 Toxin
3. Macrocyclic Trichothecenes
4. Fumonisin B1
5. Ochratoxin A
6. Conclusions
Acknowledgments
References
- Haschek, WM; Voss, KA; Beasley, VR. Selected Mycotoxins Affecting Animal and Human Health. In Handbook of Toxicologic Pathology; Haschek, WM, Rousseaux, CG, Walling, MA, Eds.; Academic Press: San Diego, CA, USA, 2002; pp. 645–699. [Google Scholar]
- Surai, PF; Mezes, M; Melnichuk, SD; Fotina, TI. Mycotoxins and animal health: From oxidative stress to gene expression. Krmiva 2008, 50, 35–43. [Google Scholar]
- Chandra, J; Samali, A; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med 2000, 29, 323–333. [Google Scholar]
- Desjardins, AE; Hohn, TM; McComic, SP. Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol. Mol. Biol. Rev 1993, 57, 595–604. [Google Scholar]
- Nelson, PE; Dignani, MC; Anaissie, EJ. Taxonomy, biology, and clinical aspects of Fusarium species. Clin Microbiol Rev 1994, 7, 479–504. [Google Scholar]
- Joffe, AZ. Foodborne Diseases: Alimentary Toxic Aleukia. In Handbook of Foodborne Diseases of Biological Origin; Rochcigle, M, Ed.; CRC Press: Boca Raton, FL, USA, 1983; pp. 353–495. [Google Scholar]
- Saito, M; Ohtsubo, K. Trichothecene Toxins of Fusarium Species. In Mycotoxins; Purchase, IFH, Ed.; Elsevier Scientific Publication: New York, NY, USA, 1977; pp. 264–280. [Google Scholar]
- Ueno, Y; Ishii, K; Saki, K; Kanadera, K; Tsunoda, S; Tanoka, H; Enomoto, M. Toxicological approaches to the metabolites of fusaria. IV. Microbial survey on “bean-hulls poisoning of horses” with the isolation of toxic trichothecenes, neosonaniol and T-2 toxin of Fusarium solani M-1-1. Jpn J Exp Med 1972, 42, 187–203. [Google Scholar]
- Bennet, JW; Klich, M. Mycotoxins. Clin. Microbiol. Rev 2003, 16, 497–516. [Google Scholar]
- Eriksen, GS; Petterson, H. Toxicological evaluation of trichothecenes in animal feed. Anim. Feed Sci. Technol 2004, 114, 205–239. [Google Scholar]
- Shifrin, VI; Anderson, P. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem 1999, 274, 13985–13992. [Google Scholar]
- Chang, IM; Mar, WC. Effect of T-2 toxin on lipid peroxidation in rats: Elevation of conjugated diene formation. Toxicol. Lett 1988, 40, 275–280. [Google Scholar]
- Eriksen, GS; Petterson, H; Lund, H. Comparative cytotoxicity of deoxynivalenol, nivalenol, triacetylated derivatives and de-epoxy metabolites. Food Chem. Toxicol 2004, 42, 619–624. [Google Scholar]
- IARC. Toxins derived from Fusarium sporotrichoides: T-2 toxin. In IARC Monographson the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1993; pp. 467–488. [Google Scholar]
- Sharma, RP. Immunotoxicity of mycotoxins. J. Dairy Sci 1993, 76, 892–897. [Google Scholar]
- Stanford, GK; Hood, RD; Haynes, AW. Effects of prenatal administration of T-2 toxin to mice. Res Commu Chem Pathol Pharmacol 1975, 10, 743–746. [Google Scholar]
- Williams, PP. Effects of T-2 mycotoxin on gastrointestinal tissues: A review of in vivo and in vitro models. Arch Environ Contam Toxicol 1989, 18, 374–387. [Google Scholar]
- Shinozuka, J; Li, G; Kiatipattanasakul, W; Uetsuka, K; Nakayama, H; Doi, K. T-2 toxin-induced apoptosis in lymphoid organs of mice. Exp. Toxicol. Pathol 1997, 49, 387–392. [Google Scholar]
- Li, G; Shinozuka, J; Uetsuka, K; Nakayama, H; Doi, K. T-2 toxin-induced apoptosis in Peyer’s patches of mice. J. Toxicol. Pathol 1997, 10, 59–61. [Google Scholar]
- Shinozuka, J; Suzuki, M; Noguchi, N; Sugimoto, T; Uetsuka, K; Nakayama, H; Doi, K. T-2 toxin-induced apoptosis in hematopoietic tissues of mice. Toxicol. Pathol 1998, 26, 674–681. [Google Scholar]
- Li, G; Shinozuka, J; Uetsuka, K; Nakayama, H; Doi, K. T-2 toxin-induced apoptosis in intestinal crypt epithelial cells of mice. Exp. Toxicol. Pathol 1997, 49, 447–450. [Google Scholar]
- Albarenque, SM; Shinozuka, J; Iwamoto, S; Nakayama, H; Doi, K. T-2 toxin-induced acute skin lesions in Wistar-derived hypotrichotic WBN/ILA-Ht rats. Histol. Histopathol 1999, 14, 337–342. [Google Scholar]
- Shinozuka, J; Miwa, S; Fujimura, H; Toriumi, W; Doi, K. Hepatotoxicity of T-2 Toxin, Trichothecene Mycotoxin. In New Strategies for Mycotoxin Research in Asia (Proceedings of ISMYCO Bangkok ‘06); Kumagai, S, Ed.; Japanese Association of Mycotoxicology: Tokyo, Japan, 2007; pp. 62–66. [Google Scholar]
- Sehata, S; Kiyosawa, N; Atsumi, F; Ito, K; Yamoto, T; Teranishi, M; Uetsuka, K; Nakayama, H; Doi, K. Microarray analysis of T-2 toxin-induced liver, placenta and fetal liver lesions in pregnant rats. Exp. Toxicol. Pathol 2005, 57, 15–28. [Google Scholar]
- Doi, K; Shinozuka, J; Sehata, S. T-2 toxin and apoptosis. J. Toxicol. Pathol 2006, 19, 15–27. [Google Scholar]
- Doi, K; Ishigami, N; Sehata, S. T-2 toxin-induced toxicity in pregnant mice and rats. Int. J. Mol. Sci 2008, 9, 2146–2158. [Google Scholar]
- Chaudhary, M; Rao, PV. Brain oxidative stress after dermal and subcutaneous exposure of T-2 toxin in mice. Food Chem. Toxicol 2010, 48, 3436–3442. [Google Scholar]
- Boyd, KE; Fitzpatrick, DW; Wilson, JR; Wilson, LM. Effect of T-2 toxin on brain biogenic monoamines in rats and chickens. Can. J. Vet. Res 1988, 52, 181–185. [Google Scholar]
