Distribution and Molecular Characterization of Clinically Relevant Acinetobacter Species from Selected Freshwater Sources in the Eastern Cape Province, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Areas
2.2. Sampling
2.3. Isolation and Purification of Presumptive Acinetobacter Species
2.4. Molecular Identification of Acinetobacter Species by PCR Assays
2.5. Amplification of Unique Acinetobacter Species DNA
2.6. Delineation of Genus Acinetobacter into Species
2.7. Detection of Virulence Genes
2.8. Statistical Analysis
3. Results
3.1. Isolation of Presumptive Acinetobacter Species
3.2. PCR Amplification for Confirmation of Genus Acinetobacter
3.3. Delineation of the Acinetobacter spp. into Species
3.4. Detection of Virulence Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Vos, D.; Jean-Paul, P.; Florence, B.; Serge, J.; Gilbert, V.; Thomas, R.; Elkana, K.; Petra, B.; Thierry, P.; Mony, H.; et al. Molecular Epidemiology and Clinical Impact of Acinetobacter calcoaceticus-baumannii complex in a Belgian Burn Wound Center. PLoS ONE 2016, 11, e0156237. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed]
- Adewoyin, M.A.; Okoh, A.I. The natural environment as a reservoir of pathogenic and non-pathogenic Acinetobacter species. Rev. Environ. Health 2018, 33, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.; Mukherjee, S.; Rana, V.S.; Saha, D.R.; Raman, R.; Padhy, P.K.; Mazumder, S. Isolation and characterization of arsenic-resistant bacteria from contaminated waterbodies in West Bengal, India. Geomicrobiol. J. 2015, 32, 17–26. [Google Scholar] [CrossRef]
- Hrenovic, J.; Durn, G.; Goic-Barisic, I.; Kovacic, A. Occurrence of an Environmental Acinetobacter baumannii Strain Similar to a Clinical Isolate in Paleosol from Croatia. Appl. Environ. Microbiol. 2014, 80, 2860–2866. [Google Scholar] [CrossRef] [PubMed]
- Kanafani, A.Z.; Kanj, S.S. Ministry of Health, Kingdome of Saudi Arabia. 2014. Available online: http://www.uptodate.com/contents/acinetobacter-infection-treatment-and-prevention (accessed on 19 June 2018).
- Doughari, H.J.; Ndakidemi, P.A.; Human, I.S.; Benade, S. The Ecology, Biology and Pathogenesis of Acinetobacter spp.: An Overview. Microbes Environ. 2011, 26, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Whitman, T.J.; Qasba, S.S.; Timpone, J.G.; Babel, B.S.; Kasper, M.R.; English, J.F.; Sanders, J.W.; Hujer, K.M.; Hujer, A.M.; Endimiani, A. Occupational transmission of Acinetobacter baumannii from a United States serviceman wounded in Iraq to a health care worker. Infect. Dis. 2008, 47, 439–443. [Google Scholar]
- Falagas, M.E.; Vardakas, K.Z.; Kapaskelis, A.; Triarides, N.A.; Roussos, N.S. Tetracyclines for multidrugresistant Acinetobacter baumannii. Int. J. Antimicrob. Agents 2015, 45, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Basri, R.; Zueter, A.R.; Mohamed, Z.; Alam, M.K.; Norsa’Adah, B.; Hasan, S.A.; Hasan, H.; Ahmad, F. Burden of bacterial meningitis: A retrospective review on laboratory parameters and factors associated with death in meningitis, Kelantan Malaysia. Nagoya J. Med. Sci. 2015, 77, 59–68. [Google Scholar]
- Lai, H.H.; Liou, B.H.; Chang, Y.Y.; Kuo, S.C.; Lee, Y.T.; Chen, T.L.; Fung, C.P. Risk factors and clinical outcome of sulbactam non-susceptibility in monomicrobial Acinetobacter nosocomialis. J. Microbiol. Immunol. Infect. 2016, 49, 371–377. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Lee, Y.-T.; Kuo, S.-C.; Chen, T.-L.; Liu, C.-P.; Liu, C.-E. Comparison between bacteremia caused by Acinetobacter pittii and Acinetobacter nosocomialis. J. Microbiol. Immunol. Infect. 2017, 50, 62–67. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Kuo, S.-C.; Yang, S.