
Supplementary Information

S1: Runtime Performance Characteristics:

AutodiDAQt makes assumptions about the data acquisition task to simplify
the acquisition runtime. Significantly, because AutodiDAQt implements the
acquisition runtime as a set of asynchronous tasks running on a single
process, AutodiDAQt assumes that the reads from the instrumentation are
IO-bound rather than CPU-bound. Although this is not a strict assumption,
as the actor for an instrument can talk to another process which it sets up
during the application’s startup, circumventing this assumption requires the
end user to take care of any multitasking concerns arising out of a partial
adoption of multiprocessing.

Despite this constraint, the AutodiDAQt’s runtime is very low overhead, as
can be verified by running the profiling benchmarks included in the source
repository. Benchmarks are always machine-dependent, but on the plain
consumer hardware available at the time of publication, the overhead per
experimental configuration (“point”) is on the order of 200 μs when running
an acquisition generating synthetic data from a 250 px by 250 px virtual CCD.
As AutodiDAQt is not intended for applications which need to operate
instruments in closed-loop control or collect data in real time, an overhead of
less than one millisecond per point makes use of the multiprocessing
unnecessary for most experiments. AutodiDAQt achieves this level of
performance by running UI repainting infrequently, using the Qt event loop
in place of the standard library event loop, and by performing essentially no
data bookkeeping other than memory allocation during an experimental run.
All the data collation and transformation are deferred to a separate process
once an experiment is complete.

S2: Product Space and Sum Space Structures:

The design philosophy underpinning AutodiDAQt’s conception of
instruments and data acquisition modularity is that data acquisition
hardware defines a mathematical space, with each piece of hardware
exposing zero or more dimensions for control, and one or more dimensions
for acquisition. Every control dimension is an acquisition dimension because
we can always ask to record where we are in configuration space. By viewing
hardware in this way, we can think of data acquisition tasks in terms of a
product and sum structure.

By product, we mean that we can think of the product of two data acquisition
programs 𝑃 and 𝑃′ which record over the spaces 𝑆 = span(ሼ𝑠௜ሽ) and 𝑆′ =span൫൛𝑠௝′ൟ൯. Then, the acquisition program 𝑃 × 𝑃′ consists of recording over
the configuration space 𝑇 = span൫ሼ𝑠௜ሽ ∪ ൛𝑠௝′ൟ൯. The simplest way to construct
this acquisition program is just to traverse the program 𝑃′ inside the
acquisition loop of 𝑃. To concretize this idea, suppose for an ARPES
measurement that 𝑃 consists of measuring a single ARPES cut at different
temperatures so that ሼ𝑠௜ሽ = [𝑠୘ୣ୫୮ୣ୰ୟ୲୳୰ୣ] and 𝑃′ consist of measuring a 2D cut

of a Fermi surface at constant photon energy by scanning one angular degree
of freedom 𝜃, so that ൛𝑠௝′ൟ = [𝑠஘]. Then, 𝑃 × 𝑃′ consists of recording 2D cuts of
the Fermi surface across different temperatures, with ሼ𝑡௜ሽ = ሼ𝑠௜ሽ ∪ ൛𝑠௝′ൟ =[𝑠୘ୣ୫୮ୣ୰ୟ୲୳୰ୣ, 𝑠஘].
By sum, we mean that if at each point in the configuration space 𝑆, program 𝑃 (𝑃′) records a vector of data 𝑟 ∈ 𝑅 (𝑟ᇱ ∈ 𝑅′), then the program 𝑃 ൅ 𝑃′ consists
of recording data according to what 𝑃 and 𝑃′ require independently (𝑟, 𝑟ᇱ) ∈𝑅 × 𝑅ᇱ. If we consider a simple ARPES measurement where 𝑃 records the
photoelectron spectrum 𝑟 and 𝑃ᇱ records the photocurrent from the sample,
then 𝑃 ൅ 𝑃′ consists of measuring and recording the photoelectron spectrum
and the integrated photocurrent at each point of the acquisition program. The
sum product structures for these simple acquisition programs are shown
diagrammatically in Error! Reference source not found..

