Factors Affecting Port Users’ Behavioral Intentions to Adopt Financial Technology (Fintech) in Ports in Sub-Saharan Africa: A Case of Ports in Ghana
Abstract
:1. Introduction
2. Literature Review
2.1. Empirical Review
2.2. Theoretical Frameworks
Unified Theory of Acceptance and Use of Technology
3. Methodology
4. Results
4.1. Measurement of Constructs
4.2. Goodness If Fix Indices
4.3. Hypothesized Model Test Results
5. Discussions
6. Conclusions
7. Implication for Theory and Practice
8. Recommendations
9. Limitation of Research and Future Research Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hasan, I.; Boreum, K.; Li, X. Financial Technologies and the Effectiveness of Monetary Policy Transmission. 2022. Available online: https://ssrn.com/abstract=3743203 (accessed on 12 September 2022).
- Allen, F.; Gu, X.; Jagtiani, J. A Survey of Fintech Research and Policy Discussion. Rev. Corp. Financ. 2020, 1, 259–339. [Google Scholar] [CrossRef]
- Idoko, J.C. Fintech and Its Effect on Traditional Financial Service Providers. Uniport J. Bus. Account. Financ. Manag. 2021, 12, 2. [Google Scholar]
- Huda, S.S.; Kabir, M.H.; Popy, N.N.; Saha, S. Innovation In Financial Services: The Case Of Bangladesh. Copernic. J. Financ. Account. 2020, 9, 31–56. [Google Scholar] [CrossRef]
- Geiger, M.; Trenczek, J.; Wacker, K.M. Understanding Economic Growth in Ghana in Comparative Perspective. Underst. Econ. Growth Ghana Comp. Perspect. 2019, 8699. [Google Scholar] [CrossRef]
- Soutter, L.; Ferguson, K.; Neubert, M. Digital Payments : Impact Factors and Mass Adoption in Sub-Saharan Africa. Technol. Innov. Manag. Rev. 2019, 9, 41–56. [Google Scholar] [CrossRef]
- Nelaturu, K.; Du, H.; Le, D. A Review of Blockchain in Fintech: Taxonomy, Challenges, and Future Directions. Cryptography 2022, 6, 18. [Google Scholar] [CrossRef]
- Priya, P.K.; Anusha, K. Fintech Issues and Challenges in India. Int. J. Recent Technol. Eng. 2021, 8, 904–908. [Google Scholar] [CrossRef]
- Festa, G.; Cuomo, M.T.; Ossorio, M. FinTech ecosystem as influencer of young entrepreneurial intentions: Empirical findings from Tunisia. J. Intellect. Cap. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Lee, I.; Jae, Y. Fintech : Ecosystem, business models, investment decisions, and challenges. Bus. Horiz. 2018, 61, 35–46. [Google Scholar] [CrossRef]
- Berman, A.; Cano-Kollmann, M.; Mudambi, R. Innovation and entrepreneurial ecosystems: Fintech in the financial services industry. Rev. Manag. Sci. 2021, 16, 45–64. [Google Scholar] [CrossRef]
- Nizam, R.; Karim, Z.A.; Rahman, A.A. Financial inclusiveness and economic growth : New evidence using a threshold regression analysis. Econ. Res. Istraživanja 2020, 33, 1465–1484. [Google Scholar] [CrossRef]
- United Nations Conference on Trade and Development (UNCTAD). Review of Martime Transport 2021; UNCTAD: Geneva, Switzerland, 2021. [Google Scholar]
- Boison, K.D.; Antwi-Boampong, A. Blockchain Ready Port Supply Chain Using Distributed Ledger. Nord. Balt. J. Inf. Commun. Technol. 2020, 1, 1–32. [Google Scholar] [CrossRef]
- Hye, A.M.; Miraz, M.H.; Sharif, K.I.M.; Hassan, M.G. Factors Affecting Logistic Supply Chain Performance: Mediating Role of Block chain Adoption. Test Eng. Manag. 2020, 82, 9338–9348. [Google Scholar]
- Vairetti, C.; González-ramírez, R.G.; Maldonado, S.; Álvarez, C.; Voβ, S. Facilitating conditions for successful adoption of inter-organizational information systems in seaports Carla. Transp. Res. Part A 2019, 130, 333–350. [Google Scholar] [CrossRef]
- Ho, T.C.; Hsu, C.L. An Analysis of Key Factors Influencing Integration of Blockchain into Shipping Companies in Taiwan. J. Mar. Sci. Technol. 2020, 28, 1. [Google Scholar] [CrossRef]
- Yang, C. Maritime shipping digitalization : Blockchain-based technology applications, future improvements, and intention to use. Transp. Res. Part E 2019, 131, 108–117. [Google Scholar] [CrossRef]
- Tessmann, R.; Elbert, R. Multi-Sided Platforms in Competitive B2B Networks with Varying Governmental Influence—A Taxonomy of Port and Cargo Community System Business Models; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 0123456789. [Google Scholar]
- Boison, D.K.; Antwi-Boampong, A.; Agbesi, S.; Agboh, D. A Framework for the Evaluation of Factors Affecting Smart Contract Adoption and Enforceability in Port Supply Chain Industry in Ghana. In Soft Computing: Theories and Applications; Kumar, R., Ahn, C.W., Sharma, T.K., Verma, O.P., Agarwal, A., Eds.; Springer: Singapore, 2022; pp. 957–969. [Google Scholar]
- Weernink, M.O.; van den Engh, W.; Francisconi, M.; Thorborg, F. The Blockchain Potential for Port Logistics. White Paper-Blockhain 2017. Available online: https://smartport.nl/wp-content/uploads/2017/10/White-Paper-Blockchain.pdf (accessed on 12 September 2022).