- Martin, LJ; Morse, JD; Anthony, A. Quantitative cytophotometric analysis of brain neuronal RNA and protein changes in acute T-2 mycotoxin poisoned rats. Toxicon 1986, 24, 933–941. [Google Scholar]
- Wang, J; Fitzpatrick, DW; Wilson, JR. Effects of the trichothecene mycotoxin T-2 toxin on neurotransmitters and metabolites in discrete areas of the rat brain. Food Chem. Toxicol 1998, 36, 947–953. [Google Scholar]
- Wang, J; Fitzpatrick, DW; Wilson, JR. Effect of T-2 toxin on blood-brain barrier permeability monoamine oxidase activity and protein synthesis in rats. Food Chem. Toxicol 1998, 36, 955–961. [Google Scholar]
- Ishigami, N; Shinozuka, J; Katayama, K; Uetsuka, K; Nakayama, H; Doi, K. Apoptosis in the developing mouse embryos from T-2 toxin-inoculated dams. Histol. Histopathol 1999, 14, 729–733. [Google Scholar]
- Ishigami, N; Shinozuka, J; Katayama, K; Uetsuka, K; Nakayama, H; Doi, K. Apoptosis in mouse fetuses from dams exposed to T-2 toxin at different days of gestation. Exp. Toxicol. Pathol 2001, 52, 493–501. [Google Scholar]
- Rousseaux, CG; Schiefer, HB. Maternal toxicity, embryolethality and abnormal fetal development in CD-1 mice following one oral dose of T-2 toxin. J. Appl. Toxicol 1987, 7, 281–288. [Google Scholar]
- Stanford, GK; Hood, RD; Hayes, AW. Effect of prenatal administration of T-2 toxin to mice. Res. Commun. Chem. Path. Pharmacol 1975, 10, 743–746. [Google Scholar]
- Sehata, S; Kiyosawa, N; Makino, T; Atsumi, F; Ito, K; Yamoto, T; Teranishi, M; Baba, Y; Uetauka, K; Nakayama, H; Doi, K. Morphological and microarray analysis of T-2 toxin-induced rat fetal brain lesion. Food Chem. Toxicol 2004, 42, 1727–1736. [Google Scholar]
- Galtier, P; Paulin, F; Eeckhoutte, C; Larrieu, G. Comparative effects of T-2 toxin and diacetoxyscirpenol on drug metabolizing enzymes in rat tissues. Food Chem. Toxicol 1989, 27, 215–220. [Google Scholar]
- Guerre, P; Eeckhoutte, C; Burgat, V; Galtier, P. The effects of T-2 toxin exposure on liver drug metabolizing enzymes in rabbit. Food Add. Contam 2000, 17, 1019–1026. [Google Scholar]
- Jarpe, MB; Widmann, C; Knall, C; Schlesinger, TK; Gibson, S; Yujiri, T; Fanger, GR; Gelfand, EW; Johnson, GL. Anti-apoptotic versus pro-apoptotic signal transduction: checkpoints and stop signs along the roard to death. Oncogene 1998, 17, 1475–1582. [Google Scholar]
- Bold, S; Weidle, UH; Kolch, W. The kinase domain of MEKK1 induces apoptosis by dysregulation of MAP kinase pathways. Exp. Cell Res 2003, 283, 80–90. [Google Scholar]
- Ham, J; Eilers, A; Whitfield, J; Neame, SJ; Shah, B. c-JUN and the transcriptional control of neuronal apoptosis. Biochem. Pharmacol 2000, 60, 1015–1021. [Google Scholar]
- Annunziato, L; Amoroso, S; Pannaccione, A; Cataldi, M; Pignataro, G; D’Alessio, S; Sirabella, R; Second, A; Sibaud, L; DiRenzo, GF. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol. Lett 2003, 139, 125–133. [Google Scholar]
- Troy, CM; Shelanski, ML. Caspase-2 redux. Cell Death Differ 2003, 10, 101–107. [Google Scholar]
- Huang, P; Akagawa, K; Yokoyama, Y; Nohara, K; Kano, K; Morimoto, K. T-2 toxin initially activates caspase-2 and induces apoptosis in U937 cells. Toxicol. Lett 2007, 170, 1–10. [Google Scholar]
- Kanemitsu, H; Yamauchi, H; Komatsu, M; Yamamoto, S; Okazaki, S; Uchida, K; Nakayama, H. 6-Mercaptopurine (6-MP) induces cell cycle arrest and apoptosis of neural progenitor cells in the developing rat brain. Neurotox. Teratol 2009, 31, 104–109. [Google Scholar]
- Katayama, K; Ueno, M; Yamauchi, H; Nakayama, H; Doi, K. Microarray analysis of genes in fetal central nervous system after ethylnitrosourea administration. Birth Defects Res. Part B 2005, 74, 255–260. [Google Scholar]
- Nam, C; Yamauchi, H; Nakayama, H; Doi, K. Etoposide induces apoptosis and cell cycle arrest of neuroepithelial cells in a p53-related manner. Neurotox. Teratol 2009, 28, 664–672. [Google Scholar]
- Ueno, M; Katayama, K; Yamauchi, H; Nakayama, H; Doi, K. Cell cycle and cell death regulation of neural progenitor cells in the 5-azacytidine (5AzC)-treated developing fetal brain. Exp Neurol 2006, 198, 154–166. [Google Scholar]
- Woo, GH; Bak, EJ; Nakayama, H; Doi, K. Molecular mechanisms of hydroxyurea (HU)-induced apoptosis in the mouse fetal brain. Neurotox. Teratol 2006, 28, 125–134. [Google Scholar]
- Ogunshola, OO; Antic, A; Donoghue, MJ; Fan, S-Y; Kim, H; Stewart, WB; Madri, JA; Ment, LR. Paracrine and autocrine function of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J. Biol. Chem 2002, 277, 11410–11415. [Google Scholar]
- Halliwell, B; Gutteridge, JMC. Free Radicals in Biology and Medicine, 3rd ed; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Lee, J-M; Jiang, L; Johnson, DA; Stein, TD; Kraft, AD; Calkins, MJ; Jakel, RJ; Jofnson, JA. Nrf2, a multiorgan protector? FASEB J 2005, 19, 1061–1066. [Google Scholar]
- Boesch-Saadatmandi, C; Wagner, AE; Graeser, AC; Hundhausen, C; Wollram, S; Rimbach, G. Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J. Anim. Phys. Anim. Nutr 2009, 93, 547–555. [Google Scholar]