The advantage of this modularity is that it becomes transparent to determine
how to construct useful acquisition routines over complicated control and
acquisition hardware by compositing simple, one-dimensional acquisition
programs. This motivates composing the acquisition sequence from
primitives in addition to separating the task of describing the acquisition
sequence, the heart of the experiment, from the details of building robust and
fluent DAQ programs.

Figure S1. Products (top) and sums (bottom) of configuration spaces and programs.
The diagrams above show how AutodiDAQt can use products and sum structures to
composite acquisition programs. (Top) in the top row, two one-dimensional
acquisition programs P and P’ acquire over spaces 𝑆 and 𝑆′. Their product consists of

iterating over the Cartesian product 𝑆 × 𝑆′. There is some ambiguity in terms of the
order of traversal over the product space. One option is to run 𝑃′ in the inner loop of 𝑃, which is what is shown in the first row. Other strategies exist depending on what
is desirable in the context. This can be configured using different kinds of product
structures over 𝑆 and 𝑆′ such as randomly acquiring a point from the grid, acquiring
them in an alternating ascending and descending fashion—if the motion in 𝑆′ is
expensive, for instance—and using space filling curves to sample coarsely in the
higher dimensional space first. (Bottom) in the bottom row, the sum of two programs
is shown instead. The second program differs to the first in that it records 𝑆(𝑇, 𝜓), the
entire ARPES spectrum, instead of just the photocurrent 𝐼௣௛(𝑇, 𝜓). The sum of the
programs records the union of the data by iteratively moving to configurations (𝑇଴, 𝜓଴), recording the data 𝐼௣௛(𝑇଴, 𝜓଴) required by 𝑃 and then recording the data 𝑆(𝑇଴, 𝜓଴) required by 𝑃′ before continuing to the next required configuration (𝑇ଵ, 𝜓଴).

A large collection of complete example applications is distributed and
described alongside the AutodiDAQt source [examples module]. These
examples cover topics ranging from axis and instrument specification
[manual_axis.py], creating additional UI components to run alongside the
main acquisition UI [ui_panels.py], acquisition interlocks
[scanning_interlocks.py] and the API for rapidly programming acquisition
applications [scanning_experiment_revisited.py], logical coordinate
transforms and virtual axes [computed_axis.py], in addition to many other
topics.

A representative example is shown and discussed below, along with the user
interface that it generates and a sample data output, to better inform the
reader as to how AutodiDAQt simplifies common DAQ programming tasks.

Scanning over configuration: After defining the axes and experimental
degrees of freedom, the simplest DAQ operation is to collect data inside the
volume defined by these degrees of freedom.

from autodidaqt import AutodiDAQt,
Experiment
from autodidaqt.mock import
MockMotionController,
MockScalarDetector
from autodidaqt.scan import scan

dx =
MockMotionController.scan("mc").stag
es[0](limits=[-10, 10])
dy =
MockMotionController.scan("mc").stag
es[1](limits=[-30, 30])

read_power = {"power":
"power_meter.device"}

class MyExperiment(Experiment):
 scan_methods = [
 scan(x=dx, name="dx Scan",
read=read_power),
 scan(x=dx, y=dy, name="dx-dy
Scan", read=read_power),
]

AutodiDAQt(
 __name__,
 {},
 {"experiment": MyExperiment},
 {"mc": MockMotionController,
"power_meter": MockScalarDetector},
).start()

Figure S2: Code Listing 1—example acquisition program for scanning a motion
controller while recording from a power meter.

In Figure S2 or Code Listing 1, we see the full program source for a simple acquisition program which uses
the mock instrument definitions provided by AutodiDAQt. Scan axes are defined in the lines starting dx =
and dy =. Scan axes are defined relative to a named instrument (here, “mc” for “Motion Controller”) and a
path to a specific axis (here, index 0 of “stages” and index 1 of “stages” for each of dx and dy). This definition
gives a full path to the axis which should be controlled when referencing the scan direction dx/dy and they
are equivalent to universal resource identifiers//mc/stages/0/ and //mc/stages/1/. Limit configurations
specify how far each axis can safely be moved in its units during an acquisition.
Then, in the experiment definition, these scan directions dx and dy are combined into two acquisition
programs “dx Scan” and “dx-dy Scan” which scan over the x direction (//mc/stages/0) or both the x and y
directions, respectively. Each of these acquisition programs will acquire data by reading from the

instrument “power_meter.device” (equivalently, //power_meter/device/) and storing readings under the
label “power”. Internally, the scan function which we are using to generate the acquisition programs “dx
Scan” and “dx-dy Scan” takes the Cartesian product of the control variables and the union of the read
variables to build an acquisition program from “dx” and “dy”, which are essentially specifications of
acquisition programs which affect only one hardware degree of freedom (see the above section on Product
Space and Sum Space Structures).