- Senyo, P.K.; Effah, J.; Osabutey, E.L.C. Digital platformisation as public sector transformation strategy: A case of Ghana’s paperless port. Technol. Forecast. Soc. Change 2021, 162, 120387. [Google Scholar] [CrossRef]
- Blay, A. Factors Influencing Employees’ Intention to Participate in a Bring Your Own Device Program in the Workplace: A Correlational Study in Ghana; Capella University: Minneapolis, MN, USA, 2022. [Google Scholar]
- Daka, G.C.; Phiri, J. Factors Driving the Adoption of E-banking Services Based on the UTAUT. Int. J. Bus. Manag. 2019, 14, 43. [Google Scholar] [CrossRef] [Green Version]
- Nur, T.; Panggabean, R.R. Factors Influencing the Adoption of Mobile Payment Method among Generation Z: The Extended UTAUT Approach. J. Account. Res. Organ. Econ. 2021, 4, 14–28. [Google Scholar] [CrossRef]
- Senyo, P.K.; Effah, J.; Osabutey, E.L.C. FinTech ecosystem practices shaping financial inclusion: The case of mobile money in Ghana. Eur. J. Inf. Syst. 2021, 31, 112–127. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Crawford, D. Predicting Bring Your Own Device Users’ Mobile Device Security Adoption: A Correlational Study; Capella University: Minneapolis, MN, USA, 2020. [Google Scholar]
- Yang, Y.; Ying, H.; Jin, Y.; Xu, X.; Chinese, T.; Kong, H.; Kong, H.; Administrative, S. To port or not to port ? Availability of exclusivity in the digital service market. Decis. Support Syst. 2021, 148, 113598. [Google Scholar] [CrossRef]
- Koh, L.; Dolgui, A.; Sarkis, J. Blockchain in transport and logistics-paradigms and transitions. Int. J. Prod. Res. 2020, 58, 2054–2062. [Google Scholar] [CrossRef] [Green Version]
- Kühn, O.; Jacob, A.; Schüller, M.C. Blockchain Adoption at German Logistics Service Providers. Proc. Hambg. Int. Conf. Logist. 2019, 27, 387–441. [Google Scholar] [CrossRef]
- Luisa, C. ICT implementation process model for logistics service providers. Ind. Manag. Data Syst. 2008, 113, 484–505. [Google Scholar] [CrossRef]
- Chang, A.; El-Rayes, N.; Shi, J. Blockchain Technology for Supply Chain Management: A Comprehensive Review. FinTech 2022, 1, 191–205. [Google Scholar] [CrossRef]
- Chang, J.; Katehakis, M.N.; Shi, J.; Yan, Z. Blockchain-empowered Newsvendor optimization. Int. J. Prod. Econ. 2021, 238, 108144. [Google Scholar] [CrossRef]
- Chang, J.; Katehakis, M.N.; Melamed, B.; Shi, J. Blockchain Design for Supply Chain Management. 2018. Available online: https://ssrn.com/abstract=3295440 (accessed on 12 September 2022).