-P.; Lin, Y.-T.; Chiang, D.-H.; Tseng, F.-C.; Chen, T.-L.; Fung, C.-P. Bacteremic nosocomial pneumonia caused by Acinetobacter baumannii and Acinetobacter nosocomialis: A single or two distinct clinical entities. Eur. Soc. Clin. Microbiol. Infect. Dis. CMI 2013, 19, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Nho, J.S.; Jun, S.H.; Oh, M.H.; Park, T.I.; Choi, C.W.; Kim, S.I.; Choi, C.H.; Lee, J.C. Acinetobacter nosocomialis secretes outer membrane vesicles that induce epithelial cell death and host inflammatory responses. Microb. Pathog. 2015, 81, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Oh, M.H.; Jun, S.H.; Jeon, H.; Kim, S.I.; Kim, K.; Lee, Y.C.; Lee, J.C. Outer membrane Protein A plays a role in pathogenesis of Acinetobacter nosocomialis. Virulence 2016, 7, 413–426. [Google Scholar] [CrossRef]
- Ellis, T.N.; Kuehn, M.J. Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles. Microbiol. Mol. Biol. Rev. 2010, 74, 81–94. [Google Scholar] [CrossRef]
- Kwon, S.O.; Gho, Y.S.; Lee, J.C.; Kim, S.I. Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate. FEMS Microbiol. Lett. 2009, 297, 150–156. [Google Scholar] [CrossRef]
- Jun, S.H.; Lee, J.H.; Kim, B.R.; Kim, S.I.; Park, T.I.; Lee, J.C.; Lee, Y.C. Acinetobacter baumannii Outer Membrane Vesicles Elicit a Potent Innate Immune Response via Membrane Proteins. PLoS ONE 2013, 8, e71751. [Google Scholar] [CrossRef]
- Fiester, S.E.; Arivett, B.A.; Schmidt, R.E.; Beckett, A.C.; Ticak, T.; Carrier, M.V.; Ghosh, R.; Ohneck, E.J.; Metz, M.L.; Jeffries, M.K.S.; et al. Iron-Regulated Phospholipase C Activity Contributes to the Cytolytic Activity and Virulence of Acinetobacter baumannii. PLoS ONE 2016, 11, e0167068. [Google Scholar] [CrossRef] [PubMed]
- Diancourt, L.; Passet, V.; Nemec, A.; Dijkshoorn, L.; Brisse, S. The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool. PLoS ONE 2010, 5, e10034. [Google Scholar] [CrossRef]
- Maravic, A.; Skocibusic, M.; Fredotovic, Z.; Samanic, I.; Cvjetan, S.; Knezovic, M.; Puizina, J. Urban riverine environment is a source of multidrug-resistant and ESBL-producing clinically important Acinetobacter spp. Environ. Sci. Pollut. Res. 2016, 23, 3525–3535. [Google Scholar] [CrossRef]
- Sibanda, T.; Chigor, V.N.; Koba, S.; Obi, C.L.; Okoh, A.I. Characterisation of the physicochemical qualities of a typical rural-based river: Ecological and public health implications. Int. J. Environ. Sci. Technol. 2013, 11, 1771–1780. [Google Scholar] [CrossRef]
- American Public Health Association, APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Maugeri, T.L.; Carbone, M.; Fera, M.T.; Gugliandolo, C. Detection and differentiation of Vibrio vulnificus in seawater and plankton f a coastal zone of the Mediterranean Sea. Res. Microbiol. 2006, 157, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.L.; Lee, Y.T.; Kuo, S.C.; Yang, S.P.; Fung, C.P.; Lee, S.D. Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii with a multiplex PCR assay. J. Med. Microbiol. 2014, 63, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.L.; Siu, L.K.; Wu, R.C.C.; Shaio, M.F.; Huang, L.Y.; Fung, C.P.; Lee, C.M.; Cho, W.L. Comparison of one-tube multiplex PCR, automated ribotyping and intergenic spacer (ITS) sequencing for rapid identification of Acinetobacter baumannii. Clin. Microbiol. Infect. 2007, 13, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P.; Wisplinghoff, H.; Krut, O.; Seifert, H. A PCR-based method to differentiate between Acinetobacter baumannii and Acinetobacter genomic species 13TU. Clin. Microbiol. Infect. 2007, 13, 1199–1201. [Google Scholar] [CrossRef] [PubMed]