- Boutin-Forzano, S; Charpin-Kadouch, C; Chabbi, S; Bennedjai, N; Dumon, H; Charpin, D. Wall relative humidity: A simple and reliable index for predicting Stachybotrys chartarum infestation in dwellings. Indoor Air 2004, 14, 196–199. [Google Scholar]
- Tsumori, T; Reijula, K; Johnsson, T; Hemminki, K; Hintikka, EL; Lindroos, O; Kalso, S; Koukila-Kahkola, P; Mussalo-Rauhamaa, H; Haahtela, T. Mycotoxins in crude building materials from water-damaged buildings. Appl. Environ. Microbiol 2000, 66, 1899–1904. [Google Scholar]
- Pestka, JJ; Yike, I; Dearborn, DG; Ward, MDW; Harkema, JR. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: New insights into a public health enigma. Toxicol. Sci 2008, 104, 4–26. [Google Scholar]
- Shelton, BG; Kirkland, KH; Flanders, WD; Morris, GK. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl. Environ. Microbiol 2002, 68, 1743–1753. [Google Scholar]
- Hodgson, MJ; Morey, P; Leung, WY; Morrow, L; Miller, D; Jarvis, BB; Robbins, H; Halsey, JF; Storey, E. Building-associated pulmonary disease from exposure to Stachybotrys chartarum and Aspergillus versicolor. J. Occup. Environ. Med 1998, 40, 241–249. [Google Scholar]
- Johanning, E; Biagini, R; Hull, D; Morey, P; Jarvis, B; Landsbergis, P. Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment. Int. Arch. Occup. Environ. Health 1996, 68, 207–218. [Google Scholar]
- Gordon, WA; Cantor, JB; Johanning, E; Charatz, HJ; Ashman, TA; Breeze, JL; Haddad, L; Abramowitz, S. Cognitive impairment associated with toxigenic fungal exposure: A replication and extension of previous findings. Appl. Neuropsychol 2004, 11, 65–74. [Google Scholar]
- Hossain, MA; Ahmed, MS; Ghannoum, MA. Attributes of Stachybotrys chartarum and its association with human disease. J. Allergy Clin. Immunol 2004, 113, 200–208. [Google Scholar]
- Kirburn, KH. Role of molds and myxotoxins in being sick in buildings: Neurobehavioral and pulmonary impairment. Adv. Appl. Microbiol 2004, 55, 339–359. [Google Scholar]
- Andersen, B; Nielsen, KF; Jarvis, BB. Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. Mycologia 2002, 94, 392–403. [Google Scholar]
- Gregory, L; Pestka, JJ; Dearborn, DG; Rand, TG. Localization of satratoxin-G in Stachybotrys chartarum spores and spore-impacted mouse lung using immunocytochemistry. Toxicol. Pathol 2004, 32, 26–34. [Google Scholar]
- Yike, I; Distler, AM; Ziady, AG; Dearborn, DG. Mycotoxin adducts on human serum albumin: Biomerkers of exposure to Stachybotrys chartarum. Environ. Health Perspect 2006, 114, 1221–1226. [Google Scholar]
- Chung, YJ; Zhou, HR; Pestka, JJ. Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-α expression by deoxynivalenol (vomitoxin). Toxicol. Appl. Pharmacol 2003, 193, 188–201. [Google Scholar]
- Moon, Y; Pestka, JJ. Deoxynivalenol-induced mitogen-activated protein kinase phosphorylation and IL-6 expression in mice suppressed by fish oil. J. Nutr. Biochem 2003, 14, 717–726. [Google Scholar]
- Zhou, HR; Lau, AS; Pestka, JJ. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol. Sci 2003, 74, 335–344. [Google Scholar]
- Iordanov, MS; Pribnow, D; Magun, JL; Dinh, TH; Pearson, JA; Chen, SL; Magun, BE. Ribotoxic stress response: Activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alphasarcin/ricin loop in the 28S rRNA. Mol. Cell Biol 1997, 17, 3373–3381. [Google Scholar]
- Chung, YJ; Jarvis, B; Pestka, JJ. Modulation of lipopolysaccharide-induced proinflammatory cytokine production by satratoxins and other macrocyclic trichothecenes in the murine macrophage. J. Toxicol. Environ. Health A 2003, 66, 379–391. [Google Scholar]
- Chung, YJ; Yang, GH; Islam, Z; Pestka, JJ. Up-regulation of macrophage inflammatory protein-2 and complement 3A receptor by the trichothecenes deoxynivalenol and satratoxin G. Toxicology 2003, 186, 51–65. [Google Scholar]
- Hughes, BJ; Hsieh, GC; Jarvis, BB; Sharma, RP. Effects of macrocyclic trichothecene mycotoxins on the murine immune system. Arh. Environ. Contam. Toxicol 1989, 18, 388–395. [Google Scholar]
- Hughes, BJ; Jarvis, BB; Sharma, RP. Effects of macrocyclictrichothecene congeners on the viability and mitogenesis of mirine splenic lymphocytes. Toxicol Lett 1990, 50, 57–67. [Google Scholar]
- Pestka, JJ; Forsell, JH. Inhibition of human lymphocyte transformation by the macrocyclic trichothecene roridin A and verrucarin A. Toxicol Lett 1988, 41, 215–222. [Google Scholar]
- Yang, G-H; Jarvis, BB; Chung, Y-J; Pestka, JJ. Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol. Appl. Pharmacol 2000, 164, 149–160. [Google Scholar]
- Cundliffe, E; Davies, JE. Inhibition of initiation, elongation, and termination of eukaryotic protein synthesis by trichothecene fungal toxins. Antimicrob. Agents Chemother 1977, 11, 491–499. [Google Scholar]
- Nielsen, KF; Huttunen, K; Hyvarinen, A; Andersen, B; Jarvis, BB; Hirvonen, MR. Metabolite profiles of Stachybotrys isolates from water-damaged buildings and their induction of inflammatory mediators and cytotoxicity in macrophages. Mycopathologia 2002, 154, 201–205. [Google Scholar]