- Hahm, H.; Subhanij, T.; Almeida, R. Finteching remittances in paradise: A path to sustainable development. Asia Pac. Policy Stud. 2021, 8, 435–453. [Google Scholar] [CrossRef]
- Bukhtiarova, A.; Hayriyan, A.; Bort, N.; Semenog, A. Modeling of FinTech market development (on the example of Ukraine). Innov. Mark. 2018, 14, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Daqar, M.; Constantinovits, M.; Arqawi, S.; Daragmeh, A. The role of Fintech in predicting the spread of COVID-19. Banks Bank Syst. 2021, 16, 1–16. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Garg, A.; Gajpal, Y. Determinants of Blockchain Technology Adoption in Supply Chains by Small and Medium Enterprises (SMEs) in India. Math. Probl. Eng. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Fosso, S.; Queiroz, M.M.; Trinchera, L. Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation. Int. J. Prod. Econ. 2020, 229, 107791. [Google Scholar] [CrossRef]
- Gao, K.; Shao, X. Adoption Research of the M-commerce Application Based on the Perspective of Supply Chain Management in Shipping Industry. Sch. Econ. Manag. 2018, 83, 839–845. [Google Scholar] [CrossRef]
- Daqar, M.A.M.A.; Arqawi, S.; Karsh, S.A. Fintech in the eyes of Millennials and Generation Z (the financial behavior and Fintech perception). Banks Bank Syst. 2020, 15, 20–28. [Google Scholar] [CrossRef]
- Chao, Z.; Borrelli, S.; Neupane, B.; Fennewald, J. Understanding user experience in bring your own device spaces in the library A case study of space planning and use at a large research university. Perform. Meas. Metr. 2019, 20, 201–212. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Pratap Singh, R.; Khan, S.; Suman, R. Blockchain technology applications for Industry 4.0: A literature-based review. Blockchain Res. Appl. 2021, 2, 100027. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, C.; Kröse, B.; Hoof, H. Van Optimizing Adaptive Notifications in Mobile Health Interventions Systems : Reinforcement Learning from a Data-driven Behavioral Simulator. J. Med. Syst. 2021, 45, 1–8. [Google Scholar] [CrossRef]
- Tamilmani, K.; Rana, N.P.; Dwivedi, Y.K. Consumer Acceptance and Use of Information Technology: A Meta-Analytic Evaluation of UTAUT2. Inf. Syst. Front. 2020, 23, 987–1005. [Google Scholar] [CrossRef]
- Wang, X.; Weeger, A.; Gewald, H. Factors driving employee participation in corporate BYOD programs: A cross-national comparison from the perspective of future employees. Australas. J. Inf. Syst. 2017, 21, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Weeger, A.; Wang, X.; Gewald, H.; Raisinghani, M.; Sanchez, O.; Grant, G.; Pittayachawan, S. Determinants of Intention to Participate in Corporate BYOD-Programs: The Case of Digital Natives. Inf. Syst. Front. 2020, 22, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Novikova, S.A.; Sidorov, D.E.; Goncharuk, I.V. New Technologies of Business Processes in the Sphere of Customs Administration of Export-Import Transactions and Payments New Technologies of Business Processes in the Sphere of Customs Administration of Export-Import Transactions and Payments. IOP Conf. Ser. Mater. Sci. Eng. 2020, 753, 7. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. Acceptance of information technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Ouattara, A. Antecedents of Employees’ Behavioral Intentions Regarding Information Technology Consumerization. Ph.D. Thesis, Walden University, Minneapolis, MN, USA, 2017. [Google Scholar]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P. Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. Int. J. Inf. Manag. 2017, 37, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Blut, M.; Yee, A.; Chong, L.; Tsiga, Z.; Venkatesh, V.; Tech, V. Meta-Analysis Of The Unified Theory of Acceptance and Use of technology (UTAUT): Challenging its validity and charting A research agenda in the red ocean. JAIS-J. Assoc. Inf. Syst. 2021, 23, 13–95. [Google Scholar] [CrossRef]
- Kim, S.S.; Malhotra, N.K.; Narasimhan, S. Two competing perspectives on automatic use: A theoretical and empirical comparison. Inf. Syst. Res. 2005, 16, 418–432. [Google Scholar] [CrossRef]
- Abdalla, M.M.; Oliveira, L.G.L.; Azevedo, C.E.F.; Gonzalez, R.K. Quality in Qualitative Organizational Research: Types of triangulation as a methodological alternative. Adm. Ensino Pesqui. 2018, 19, 66–98. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Varma, S.; Bhardwaj, G. A Structural Equation Model to Assess the Factors Influencing Employee’ s Attitude & Intention to Adopt BYOD (Bring Your Own Device). Int. J. Recent Technol. Eng. 2019, 8, 6303–6308. [Google Scholar] [CrossRef]