- Thummeepak, R.; Kongthai, P.; Leungtongkam, U.; Sitthisak, S. Distribution of virulence genes involved in biofilm formation in multi-drug resistant Acinetobacter baumannii clinical isolates. Int. Microbiol. 2016, 19, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Momtaz, H.; Seifati, S.M.; Tavakol, M. Determining the prevalence and detection of the most prevalent virulence genes in Acinetobacter baumannii isolated from hospital infections. Int. J. Med. Lab. 2015, 2, 87–97. [Google Scholar]
- Braun, G.; Vidotto, M.C. Evaluation of adherence, hemagglutination, and presence of genes codifying for virulence factors of Acinetobacter baumannii causing urinary tract infection. Mem. Inst. Oswaldo Cruz 2004, 99, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yao, Y.; Wang, S.; Xia, Y.; Yang, X.; Long, Q.; Sun, W.; Liu, C.; Li, Y.; Chu, X.; et al. Immunization with a 22-kDa outer membrane protein elicits 116 protective immunity to multidrug-resistant Acinetobacter baumannii. Sci. Rep. 2016, 6, 20724. [Google Scholar] [CrossRef]
- Krizova, L.; Maixnerovaa, M.; Sedob, O.; Nemec, A. Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosystems in the Czech Republic. Syst. Appl. Microbiol. 2014, 37, 467–473. [Google Scholar] [CrossRef]
- Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.; Li, Y.; Wang, M.; Zeng, Z. Antibiotics, Antibiotic Resistance Genes, and Bacterial Commu-nity Composition in Fresh Water Aquaculture Environment in China. Microb. Ecol. 2015, 70, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.C.; Kuo, S.C.; Chen, Y.C.; Lee, Y.T.; Chen, T.L.; Fung, C.P. Polymerase chain reaction assay for the detection of Acinetobacter baumannii in endotracheal aspirates from patients in the intensive care unit. J. Microbiol. Immunol. Infect. 2011, 44, 106–110. [Google Scholar] [CrossRef]
- Park, Y.K.; Jung, S.-I.; Park, K.-H.; Kim, D.H.; Choi, J.Y.; Kim, S.H.; Ko, K.S. Changes in antimicrobial susceptibility and major clones of Acinetobacter calcoaceticus–baumannii complex isolates from a single hospital in Korea over 7 years. J. Med. Microbiol. 2012, 61, 71–79. [Google Scholar] [CrossRef]
- Ambrosi, C.; Scribano, D.; Aleandri, M.; Zagaglia, C.; Di Francesco, L.; Putignani, L.; Palamara, A.T. Acinetobacter baumannii Virulence Traits: A Comparative Study of a Novel Sequence Type with Other Italian Endemic International Clones. Front. Microbiol. 2017, 8, 1977. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Unno, Y.; Kawakami, S.; Ubagai, T.; Ono, Y. Virulence characteristics of Acinetobacter baumannii clinical isolates vary with the expression levels of omps. J. Med. Microbiol. 2017, 66, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Antunes, L.C.S.; Imperi, F.; Carattoli, A.; Visca, P. Deciphering the Multifactorial Nature of Acinetobacter baumannii Pathogeniity. PLoS ONE 2011, 6, e22674. [Google Scholar] [CrossRef]
- Smith, M.G.; Gianoulis, T.A.; Pukatzki, S.; Mekalanos, J.J.; Ornston, L.N.; Gerstein, M.; Snyder, M. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 2007, 21, 601–614. [Google Scholar] [CrossRef]
- Smani, Y.; Dominguez-Herrera, J.; Pachón, J. Association of the Outer Membrane Protein Omp33 with Fitness and Virulence of Acinetobacter baumannii. J. Infect. Dis. 2013, 208, 1561–1570. [Google Scholar] [CrossRef]
- Smani, Y.; Domínguez-Herrera, J.; Pachón, J. Rifampin Protects Human Lung Epithelial Cells against Cytotoxicity Induced by Clinical Multi and Pandrug-resistant Acinetobacter baumannii. J. Infect. Dis. 2011, 203, 1110–1119. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, C.H.; Kim, J.W.; Lee, J.C. Acinetobacter baumannii outer membrane protein a induces dendritic cell death through mitochondrial targeting. J. Microbiol. 2010, 48, 387–392. [Google Scholar] [CrossRef]