- Islam, Z; Shinozuka, J; Harkema, JR; Pestka, JJ. Purification and comparative neurotoxicity of the trichothecenes satratoxin G and roridin L2 from Stachybotrys chartarum. J. Toxicol. Environ. Health A 2009, 72, 1242–1251. [Google Scholar]
- Nusuetrong, P; Pengsuparp, T; Meksuriyen, D; Tanitsu, M; Kikuchi, H; Muzugaki, M; Shimazu, K; Oshima, Y; Nakahata, N; Yoshida, M. Satratoxin H generates reactive oxygen species and lipid peroxides in PC12 cell. Biol. Pharm. Bull 2008, 31, 1115–1120. [Google Scholar]
- Rand, TG; Mahoney, M; White, K; Oulton, M. Microanatomical changes in alveolar type II cells in juvenile mice intratracheally exposed to Stachybotrys chartarum spores and toxin. Toxicol. Sci 2002, 65, 239–245. [Google Scholar]
- Wang, H; Yadav, JS. Global gene expression changes underlying Stachybotrys chartarum toxin-induced apoptosis in murine alveolar macrophages: Evidence of multiple signal transduction pathways. Apoptosis 2007, 12, 535–548. [Google Scholar]
- Wang, H; Yadav, JS. DNA damage, redox changes, and associated stress-inducible signaling events underlying the apoptosis and cytotocity in murine alveolar macrophage cell line MH-S by methanol-extracted Stachybotrys chartarum toxins. Toxicol. Appl. Pharmacol 2006, 214, 297–308. [Google Scholar]
- Islam, Z; Harkema, JR; Pestka, JJ. Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environ. Health Perspect 2006, 114, 1099–1107. [Google Scholar]
- Islam, Z; Amuzie, CJ; Harkema, JR; Pestka, JJ. Neurotoxicity and inflammation in the nasal airways of mice exposed to the macrocyclic trichothecene mycotoxin roridin A: Kinetic and potentiation by bacterial lipipolysaccharide coexposure. Oxford J. Life Sci. Med. Toxicol. Sci 2007, 98, 526–541. [Google Scholar]
- Chang, RC; Suen, KC; Ma, CH; Elyaman, W; Ng, HK; Hugon, J. Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration. J. Neurochem 2002, 83, 1215–1225. [Google Scholar]
- Ge, Y; Tsukatani, T; Nishimura, T; Furukawa, M; Miwa, T. Cell death of olfactory receptor neurons in a rat with nasosinusitis infected artificially with Staphylococcus. Chem. Senses 2002, 27, 521–527. [Google Scholar]
- Huang, CC; Chen, K; Huang, TY. Immunohistochemical studies of sensory neurons in rat olfactory epithelium. Eur. Arch. Otorhinolaryngol 1995, 252, 86–91. [Google Scholar]
- Wu, S; Kumar, KU; Kaufmam, RJ. Identification and requirement of three ribosome binding domains in dsRNA-dependent protein kinase (PKR). Biochemistry 1998, 37, 13816–13826. [Google Scholar]
- Garcia, MA; Meurs, EF; Esteban, M. The dsRNA protein kinase PKR: Virus and cell control. Biochemie 2007, 89, 799–811. [Google Scholar]
- Cowan, CM; Roskams, AJ. Apoptosis in the mature and developing olfactory neuroepithelium. Microsc. Res. Technol 2002, 58, 204–215. [Google Scholar]
- Farbman, AI; Buchholz, JA; Suzuki, Y; Coines, A; Speert, D. A molecular basis of cell death in olfactory epithelium. J. Comp. Neurol 1999, 414, 306–314. [Google Scholar]
- Suzuki, Y; Farbman, AI. Tumor necrosis factor-alpha-induced apoptosis in olfactory epithelium in vitro: Possible roles of caspase 1 (ICE), caspase-2 (ICH-1), and caspase-3 (CPP32). Exp. Neurol 2000, 165, 35–45. [Google Scholar]
- Islam, Z; Hegg, CC; Bae, HY; Pestka, JJ. Satratoxin G-induced apoptosis in PC-12 neuronal cells is mediated by PKR and caspase independent. Toxicol. Sci 2008, 105, 142–152. [Google Scholar]
- Nusuetrong, P; Yoshida, M; Tanitsu, MA; Kikuchi, H; Mizugaki, M; Shimazu, K; Pengsuparp, T; Meksuriyen, D; Oshima, Y; Nakahata, N. Involvementof reactive oxygen species and stress activated MAPKs in satoratoxin H-induced apoptosis. Eur. J. Pharmacol 2005, 507, 239–246. [Google Scholar]
- Chandra, J; Samali, A; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med 2000, 29, 323–333. [Google Scholar]
- Karunasena, E; Larrañaga, MD; Simoni, JS; Douglas, DR; Straus, DC. Building-associated neurological damage modeled in human cells: A mechanism of neurotoxic effects by exposure to mycotoxins in the indoor environment. Mycopathologia 2010, 170, 377–390. [Google Scholar]
- Thrasher, JD; Crawley, S. The biocontaminants and complexity of damp indoor spaces; more than what meets the eyes. Toxicol. Ind. Health 2009, 25, 583–615. [Google Scholar]
- Campbell, IL. Neuropathogenic acions of cytokines assessed in transgenic mice. Int. J. Dev. Neurosci 1995, 13, 275–284. [Google Scholar]
- Peters, A; Vweronesi, B; Calderon-Garciduenas, J; Gehr, P; Chen, LC; Greiser, M; Reed, W; Rothen-Rutishauser, B; Schurch, S; Schulz, H. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part. Fibre Toxicol 2006, 3, 1–13. [Google Scholar]
- Calderón-Garcidueñas, L; Azzarelli, B; Acuna, H; Garcia, R; Gambling, TM; Osnaya, N; Monroy, S; Tizapantzi, MDR; Carson, JL; Villarreal-Calderon, A; et al. Air pollution and brain damage. Toxicol. Pathol 2002, 30, 373–389. [Google Scholar]
- Calderón-Garcidueñas, L; Maronpot, RR; Torres-Jardon, R; Henríquez-Roldán, C; Schoonhoven, R; Acuña-Ayala, H; Villarreal-Carderón, A; Nakamura, J; Fernando, R; Reed, W; et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxico. Pathol 2003, 31, 524–538. [Google Scholar]
- Dutton, MF. Fumonisins, mycotoxins of increasing importance: their nature and their effects. Pharmacol. Ther 1996, 70, 137–161. [Google Scholar]