- Vorakulpipat, C.; Sirapaisan, S.; Rattanalerdnusorn, E.; Savangsuk, V. A Policy-Based Framework for Preserving Confidentiality in BYOD Environments: A Review of Information Security Perspectives. Secur. Commun. Netw. 2017, 43, 25. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.L.T.; Xu, X. Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. J. Assoc. Inf. Syst. 2016, 17, 328–376. [Google Scholar] [CrossRef]
- Nordhoff, S.; Louw, T.; Innamaa, S.; Lehtonen, E.; Beuster, A.; Torrao, G.; Bjorvatn, A.; Kessel, T.; Malin, F.; Happee, R.; et al. Using the UTAUT2 model to explain public acceptance of conditionally automated (L3) cars : A questionnaire study among 9, 118 car drivers from eight European countries. Transp. Res. Part F Psychol. Behav. 2020, 74, 280–297. [Google Scholar] [CrossRef]
- Munyoka, W.; Maharaj, M. The effect of UTAUT2 moderator factors on citizens’ intention to adopt e-government: The case of two SADC countries. Probl. Perspect. Manag. 2017, 15, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.M.; Liu, L.W.; Huang, H.C.; Hsieh, H.H. Factors influencing online Hotel Booking: Extending UTAUT2 with age, Gender, and Experience as Moderators. Information 2019, 10, 281. [Google Scholar] [CrossRef]
- Nikolopoulou, K.; Gialamas, V.; Lavidas, K. Habit, hedonic motivation, performance expectancy and technological pedagogical knowledge affect teachers’ intention to use mobile internet. Comput. Educ. Open 2021, 2, 100041. [Google Scholar] [CrossRef]
- Ameen, N.; Willis, R. An analysis of the moderating effect of age on smartphone adoption and use in the United Arab Emirates. In Proceedings of the UK Academy for Information Systems Conference, Oxford, UK, 20–21 March 2018. [Google Scholar]
- Adeniran, A.; Ishaku, J.; Yusuf, A. Youth employment and labor market vulnerability in Ghana: Aggregate trends and determinants. In West African Youth Challenges and Opportunity Pathways; Springer: Berlin/Heidelberg, Germany, 2019; pp. 187–211. [Google Scholar] [CrossRef] [Green Version]
- Raman, A.; Don, Y. Preservice Teachers’ Acceptance of Learning Management Software: An Application of the UTAUT2 Model. Int. Educ. Stud. 2013, 6, 157. [Google Scholar] [CrossRef] [Green Version]
- Omondi, G. The State of Mobile in Ghana’s Tech Ecosystem. Mobile for Development. 2020. Available online: https://www.gsma.com/mobilefordevelopment/blog/the-state-of-mobile-in-ghanas-tech-ecosystem (accessed on 12 September 2022).
- Fowler-Amato, M.; LeeKeenan, K.; Warrington, A.; Nash, B.L.; Brady, R.B. Working Toward a Socially Just Future in the ELA Methods Class. J. Lit. Res. 2019, 51, 158–176. [Google Scholar] [CrossRef]
- Callies, K.; Noteboom, C.B.; Talley, D.; Wang, Y. Employee acceptance of employer control over personal devices—Research in Progress. Mid-West Assoc. Inf. Syst. 2019, 5. [Google Scholar]
- Hu, S.; Laxman, K.; Lee, K. Exploring factors affecting academics’ adoption of emerging mobile technologies-an extended UTAUT perspective. Educ. Inf. Technol. 2020, 25, 4615–4635. [Google Scholar] [CrossRef]
- Palanisamy, R.; Norman, A.A.; Mat Kiah, M.L. BYOD Policy Compliance: Risks and Strategies in Organizations. J. Comput. Inf. Syst. 2020, 62, 62–72. [Google Scholar] [CrossRef]
- Göb, R.; McCollin, C.; Ramalhoto, M.F. Ordinal Methodology in the Analysis of Likert Scales. Qual. Quant. 2007, 41, 601–626. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Hopkins, H.; Kuppelwieser, V. Partial least squares structural equation modeling (Pls-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. This. 2016, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson: Bergen, NJ, USA, 2010. [Google Scholar]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling, 3rd ed.; Routledge: London, UK, 2010. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts Applications, and Programming, 2nd ed.; Taylor and Francis Group, LLC: Oxfordshire, UK, 2010. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; Kenny, D.A., Little, T.D., Eds.; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- McDonald, R.P.; Ho, M.H.R. Principles and practice in reporting structural equation analyses. Psychol. Methods 2002, 7, 64–82. [Google Scholar] [CrossRef] [PubMed]
- Mohajan, H.K. Two criteria for good measurements in research: Validity and reliability. Ann. Spiru Haret Univ. Econ. Ser. 2017, 17, 59–82. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, P.; Wang, X.; Shou, W. The outlook of blockchain technology for construction engineering management. Front. Eng. Manag. 2017, 4, 67. [Google Scholar] [CrossRef]
- Antwi-Boampong, A.; Boison, D.K.; Agbedoawu, J.; Doumbia, O.M.; Blay, A. Assessing Factors Influencing the Adoption of Technology in the Port Supply Chain Industry in the West African Sub-Region: A Case Study of Integrated Customs System in Ghana. 2022. Available online: https://ssrn.com/abstract=4178806 (accessed on 12 September 2022).
