Enhancement of Tomato Seed Germination and Growth Parameters through Seed Priming with Auxin-Producing Plant Growth Promoting Bacteria Strains
Abstract
1. Introduction
2. Materials and Methods
2.1. Microbial Strain and Treatment Preparation
- (i)
- Cell suspension (CS): broth culture of bacterial cells, with an initial population 108 CFU/mL;
- (ii)
- Cell-free supernatant (CFS): obtained via centrifugation (5000 rpm for 15 min) and filtration of the suspension of 108 CFU/mL microbial cultures.
2.2. Analysis of Indole-3-Acetic Acid (IAA) Production
2.3. Germination of Tomato Seeds
2.4. Greenhouse Experiments on Tomato Plantlets
2.5. Statistical Analyses
3. Results
3.1. Analysis of Indole-3-Acetic Acid (IAA) Production
3.2. Germination of Tomato Seeds and Root Development
3.3. Greenhouse Experiments on Tomato Plantlets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castiglione, A.M.; Mannino, G.; Contartese, V.; Bertea, C.M.; Ertani, A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. Plants 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Turgay, O.C.; Farooq, M.; Hayat, R. Seed Biopriming with Plant Growth Promoting Rhizobacteria: A Review. FEMS Microbiol. Ecol. 2016, 92, 1–14. [Google Scholar] [CrossRef]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Neelam, B.; Manpreet, K.; Jeevanjot, K. Role of Biostimulants in Agriculture. In Plant Life and Environment Dynamics Biostimulants: Exploring Sources and Applications; Ramawat, N., Bhardwaj, V., Eds.; Springer: Jodhpur, Rajasthan, India, 2022; pp. 177–192. [Google Scholar]
- Poorniammal, R.; Prabhu, S.; Kannan, J. Methylobacterium: A Foliar Bioinoculant for Barnyard Millet. Biot. Res. 2021, 3, 197–199. [Google Scholar]
- Bartolini, S.; Pappalettere, L.; Toffanin, A. Azospirillum baldaniorum Sp245 Induces Anatomical Changes in Cuttings of Olive (Olea europaea L., Cultivar Leccino): Preliminary Results. Agronomy 2023, 13, 301. [Google Scholar] [CrossRef]
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed Priming: State of the Art and New Perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef]
- Ganugi, P.; Martinelli, E.; Lucini, L. Microbial Biostimulants as a Sustainable Approach to Improve the Functional Quality in Plant-Based Foods: A Review. Curr. Opin. Food Sci. 2021, 41, 217–223. [Google Scholar] [CrossRef]
- Rakshit, A.; Singh, H.B. Advances in Seed Priming; Springer: Singapore, Singapore, 2018; ISBN 9789811300325. [Google Scholar]
- Kandhol, N.; Singh, V.P.; Ramawat, N.; Prasad, R.; Chauhan, D.K.; Sharma, S.; Grillo, R.; Sahi, S.; Peralta-Videa, J.; Tripathi, D.K. Nano-Priming: Impression on the Beginner of Plant Life. Plant Stress. 2022, 5, 100091. [Google Scholar] [CrossRef]
- Ellis, R.H.; Butcher, P.D. The Effects of Priming and “Natural” Differences in Quality amongst Onion Seed Lots on the Response of the Rate of Germination to Temperature and the Identification of the Characteristics under Genotypic. J. Exp. Bot. 1988, 39, 935–950. [Google Scholar] [CrossRef]
- Hill, H.; Bradford, K.J.; Cunningham, J.; Taylor, A.G. Primed Lettuce Seeds Exhibit Increased Sensitivity to Moisture during Aging . In Proceedings of the IV International Symposium on Seed, Transplant and Stand Establishment of Horticultural Crops; Translating Seed and Seedling, San Antonio, TX, USA, 10–14 December 2006. [Google Scholar]