- Howard, PC; Eppley, RM; Stack, ME; Warbritton, A; Voss, KA; Lorentzen, RJ; Kovach, RM; Bucci, TJ. Fumonisin B1 carcinogenicity in a 2-year feeding study using F344 rats and B6C3 F1 mice. Environ. Health Perspect 2001, 109, 277–282. [Google Scholar]
- Wang, E; Norred, WP; Bacon, CW; Riley, RT; Merrill, AH, Jr. Inhibition of sphingolipid biosynthesis by fumonisins. J. Biol. Chem 1991, 22, 14486–14490. [Google Scholar]
- Merrill, AH, Jr; Sullards, MC; Wang, E; Voss, KA; Riley, RT. Sphingolipid metabolism: Role in signal transduction and disruption by fumonisins. Environ. Health Perspect 2001, 109, 283–289. [Google Scholar]
- Riley, RT; Enongene, E; Voss, KA; Norred, WP; Meredith, FI; Sharma, RP; Spitsbergen, J; Williams, DE; Carlson, DB; Merrill, AH, Jr. Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environ. Health Perspect 2001, 109, 301–308. [Google Scholar]
- Ross, PF; Rice, LG; Reagor, JC; Osweiler, GD; Wilson, TM; Nelson, HA; Owens, DL; Plattner, RD; Harlin, KA; Richard, JL; et al. Fumonisin B1 concentrations in feeds from 45 confirmed equine leukoencephalomalacia cases. J. Vet. Diagn. Invest 1991, 3, 238–241. [Google Scholar]
- Wilson, TM; Ross, PF; Rice, LG; Osweiler, GD; Nelson, HA; Owen, DL; Plattner, RD; Reggiardo, C; Noon, TH; Pickrell, JW. Fumonisin B1 levels associated with an epizootics of equine leukoencephalomalacia. J Vet Diagn Invest 1990, 2, 213–216. [Google Scholar]
- Goel, S; Schumacher, J; Lenz, SD; Kemppanien, BW. Effects of fusarium moniliforme isolates on tissue and serum sphingolipid concentrations in horses. Vet. Hum. Toxicol 1996, 38, 265–270. [Google Scholar]
- Marasas, WF; Riley, RT; Hendricks, KA; Stevens, VL; Sadler, TW; Gelineau-van Wanes, J. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: A potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J. Nutr 2004, 134, 711–716. [Google Scholar]
- Sadler, TW; Merrill, AH; Stevens, VL; Sullards, MC; Wang, E; Wang, P. Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratology 2002, 66, 169–176. [Google Scholar]
- Stevens, VL; Tang, J. Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor. J. Biol. Chem 1997, 272, 18020–18025. [Google Scholar]
- Harel, R; Futerman, AH. Inhibition of sphingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons. J. Biol. Chem 1993, 268, 14476–14481. [Google Scholar]
- Kwon, OS; Slikker, W, Jr; Davies, DL. Biochemical and morphological effects of fumonisin B1 on primary cultures of rat cerebrum. Neurotoxicol. Teratol 2000, 22, 565–572. [Google Scholar]
- Monnet-Tschudi, F; Zurich, MG; Sorg, O; Matthieu, JM; Honegger, P; Schilter, B. The naturally occurring food mycotoxin fumonisin B1 impairs myelin formation in aggregating brain cell culture. Neurotoxicology 1999, 20, 41–48. [Google Scholar]
- Kwon, OS; Schmued, LC; Slikker, W, Jr. Fumonisin B1 in developing rats alter brain sphinganine levels and myelination. Neurotoxicolog 1997, 18, 571–580. [Google Scholar]
- Tsunoda, M; Dugyala, RR; Sharma, RP. Fumonisin B1-induced increases in neurotransmitter metabolite levels in different brain regions of BALB/c mice. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrnol 1998, 120, 457–465. [Google Scholar]
- Porter, JK; Voss, KA; Chamberlain, WJ; Bacon, CW; Norred, WP. Neurotransmitters in rats fed fumonisin B1. Proc. Soc. Exp. Biol. Med 1993, 202, 360–364. [Google Scholar]
- Banczerowski-Pelyhe, I; Vilagi, I; Detri, L; Doczi, J; Kovacs, F; Kukorelli, T. In vivo and in vitro electrophysiological monitoring of rat neocortical activity after dietary fumonisin exposure. Mycopathologia 2002, 153, 149–156. [Google Scholar]
- Osuchowski, MF; Edwards, GL; Sharma, RP. Fumonisin B1-induced neurodegeneration in mice after intracerebroventricular infusion is concurrent with disruption of sphingolipid metabolism and activation of proinflammatory signaling. Neurotoxicology 2005, 26, 211–221. [Google Scholar]
- Bouhet, S; Hourcade, E; Loiseau, N; Fikry, A; Martinez, S; Roselli, M; Galtier, P; Mengheri, E; Oswald, IP. The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci 2004, 77, 165–171. [Google Scholar]
- Ramasamy, S; Wang, E; Hennig, B; Merrill, AH, Jr. Fumonisin B1 alters sphingolipid metabolism and disrupt the barrier function of endothelial cells in culture. Toxicol. Appl. Pharmacol 1995, 133, 343–348. [Google Scholar]
- Osuchowski, MF; He, Q; Sharma, RP. Fumoniin B1 toxicity in the brain during coexisting lipopolysaccharide-related endotoxemia in BALB/c mice. Toxicol. Sci 2003, 72, 252–253. [Google Scholar]
- Szelenyi, J. Cytokines and the central nervous system. Brain Res. Bull 2001, 54, 329–338. [Google Scholar]
- Buccoliero, R; Futerman, AH. The roles of ceramide and complex sphingolipids in neuronal cell function. Pharmacol. Res 2003, 47, 409–419. [Google Scholar]
- Pettus, BJ; Chalfant, CE; Hannun, YA. Ceramide in apoptosis: An overview and current perspectives. Biochem. Biophys. Acta 2002, 1585, 114–125. [Google Scholar]
- Stockmann-Juvalla, H; Mikkola, J; Naarala, J; Loikkanen, J; Elovaara, E; Savolainen, K. Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radic. Res 2004, 38, 933–942. [Google Scholar]