In Figure S3, we show the running DAQ program corresponding to Code Listing 1 (Figure S2).
AutodiDAQt synthesizes the UI controls for each of the scan modes “dx Scan” and “dx-dy Scan” as we
requested, with the controls for “dx-dy Scan” being currently visible in the acquisition window on the right.
Most of this rightmost window is taken up with output variable and control variable visualizations. The
currently selected tab shows the value history for the hardware at URI //mc/stages/0/ which, per a prior
discussion, corresponds to the x direction in the scan definition. It has a staircase structure because in the
requested scan configuration (shown), the inner loop consists of rastering y in 51 steps between 0 and 10.

Figure S3: Generated UI and DAQ program for Error! Reference source not found..
The right-hand side is the main acquisition window which shows the configuration
options for the selected scan mode, as well as plots for each of the control and output
acquisition variables. On the left, monitor panes and controls for each instrument are
shown. For instruments with control axes, these axes are provided with a plot of the
control variable history, direct write and read controls, and jog controls to manually
adjust positioning.

The resulting data of running this scan with the configuration depicted can
be seen in Figure S4. We can see output variables x and y with appropriate
lengths for the requested acquisition sequence as well as the 2D scalar output
power with dimensions (x, y). In addition to the collated format which carries
the high-level semantics for the requested acquisition sequence, the raw
acquisition sequence is stored so that it can be introspected for any

irregularities in the future. This is one of many ways in which AutodiDAQt
supports automatically providing defensive and reproducible scientific
experiments without domain knowledge or software expertise on the part of
the scientist programming the data acquisition system.

Figure S4: Output data for the DAQ program shown in Error! Reference source not
found. when executed with the parameters and configuration depicted in Error!
Reference source not found.. (Top) Each of the control variables x and y has an entry
in the output file, and the recorded data power is a two dimensional scalar function
(array) of the variables (x,y). (Bottom) In addition to the collated data format which
has the high-level semantics of the data acquisition operation we hoped to perform,
AutodiDAQt also retains a structured command log which records timings and
locations of control axes and read values at each point (entry in the collated format)
and step (sequence of reads or motions performed together) in the acquisition
sequence. A metadata log and application log, both not shown here for brevity, are
also retained with each output.

In Figure S3, we show the running DAQ program corresponding to Error!
Reference source not found.. AutodiDAQt synthesizes the UI controls for
each of the scan modes “dx Scan” and “dx-dy Scan” as we requested, with the
controls for the “dx-dy Scan” being currently visible in the acquisition window
on the right. Most of this rightmost window is taken up with the output
variable and control variable visualizations. The currently selected tab shows
the value history for the hardware at URI //mc/stages/0/ which, as per a prior
discussion, corresponds to the x direction in the scan definition. It has a
staircase structure because in the requested scan configuration (shown), the
inner loop consists of rastering y in 51 steps between 0 and 10. The resulting

data of running this scan with the configuration depicted can be seen in Figure
S5. We can see output variables x and y with appropriate lengths for the
requested acquisition sequence as well as the 2D scalar output power with
dimensions (x, y). In addition to the collated format which carries the high-
level semantics for the requested acquisition sequence, the raw acquisition
sequence is stored so that it can be introspected for any irregularities in the
future. This is one of many ways in which AutodiDAQt supports
automatically providing defensive and reproducible scientific experiments
without domain knowledge or software expertise on the part of the scientist
programming the data acquisition system.
AutodiDAQt provides value records and timestamps for each step and point
of the acquisition sequence. A point in the acquisition sequence corresponds
to a single entry in the collated data, whereas a step corresponds to a set of
motions or reads from the hardware which are performed concurrently. By
examining the step and point counters “mc-stages-0-point” and “mc-stages-0-
step”, we can see that there are twice as many steps as points for this
acquisition sequence. This is because to collect any given piece of data, we
first move to the desired point (x,y) on each even step before then reading
power on each odd step. For a more complicated acquisition program, there
may be no simple correspondence between the step and point number. For
instance, this may occur if multiple steps of an axis are required to perform
the backlash compensation of a motor or multiple temperature steps are used
to approach a target temperature for the PID controller’s stability.
In addition to the acquisition record provided, AutodiDAQt keeps application
logs in the JSON format with timestamps which can be correlated to points in
the raw acquisition record to cross-correlate data irregularities with detailed
event logs.