Constructs | KMO | Bartletts Test of Sphericity | Total Variance Explained | AVE | Composite Reliability | Cronbach Alpha | Factor Loadings |
---|---|---|---|---|---|---|---|
PE | 0.840 | 0.001 | 78.791 | 0.829 | 0.936 | 0.910 | 0.887 |
EE | 0.860 | 0.001 | 88.254 | 0.869 | 0.952 | 0.947 | 0.929 |
SI | 0.504 | 0.827 | 34.804 | 0.190 | 0.304 | −0.077 | 0.515 |
FC | 0.762 | 0.001 | 66.174 | 0.957 | 0.881 | 0.647 | 0.939 |
HM | 0.500 | 0.001 | 92.848 | 0.619 | 0.765 | 0.923 | 0.964 |
PV | 0.518 | 0.141 | 37.146 | 0.371 | 0.636 | 0.152 | 0.605 |
HT | 0.811 | 0.001 | 80.842 | 0.800 | 0.923 | 0.921 | 0.899 |
BI | 0.774 | 0.001 | 90.961 | 0.662 | 0.968 | 0.950 | 0.954 |
Weighted Average | 0.760 | 0.001 | 82.978 | 0.662 | 0.795 | 0.883 |
Fit Indices | Level of Fitness | Threshold |
---|---|---|
Root Mean Square Error of Approximation (RMSEA) | 0.084 | <0.05 [74,75] |
Comparative Fit Index (CFI) | 0.949 | >0.95 [76,77] |
Tucker–Lewis Index (TLI) | 0.938 | >0.8 [72,78,79] |
Hypothesis | Coef. (β) | Std. Error | z | p > |z| |
---|---|---|---|---|
PE ≥ BI | 0.26 | −0.11 | 2.45 | 0.000 |
EE ≥ BI | 0.45 | 0.21 | 3.71 | 0.000 |
FC ≥ BI | 2.21 | 3.82 | 0.58 | 0.560 |
HM ≥ BI | −0.58 | 0.14 | −0.41 | 0.680 |
HT ≥ BI | 0.51 | 0.12 | 4.05 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antwi-Boampong, A.; Boison, D.K.; Doumbia, M.O.; Boakye, A.N.; Osei-Fosua, L.; Owiredu Sarbeng, K. Factors Affecting Port Users’ Behavioral Intentions to Adopt Financial Technology (Fintech) in Ports in Sub-Saharan Africa: A Case of Ports in Ghana. FinTech 2022, 1, 362-375. https://doi.org/10.3390/fintech1040027
Antwi-Boampong A, Boison DK, Doumbia MO, Boakye AN, Osei-Fosua L, Owiredu Sarbeng K. Factors Affecting Port Users’ Behavioral Intentions to Adopt Financial Technology (Fintech) in Ports in Sub-Saharan Africa: A Case of Ports in Ghana. FinTech. 2022; 1(4):362-375. https://doi.org/10.3390/fintech1040027
Chicago/Turabian StyleAntwi-Boampong, Ahmed, David King Boison, Musah Osumanu Doumbia, Afia Nyarko Boakye, Linda Osei-Fosua, and Kwame Owiredu Sarbeng. 2022. "Factors Affecting Port Users’ Behavioral Intentions to Adopt Financial Technology (Fintech) in Ports in Sub-Saharan Africa: A Case of Ports in Ghana" FinTech 1, no. 4: 362-375. https://doi.org/10.3390/fintech1040027
APA StyleAntwi-Boampong, A., Boison, D. K., Doumbia, M. O., Boakye, A. N., Osei-Fosua, L., & Owiredu Sarbeng, K. (2022). Factors Affecting Port Users’ Behavioral Intentions to Adopt Financial Technology (Fintech) in Ports in Sub-Saharan Africa: A Case of Ports in Ghana. FinTech, 1(4), 362-375. https://doi.org/10.3390/fintech1040027