- Mobio, TA; Anane, R; Baudrimont, I; Carratū, MR; Shier, TW; Dano, SD; Ueno, Y; Creppy, EE. Epigenetic properties of fumonisin B1: cell cycle arrest and DNA base modification in C6 glioma cells. Toxicol. Appl. Pharmacol 2000, 164, 91–96. [Google Scholar]
- Mobio, TA; Baudrimont, I; Sanni, A; Shier, TW; Saboureau, D; Dano, SD; Ueno, Y; Steyn, PS; Creppy, EE. Prevention by vitamin E of DNA fragmentation and apoptosis induced by fumonisin B1 in C6 glioma cells. Arch. Toxicol 2000, 74, 112–119. [Google Scholar]
- Mobio, TA; Tavan, E; Baudrimont, I; Anane, R; Carratū, MR; Sanni, A; Gbeassor, MF; Shier, TW; Narbonne, J-F; Creppy, EE. Comparative study of the toxic effects of fumonisin B1 in rat C6 glioma cells and p53-null mouse embryo fibroblasts. Toxicology 2003, 183, 65–75. [Google Scholar]
- Galvano, F; Campisi, A; Russo, A; Galvano, G; Palumbo, M; Renis, M; Barcellona, ML; Perez-Polo, JR; Vanella, A. DNA damage in astrocytes exposed to fumonisin B1. Neurochem. Res 2002, 27, 345–351. [Google Scholar]
- Galvano, F; Russo, A; Cardile, V; Galvano, G; Vanella, A; Renis, M. DNA damage in human fibroblasts exposed to fumonisin B1. Food Chem. Toxicol 2002, 40, 25–31. [Google Scholar]
- Ellerby, LM; Ellerby, HM; Park, SM; Holleran, AL; Murphy, AN; Fiskum, G; Kane, DJ; Testa, MP; Kayalar, C; Bredesen, DE. Shift of cellular oxidation-reduction potential in neural cells expressing Bcl-2. J Neurochem 1996, 67, 1259–1267. [Google Scholar]
- Kane, DJ; Sarafian, TA; Anton, R; Hahn, H; Butler, GE; Selverstone, VJ; Ord, T; Bredesen, DE. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 1993, 262, 1274–1277. [Google Scholar]
- Tjalkens, RB; Ewing, MM; Philbert, MA. Differential cellular regulation of the mitochondrial permeability transition in an in vitro model of 1,3-dinitrobenzene-induced encephalopathy. Brain Res 2000, 874, 165–177. [Google Scholar]
- Reed, JC; Meister, L; Tanaka, S; Cuddy, M; Yum, S; Geyer, C; Pleasure, D. Differential expression of bcl-2 protooncogene in neuroblastoma and other human tumor cell lines of neuronal origin. Cancer Res 1991, 51, 6529–6538. [Google Scholar]
- Stockmann-Juvala, H; Mikkola, J; Naarala, J; Loikkanen, J; Elovaara, E; Savolainen, K. Fuminisin B1-induced toxicity and oxidative damage in U-118MG glioblastoma cells. Toxicology 2004, 202, 173–183. [Google Scholar]
- Schmelz, EM; Dombrink-Kurzman, MA; Roberts, PC; Kozutsumi, Y; Kawasaki, T; Merrill, AH, Jr. Induction of apoptosis by fumonisin B1 in HT29 cells is mediated by the accumulation of endogenous free sphingoid bases. Toxicol Appl Pharmacol 1998, 148, 252–260. [Google Scholar]
- Tolleson, WH; Dooley, KL; Sheldon, WG; Thurman, JD; Bucci, TJ; Howard, PC. The Mycotoxin Fumonisin Induces Apoptosis in Cultured Human Cells and in Livers and Kidneys of Rats. In Advances in Experimental and Medical Biology Fumonisins in Food; Jackson, LS, DeVries, JW, Bullerman, LB, Eds.; Plenum Press: New York, NY, USA, 1996; pp. 237–250. [Google Scholar]
- Tolleson, WH; Melchior, WB; Morris, SM; McGarrity, LJ; Domon, OE; Muskhelishvili, L; James, SJ; Howard, PC. Apoptotic and anti-proliferaive effects of fuminisin B1 in human keratinocytes, fibroblasts, esophageal epithelial cells and hepatoma cells. Carcinogenesis 1996, 17, 239–249. [Google Scholar]
- Higuchi, Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem. Pharmacol 2003, 66, 1527–1535. [Google Scholar]
- Slater, AFG; Nobel, CSI; van den Dobbelsteen, DJ; Orrenius, S. Signaling mechanisms and oxidative stress in apoptosis. Toxicol Lett 1995, 82/83, 149–153. [Google Scholar]
- Galtier, P. Pharmacokinetics of ochratoxin A in animals. IARC Sci Publ 1991, 187–200. [Google Scholar]
- Pfohl-Leszkowicz, A; Manderville, RA. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res 2007, 51, 61–99. [Google Scholar]
- Garies, M; Wolff, J. Relevance of mycotoxin contaminated feed for farm animals and carryover of mycotoxins to food of animal origin. Mycoses 2000, 43, 79–83. [Google Scholar]
- Mally, A; Hard, GC; Dekant, W. Ochratoxin A as a potential etiologic factor in endemic nephropathy: lesions from toxicity studies in rats. Food Chem. Toxicol 2007, 45, 2254–2260. [Google Scholar]
- Krogh, P. Role of ochratoxin in disease causation. Food Chem. Toxicol 1992, 30, 213–224. [Google Scholar]
- Kane, A; Creppy, EE; Roschenthaler, R; Dirheimer, G. Changes in urinary and renal tubular enzymes caused by subchronic administration of ochratoxin A in rats. Toxicology 1986, 42, 233–243. [Google Scholar]
- Petkova-Bocharova, T; Chernozemsky, IN; Castegnaro, M. Ochratoxin A in human blood in relation to Balkan endemic nephropathy and urinary system tumors in Bulgaria. Food Addit. Contam 1988, 5, 299–301. [Google Scholar]
- Lea, T; Steinen, K; Stormer, FC. Mechanism of ochratoxin A-induced immunosuppression. Mycopathologia 1989, 107, 153–159. [Google Scholar]
- Stromer, FC; Lea, T. Effects of ochratoxin A upon early and late events in human T-cell proliferation. Toxicology 1995, 95, 45–50. [Google Scholar]