S4: AutodiDAQt Application Structure:
Data acquisition programs must operate reliably in a nearly real-time
paradigm and tolerating faults to errors in user code. Traditionally designed
monolithic data acquisition programs are particularly brittle to faults in user
code because there is no distinguishing barrier between the code written by
users or scientists, and the code required to support the healthy operation of
its instrumentation. AutodiDAQt makes three defensive choices regarding the
application’s structure to reduce its fragility.
The first is that AutodiDAQt adopts a central monitor process which is
responsible for UI and communications, while all other code runs with some
degree of isolation, either in coroutines, threads, or another process. This
makes it simpler for AutodiDAQt to recover gracefully from hardware and
software failures. Each instrument driver is isolated and can schedule any
necessary code to run in its own coroutine without having to rely on the user
code to perform these tasks repetitively and in a timely fashion for a safe
operation.
The second design decision is in preventing the user acquisition code from
directly operating against the hardware. Instead, the acquisition steps are only
orchestrated in the user code but are executed entirely in the library code
which can be expected to have a higher reliability. This also makes it

transparent to a user to test data acquisition programs without physical
hardware attached which aids in the safe and rapid development of data
acquisition programs. This situation shown in Figure S5b tracks the execution
and DAQ request/command flow through the process of running an
acquisition program. A detailed description of the control flow during the
course of an experiment is described in the caption to Figure S5b.
The third design decision is in adopting state machines to coordinate the
experiment and acquisition flow and remote command flow. A very
simplified version of the internal state machine for running acquisition
experiments is shown in the bottom of Figure S5a, which also depicts how
these internal states map onto the terminology for the data acquisition
program’s lifecycle. On the side of reliability, this improves the testability of
the data acquisition software by facilitating creating well-defined state
conditions for the software to be tested in. Indirectly, the reliability is also
increased by facilitating user understanding via software specifications in
terms of well-defined states.

(a) (b)

Figure S5. Structure of the AutodiDAQt Framework and Experiment Control Flow.
(a) Granular component hierarchy with significant elements of the framework. Actors
and panels provide an actor-based computing model for long lived computations and
tasks, and their associated UI. The experiment runtime provides high-level
abstractions for communicating with instruments and collecting data from them by
using declaratively programmed acquisitions. The diagram at the bottom of the figure
is a simplified state diagram for the state machine inside the experiment runtime
showing transitions between different phases in the application lifecycle and between
running and idle states of the experiment. (b) Control flow between user and library
code during the collection of a single run of data. Red arrows indicate the control flow
inside the program, with cyan arrows for collected data. User code generates a
description of the desired acquisition steps (purple) which is handled concurrently by
the experiment runtime (forking red arrows) which performs the data collection, deals
with data collection and storage, and ensures synchronization before further
acquisition steps are performed. Chronologically during a run, (1) the experiment
enters the running state; (2) it requests a description of what to do from the user’s
acquisition; and (3) it performs a step of the experiment by distributing the request to

appropriate hardware. (4) The hardware moves, reads, or does both and returns the
data back to the runtime where it is collated into raw events and structured records.
After all tasks in the step have been completed, the experiment asks for another point
(5) from the user’s acquisition continuing for as long as it is fed motion or acquisition
steps (6). (7) The complete record of acquisition steps, their timing, and the raw and
structured data are passed to a worker pool to be saved and the runtime is again
immediately available for further runs and acquisition tasks.