- Parera, C.A.; Daniel, J. Cantliffe. Presowing Seed Priming. Hortic. Rev. (Am. Soc. Hortic. Sci.) 2010, 16, 109–141. [Google Scholar]
- Raja, K.; Sivasubramaniam, K.; Anandham, R. Seed Treatment with Liquid Microbial Consortia for Germination and Vigour Improvement in Tomato (Solanum lycopersicum L.). J. Appl. Hortic. 2019, 21, 195–200. [Google Scholar] [CrossRef]
- Parinith, G.R.; Lakshmi, S.; Renganayaki, P.R.; Nakkeeran, S. Alleviation of Salinity Stress via Seed Priming in Tomato (Solanum lycopersicum) with Bacillus paralicheniformis. Pharma Innov. 2022, 11, 201–206. [Google Scholar]
- Bashan, Y.; de-Bashan, L.E. Reduction of Bacterial Speck (Pseudomonas syringae Pv. Tomato) of Tomato by Combined Treatments of Plant Growth-Promoting Bacterium, Azospirillum brasilense, Streptomycin Sulfate, and Chemothermal Seed Treatment. Eur. J. Plant Pathol. 2002, 108, 821–829. [Google Scholar] [CrossRef]
- Karthikeyan, B.; Jaleel, C.A.; Gopi, R.; Deiveekasundaram, M. Alterations in Seedling Vigour and Antioxidant Enzyme Activities in Catharanthus roseus under Seed Priming with Native Diazotrophs. J. Zhejiang Univ. Sci. B 2007, 8, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Saber, Z.; Pirdashti, H.; Esmaeili, M.; Abbasian, A.; Heidarzadeh, A. Response of Wheat Growth Parameters to Co-Inoculation of Plant Growth Promoting Rhizobacteria (PGPR) and Different Levels of Inorganic Nitrogen and Phosphorus. World Appl. Sci. J. 2012, 16, 213–219. [Google Scholar]
- Sharifi, R.S.; Khavazi, K.; Gholipouri, A. Effect of Seed Priming with Plant Growth Promoting Rhizobacteria (PGPR) on Dry Matter Accumulation and Yield of Maize (Zea mays L.) Hybrids. Int. Res. J. Biochem. Bioinf 2011, 1, 76–83. [Google Scholar]
- Lastochkina, O.; Aliniaeifard, S.; Garshina, D.; Garipova, S.; Pusenkova, L.; Allagulova, C.; Sobhani, M. Seed Priming with Endophytic Bacillus subtilis Strain-Specifically Improves Growth of Phaseolus vulgaris Plants under Normal and Salinity Conditions and Exerts Anti-Stress Effect through Induced Lignin Deposition in Roots and Decreased Oxidative and Osmotic Damages. J. Plant Physiol. 2021, 263, 153462. [Google Scholar]
- Reddy, S.; Kumar Singh, A.; Masih, H.; Benjamin, J.C.; Kumar Ojha, S.; Ramteke, P.W.; Singla, A.; Ajay Kumar Singh, C. Effect of Azotobacter Sp. and Azospirillum Sp. on Vegetative Growth of Tomato (Lycopersicon esculentum). J. Pharmacogn. Phytochem. 2018, 7, 2130–2137. [Google Scholar]
- Terry, E.; de los Pino María, A.; Medina, N. Application Times of an Azospirillum Bioproduct in Tomato Growth, Development and Yield. Cultiv. Trop. 2000, 21, 5. [Google Scholar]
- Hadas, R.; Okon, Y. Effect of Azospirillum brasilense Inoculation on Root Morphology and Respiration in Tomato Seedlings. Biol. Fertil. Soils 1987, 5, 241–247. [Google Scholar] [CrossRef]
- Lira-Saldivar, R.; Hernández, A.; Valdez, L.A.; Cárdenas, A.; Ibarra, L.; Hernández, M.; Ruiz, N. Azospirillum brasilense and Glomus intraradices Co-Inoculation Stimulates Growth and Yield of Cherry Tomato under Shadehouse Conditions. Phyton-Int. J. Exp. Bot. 2014, 83, 133–138. [Google Scholar]
- Cabra Cendales, T.; Rodríguez González, C.A.; Villota Cuásquer, C.P.; Tapasco Alzate, O.A.; Hernández Rodríguez, A. Efecto de Bacillus Sobre La Germinación y Crecimiento de Plántulas de Tomate (Solanum lycopersicum L). Acta Biolo. Colomb. 2017, 22, 37–44. [Google Scholar] [CrossRef]