- Arora, RG; Frolen, H; Fellner-Feldegg, H. Inhibition of ochratoxin A teratogenesis by zearalenone and diethylstilbesterol. Food Chem. Toxicol 1983, 21, 779–783. [Google Scholar]
- Fukui, Y; Hayasaka, S; Itoh, M; Takeuchi, Y. Development of neurons and synapses in ochratoxin A-induced microcephalic mice: a quantitative assessment of somatosensory cortex. Neurotoxicol. Teratol 1992, 14, 191–196. [Google Scholar]
- Pfohl-Leszkowicz, A; Chakor, K; Creppy, EE; Dirheimer, G. DNA adduct formation in mice treated with ochratoxin A. IARC Sci Publ 1991, 245–253. [Google Scholar]
- Sava, V; Reunova, O; Velasquez, A; Harbison, R; Sanchez-Ramos, J. Acute neurotoxic effects of the fungal netabolite ochratoxin-A. Neurotoxicology 2006, 27, 82–92. [Google Scholar]
- Kuiper-Goodman, T; Hilts, C; Billiard, SM; Kiparissis, Y; Richard, ID; Hayward, S. Health risk assessment of ochratoxin A for all age-sex strata in a market economy. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2010, 27, 212–240. [Google Scholar]
- Creppy, EE; Chakor, K; Fisher, MJ; Dirheimer, G. The mycotoxin ochratoxin A is a substrate for phenylalanine hydroxylase in isolated rat hepatocytes and in vivo. Arch. Toxicol 1990, 64, 279–284. [Google Scholar]
- Creppy, EE; Kane, D; Dirheimer, G; Lafarge-Frayssinet, C; Mousset, S; Frayssinet, C. Genotoxicity of ochratoxin A in mice: DNA single-strand break evaluation in spleen, liver and kidney. Toxicol. Lett 1985, 28, 29–35. [Google Scholar]
- Dirheimer, G; Creppy, EE. Mechanism of action of ochratoxin A. IARC Sci Publ 1991, 171–186. [Google Scholar]
- Gautier, JC; Holzhaeuser, D; Markovic, J; Gremaud, E; Schilter, B; Turesky, RJ. Oxidative damage and stress response from ochratoxin exposure in rats. Free Radic. Biol. Med 2001, 30, 1089–1098. [Google Scholar]
- Bryan, NS; Rassaf, T; Maloney, RE; Rodriguez, CM; Saijo, F; Rodriguez, JR; Feelisch, M. Cellular targets and mechanisms of nitros(yl)ation: An insight into their nature and kinetics in vivo. Proc. Natl. Acad. Sci. USA 2004, 101, 4308–4313. [Google Scholar]
- Thomas, JA; Mallis, RJ. Aging and oxidation of reactive protein sulfhydryls. Exp. Gerontol 2001, 36, 1519–1526. [Google Scholar]
- Marin-Kuan, M; Nestler, S; Verguet, C; Bezençon, C; Piguet, D; Mansourian, R; Holzwarth, J; Grigorov, M; Delatour, T; Mantel, P; et al. A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin A carcinogenicity in rat. Toxicol. Sci 2006, 89, 120–134. [Google Scholar]
- Aleo, MD; Wyatt, RD; Schnellmann, RG. Mitochondrial dysfunction is an early event in ochratoxin A but not oosporein toxicity to rat renal proximal tubules. Toxicol. Appl. Pharmacol 1991, 107, 73–80. [Google Scholar]
- Wei, YH; Lu, CY; Lin, TN; Wei, RD. Effect of ochratoxin A on rat liver mitochondrial respiration and oxidative phosphorylation. Toxicology 1985, 36, 119–130. [Google Scholar]
- Belmadani, A; Tramu, G; Betbeder, AM; Creppy, EE. Subchronic effects of ochratoxin A on young adult rat brain and partial prevention by aspartate, a sweetener. Hum. Exp. Toxicol 1998, 17, 380–386. [Google Scholar]
- Hayes, AW; Cain, JA; Moore, BG. Effects of aflatoxin B1, ochratoxin A and rubratoxin B on infant rats. Food Cosmet. Toxicol 1977, 15, 23–27. [Google Scholar]
- Hayes, AW; Hood, RD; Lee, HL. Teratogenic effects of ochratoxin A in mice. Teratology 1974, 9, 93–97. [Google Scholar]
- Wangikar, PB; Dwivedi, P; Sharma, AK; Sinha, N. Effect in rats of simultaneous prenatal exposure to ochratoxin A and aflatoxin B(1). II. Histopathological features of teratological anomalies induced in fetuses. Birth Defects Res. B 2004, 71, 352–358. [Google Scholar]
- Tamura, M; Hirata, Y; Matsutani, T. Neurochemical effects of prenatal treatment with ochtatoxin A on fetal and adult mouse brain. Neurochem. Sci 1988, 13, 1139–1147. [Google Scholar]
- Belmadani, A; Tramu, G; Betbeder, AM; Steyn, PS; Creppy, EE. Regional selectivity to ochratoxin A, distribution and cytotoxicity in rat brain. Arch. Toxicol 1998, 72, 656–662. [Google Scholar]
- Sava, V; Reunova, O; Velasquez, A; Sanchez-Ramos, J. Can low level exposure to ochratoxin-A cause parkinsonism? J. Neurol. Sci 2006, 249, 68–75. [Google Scholar]
- Sanchez-Ramos, J; Overvik, E; Ames, BN. A marker of oxyradical-mediated DNA damage (oxo8dG) is increased in nigro-striatum of Parkinson’s disease brain. Neurodegeneration (incorporated into Exp. Neurol.) 1994, 3, 197–204. [Google Scholar]
- Bunge, I; Dirheimer, G; Roschenthaler, R. In vivo and in vitro inhibition of protein synthesis in Bacillus stearothermophilus by ochratoxin A. Biochem Biophys Res Commun 1978, 83, 398–405. [Google Scholar]
- Creppy, EE; Kern, D; Steyn, PS; Vleggaar, R; Roschenthaler, R; Dirheimer, G. Comparative study of the effect of ochratoxin a analogues on yeast aminoacyl-tRNA synthetases and on the growth and protein synthesis of hepatoma cells. Toxicol. Lett 1983, 19, 217–224. [Google Scholar]
- Palmer, TD; Takahashi, J; Gage, FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 1997, 8, 389–404. [Google Scholar]
- Song, HJ; Stevens, CF; Gage, FH. Neuronal stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat. Neurosci 2002, 5, 438–445. [Google Scholar]