S5: AutodiDAQt Asynchronous Programming Model:

Data acquisition is a fundamentally asynchronous task, but there are many
programming models which can be invoked to handle application
programming in this asynchronous environment. For AutodiDAQt, we
operate in an augmented actor model where synchronization happens via
message passing between actors and a central monitor. Message passing
coordination is required to facilitate remote command execution, a central
feature required to provide a tight integration with data analysis software.
The necessity of applying this application paradigm between AutodiDAQt
and remote acquisition planning also motivated applying this approach
internally to coordinate between the monitor and the independent
components. In AutodiDAQt, each independent component has a coroutine
with represents the ego of that component. This coroutine reads from an
associated inbox of messages, can send messages to other components, and
can perform any independent work required of that component. The
collection of this coroutine, the inbox, and the associated private state maps
well onto the actor model and, therefore, can be called an actor (see also A5a).

In AutodiDAQt, each independent piece of hardware is associate with its
own actor and additional separate actors exist for the monitor and the
experiment abstraction. If needed, users can define additional actors to take
up responsibilities such as logging, communication with status dashboards
at larger facilities, or running auxiliary user interfaces to provide cameras and
diagnostics, as required by the needs of the data acquisition system. Using
separate actors—as discussed in Error! Reference source not found.—
provides application robustness by isolating concerns across the messaging
passing boundary. In the event of serious errors, the monitor can attempt to
restart the failed component or else can inform each other actor of the failure
and the requirement to safely shutdown so that the issue can be addressed.

S6: Details and AutodiDAQt Type System Forwarding and Remote
Acquisition: a constrained remote application programming interface is
furnished based on an exported, extensible remote type system. This type of
system covers the datatypes required to specify all the parameters for data
acquisition procedures, as well as the data that they produce at each point in
the configuration space. This is necessary so that a remote data acquisition
planner, like the one bundled in the AutodiDAQt remote, can update the
acquisition parameters before dispatching a data acquisition request and can
interpret the data which are being acquired so that it can be collated and
understood by the data analysis system. AutodiDAQt currently has no plans
to support third party software in the place of the AutodiDAQt receiver. As

a result, the communication API and remote procedure call format over the
message broker are the implementation details. However, the remote RPC
commands are very simple—amounting to lightweight JSON RPC—and all
the commands are available in the shared AutodiDAQt common module.

The type of system itself must be serializable to the wire format adopted by
AutodiDAQt—which is flexible, although JSON is used by default—so that
it can be provided to the remote acquisition planner when a remote attaches
to the data acquisition system. Each exported type is associated with a unique
ID. Once the type of system has been exported, values are sent over the wire
in a container format specifying the unique type of ID of the value and the
serialized contents of that value. This permits arbitrary data to be packed on
the side of the data acquisition suite before being unambiguously unpacked
at the remote planner/data analysis side so that it is immediately available,
even before the data has been fully collected.

Technology Choices and Software Ecosystem: the NumPy [45] array format
and numeric programming ecosystem have over the last decade become the
tool of choice for scientific programming, with a broad adoption across
diverse scientific disciplines. Although it has formed the backbone for
scientific computing in recent years, the NumPy array format emphasizes
general purpose operations over discipline-specific semantics. For this
reason, extensions to the algorithms used on these formats, as in SciPy [46],
and to the formats themselves have been developed. AutodiDAQt leverages
xarray [47]—an extension of the NumPy format and the tabular data format
Pandas [48]—to provide coordinate aware and unitful representations of the
acquired data. To provide efficient on-disk representations of the large
multidimensional datasets which are produced by ARPES, for instance,
AutodiDAQt adopts the zarr [49] compressed array format, with additional
extensions to serialize to additional formats which may be required in
specific scientific disciplines.

For inter-process and remote communication, AutodiDAQt uses NNG
(nanomsg-next-generation) for message passing between the main data
acquisition process and a remote acquisition process. A description of how a
command language is established between the main process and the remote
process is discussed briefly in Error! Reference source not found..

Author Contributions: A.L. and C.H.S. initiated and directed this research project.
C.H.S. developed the data acquisition program and applied it to nanoXPS and pump
and probe ARPES experiments. A.L. and C.H.S. wrote the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Director, Office of Basic Energy Sciences,
Materials Science and Engineering Division, of the U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231, as part of the Ultrafast Materials Science Program
(KC2203).

Data Availability Statement: The data that support the finding of this study are
available from the corresponding author upon request.

Conflicts of Interest: The authors declare that they have no competing interest.