- Smani, Y.; Fàbrega, A.; Roca, I.; Sánchez-Encinales, V.; Vila, J.; Pachón, J. Role of OmpA in the Multidrug Resistance Phenotype of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2014, 58, 1806–1808. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer Name | Primer Sequence (5′-3′) | bp | Acinetobacter spp. | References |
---|---|---|---|---|---|
gyrB | P-Ab-ITSF; P-Ab-ITSR | CATTATCACGGTAATTAGTG AGAGCACTGTGCACTTAAG | 208 | A. baumannii | [25] |
gyrB | sp4F; sp4R | CACGCCGTAAGAGTGCATTA AACGGAGCTTGTCAGGGTTA | 294 | A. nosocomialis | [27] |
Gene | Virulence Factor | Primer Sequences | Amplicon Size | Tm (°C) | Reference |
---|---|---|---|---|---|
afa/draBC | Dr fimbriae | GCTGGGCAGCAAACTGATAACTCTC CATCAAGCTGTTTGTTCGTCCGCCG | 750 | 63 | [30] |
epsA | Exo-polysaccharide | AGCAAGTGGTTATCCAATCG ACCAGACTCACCCATTACAT | 451 | 50 | [28] |
fimH | Type 1 fimbriae | TGCAGAACGGATAAGCCGTGG GCAGTCACCTGCCCTCCGGTA | 508 | 63 | [30] |
OmpA | Outer membrane protein | CGCTTCTGCTGGTGCTGAAT CGTGCAGTAGCGTTAGGGTA | 531 | 50 | [28] |
PAI | Pathogenicity-associated island | GGACATCCTGTTACAGCGCGCA TCGCCACCAATCACAGCCGAAC | 930 | 50 | [30] |
Sfa/focDE | S fimbriae | CTCCGGAGAACTGGGTGCATCTTAC CGGAGGAGTAATTACAAACCTGGCA | 410 | 63 | [30] |
traT | Serum resistance | GGTGTGGTGCGATGAGCACAG CACGGTTCAGCCATCCCTGAG | 290 | 63 | [30] |
Water Sample Sources | Total Number of Presumptive Acinetobacter Isolates | Acinetobacter Genus | A. baumannii | A. nosocomialis |
---|---|---|---|---|
Great Fish | 370 | 285 (77%) | 154 (54%) | 16 (5.6%) |
Keiskamma | 309 | 219 (70.9%) | 102 (46.6%) | 3 (1.4%) |
Tyhume | 428 | 340 (79%) | 155 (45.6%) | 4 (1.2%) |
Total | 1107 | 844 (76%) | 411 (48.7%) | 23 (2.7%) |
Virulence Gene | Sampled Rivers | |||||
---|---|---|---|---|---|---|
Great Fish | Kieskamma | Tyhume | ||||
A. baumannii (n = 153) | A. nosocomialis (n = 16) | A. baumannii (n = 102) | A. nosocomialis (n = 3) | A. baumannii (n = 155) | A. nosocomialis (n = 4) | |
Afa/draBC | 16 (10.46%) | - | 4 (3.92%) | - | 8 (5.81) | 1 (25.00%) |
espA | 36 (23.53%) | - | 15 (14.71%) | - | 44 (28.39%) | 1 (25.00%) |
fimH | 44 (28.76%) | - | 26 (25.49%) | 1 (33.33%) | 30 (19.36%) | 1 (25.00%) |
OmpA | 69 (45.10%) | - | 52 (50.98%) | - | 77 (49.68%) | - |
PAI | 2 (1.31%) | 1 (6.26%) | 3 (2.94%) | - | - | - |
Sfa/focDE | 3 (1.96%) | - | 4 (3.92%) | - | 7 (4.52%) | - |
traT | 19 (12.42%) | - | 4 (3.92%) | - | 22 (14.19%) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adewoyin, M.A.; Ogunmolasuyi, A.M.; Okoh, A.I. Distribution and Molecular Characterization of Clinically Relevant Acinetobacter Species from Selected Freshwater Sources in the Eastern Cape Province, South Africa. Bacteria 2024, 3, 160-170. https://doi.org/10.3390/bacteria3030011
Adewoyin MA, Ogunmolasuyi AM, Okoh AI. Distribution and Molecular Characterization of Clinically Relevant Acinetobacter Species from Selected Freshwater Sources in the Eastern Cape Province, South Africa. Bacteria. 2024; 3(3):160-170. https://doi.org/10.3390/bacteria3030011
Chicago/Turabian StyleAdewoyin, Mary Ayobami, Adewoyin Martin Ogunmolasuyi, and Anthony Ifeanyi Okoh. 2024. "Distribution and Molecular Characterization of Clinically Relevant Acinetobacter Species from Selected Freshwater Sources in the Eastern Cape Province, South Africa" Bacteria 3, no. 3: 160-170. https://doi.org/10.3390/bacteria3030011
APA StyleAdewoyin, M. A., Ogunmolasuyi, A. M., & Okoh, A. I. (2024). Distribution and Molecular Characterization of Clinically Relevant Acinetobacter Species from Selected Freshwater Sources in the Eastern Cape Province, South Africa. Bacteria, 3(3), 160-170. https://doi.org/10.3390/bacteria3030011