- Chen, H; Tung, YC; Li, B; Iqbal, K; Grundke-Iqbal, I. Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis. Neurobiol. Aging 2006, 28, 1148–1162. [Google Scholar]
- Kawai, T; Takagi, N; Mochizuki, N; Besshoh, S; Sakanishi, K; Nakahara, M; Takeo, S. Inhibitor of vascular endothelial growth factor receptor tyrosine kinase attenuates cellular proliferation and differentiation to mature neurons in the hippocampal dentate gyrus after transient forebrain ischemia in the adult rats. Neuroscience 2006, 141, 1209–1216. [Google Scholar]
- Lagace, DC; Yee, JK; Bolanos, CA; Eisch, AJ. Juvenile administration of methylphenidate attenuates adult hippocampal neurogenesis. Biol. Psychiatry 2006, 60, 1121–1130. [Google Scholar]
- Rossi, C; Angelucci, A; Costantin, L; Braschi, C; Mazzantini, M; Babbini, F; Fabbri, ME; Tessarollo, L; Maffei, L; Berardi, N; Caleo, M. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 2006, 24, 1850–1856. [Google Scholar]
- Delibas, N; Altuntas, I; Yonden, Z; Ozcelik, N. Ochratoxin A reduces NMDA receptor subunits 2A and 2B concentrations in rat hippocampus: partial protective effect of melatonin. Hum. Exp. Toxicol 2003, 22, 335–339. [Google Scholar]
- Sava, V; Velasquez, A; Song, S; Sanchez-Ramos, J. Adult hippocampal neural stem/progenitor cells in vitro are vulnerable to the mycotoxin ochratoxin A. Toxicol. Sci 2007, 98, 187–197. [Google Scholar]
- Alexander, P. The role of DNA lesions in processes leading to aging in mice. Sym. Soc. Exp. Biol 1967, 21, 29–50. [Google Scholar]
- Korr, H; Schultz, B. Unscheduled DNA synthesis in various types of cells of the mouse brain in vivo. Exp. Brain Res 1989, 74, 573–578. [Google Scholar]
- Crago, BR; Gray, MR; Nelson, LA; Davis, M; Arnold, L; Thrasher, JD. Psychological, neuropsychological, and electrocortical effects of mixed mold exposure. Arch. Environ. Health 2003, 58, 452–563. [Google Scholar]
- Gordon, WA; Cantor, JB. The diagnosis of cognitive impairment associated with exposure to mold. Adv. Appl. Microbiol 2004, 55, 361–374. [Google Scholar]
- Rea, WJ; Didriksen, N; Simon, TR; Pan, Y; Fenyves, EJ; Griffiths, B. Effects of toxic exposure to molds and mycotoxins in building-related illnesses. Arch. Environ. Health 2003, 58, 399–405. [Google Scholar]
- Yoon, S; Cong, W-T; Bang, Y; Lee, SN; Yoon, CS; Kwack, SJ; Kang, TS; Lee, KY; Choi, J-K; Choi, HJ. Proteome response to ochratoxin A-induced apoptotic cell death in mouse hippocampal HT22 cells. Neurotoxicology 2009, 30, 666–676. [Google Scholar]
- Sato, A; Miyazaki, E; Satake, A; Hiramoto, A; Hiraoka, O; Miyake, T; Kim, HS; Wataya, Y. Proteome and transcriptome analysis of cell death induced by 5-fluoro-2′-deoxyuridine. Nucleic Acids Symp. Ser (Oxf) 2007, 51, 433–434. [Google Scholar]
- Siddiq, A; Ayoub, IA; Chavez, JC; Aminova, L; Shah, S; LaManna, JC; Patton, SM; Connor, JR; Cherny, RA; Volitakis, I; et al. Hypoxia-indicible factor prolyl 4-hydroxylase inhibition. A target for neurprotection in the central nervous system. J. Biol. Chem 2005, 280, 41732–41743. [Google Scholar]
- Lei, T; He, Q; Cai, Z; Zhou, Y; Wang, Y; Si, L; Cai, Z; Chiu, JF. Proteomic analysis of chromium cytotoxicity in cultured rat lung epithelial cells. Proteomics 2008, 8, 2420–2429. [Google Scholar]
- Noguchi, M; Takata, T; Kimura, Y; Manno, A; Murakami, K; Koike, M; Ohizumi, H; Hori, S; Kakizuka, A. ATPase activity of p97/valosin-containing protein is regulated by oxidative modification of the evolutionally conserved cysteine 522 residue in Waker A motif. J. Biol. Chem 2005, 280, 41332–41341. [Google Scholar]
- Zhang, X; Boesch-Saadatmandi, C; Lou, Y; Wolffram, S; Huebbe, P; Rimbach, G. Ochratoxin A induces apoptosis in neuronal cells. Genes Nutr 2009, 4, 41–48. [Google Scholar]
- Zurich, MG; Lengacher, S; Braissant, O; Monnet-Tschudi, F; Pellerin, L; Honegger, P. Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures. Neuroscience 2005, 134, 771–782. [Google Scholar]
- Hong, JT; Lee, MK; Park, KS; Jung, KM; Lee, RD; Jung, HK; Park, KL; Yang, KJ; Chung, YS. Inhibitory effect of peroxisome proliferator-activated receptor gamma agonist on ochratoxin A-induced cytotoxicity and activation of transcription factors in cultured rat embryonic midbrain cells. J. Toxicol. Environ Health A 2002, 65, 407–418. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Doi, K.; Uetsuka, K. Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways. Int. J. Mol. Sci. 2011, 12, 5213-5237. https://doi.org/10.3390/ijms12085213
Doi K, Uetsuka K. Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways. International Journal of Molecular Sciences. 2011; 12(8):5213-5237. https://doi.org/10.3390/ijms12085213
Chicago/Turabian StyleDoi, Kunio, and Koji Uetsuka. 2011. "Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways" International Journal of Molecular Sciences 12, no. 8: 5213-5237. https://doi.org/10.3390/ijms12085213
APA StyleDoi, K., & Uetsuka, K. (2011). Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways. International Journal of Molecular Sciences, 12(8), 5213-5237. https://doi.org/10.3390/ijms12085213