- Tan, S.; Jiang, Y.; Song, S.; Huang, J.; Ling, N.; Xu, Y.; Shen, Q. Two Bacillus amyloliquefaciens Strains Isolated Using the Competitive Tomato Root Enrichment Method and Their Effects on Suppressing Ralstonia Solanacearum and Promoting Tomato Plant Growth. Crop Prot. 2013, 43, 134–140. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Han, G.-H.; Sa, T. Comparison of Plant Growth Promoting Methylobacterium spp. and Exogenous Indole-3-Acetic Acid Application on Red Pepper and Tomato Seedling Development. Korean J. SoilSci. Fert. 2010, 43, 96–104. [Google Scholar]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.P. Advances in Plant Growth-Promoting Bacterial Inoculant Technology: Formulations and Practical Perspectives (1998–2013). Plant Soil. 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Pellegrini, M.; Pagnani, G.; Bernardi, M.; Mattedi, A.; Spera, M.D.; Del Gallo, M. Cell-Free Supernatants of Plant Growth-Promoting: A Review of Their Use as Biostimulant and Microbial Biocontrol Agents in Sustainable Agriculture. Sustainability 2020, 12, 9917. [Google Scholar] [CrossRef]
- Yahalom, E.; Yahalom, O.; Amos, D. Possible Mode of Action of Azospirillum brasilense Strain Cd on the Root Morphology and Nodule Formation in Burrmedic (Medicago Polymorpha). Can. J. Microbiol. 1990, 36, 10–14. [Google Scholar] [CrossRef]
- El-Khawas, H.; Adachi, K. Identification and Quantification of Auxins in Culture Media of Azospirillum and Klebsiella and Their Effect on Rice Roots. Biol. Fertil. Soils 1999, 28, 377–381. [Google Scholar] [CrossRef]
- Ateeq, S.; Subramanian, S.; Donald, L. Smith Seed Priming with Devosia sp. Cell-Free Supernatant (CFS) and Citrus Bioflavonoids Enhance Canola and Soybean Seed Germination. Molecules 2022, 27, 3410. [Google Scholar]
- Baldani, V.L.D.; Alvarez, M.A.D.B.; Baldani, J.I. Establishment of Inoculated Azospirillum spp. in the Rhizosphere and in Roots of Field Grown Wheat and Sorghum. Plant Soil. 1986, 90, 35–46. [Google Scholar] [CrossRef]
- Dobbelaere, S.; Croonenborghs, A.; Thys, A.; Vande Broek, A.; Vanderleyden, J. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil. 1999, 212, 153–162. [Google Scholar] [CrossRef]
- Ferreira, N.D.S.; Sant’ Anna, F.H.; Reis, V.M.; Ambrosini, A.; Volpiano, C.G.; Rothballer, M.; Schwab, S.; Baura, V.A.; Balsanelli, E.; de O. Pedrosa, F.; et al. Genome-Based Reclassification of Azospirillum brasilense Sp245 as the Type Strain of Azospirillum baldaniorum Sp. Nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 6203–6212. [Google Scholar] [CrossRef] [PubMed]
- Filippi, C.; Bagnoli, G.; Volterrani, M.; Picci, G. Plant and Soil Antagonistic Effects of Soil Bacteria on Fusarium oxysporum Schlecht f. Sp. Dianthi (Prill and Del.) Snyd. and Hans IlL Relation between Protection against Fusarium Wilt in Carnation and Bacterial Antagonists Colonization on Roots. Plant Soil 1987, 98, 161–167. [Google Scholar] [CrossRef]
- Citernesi, A.S.; Filippi, C.; Bagnoli, G.; Giovannetti, M. Effects of the Antimycotic Molecule Iturin A2, Secreted By Bacillus subtilis strain M51, on Arbuscular Mycorrhizal Fungi. Microbiol. Res. 1994, 149, 241–246. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ros, M.; Martínez, J.; Carmona, F.; Bernabé, A.; Torres, R.; Lucena, T.; Aznar, R.; Arahal, D.R.; Fernández, F. Methylobacterium symbioticum Sp. Nov., a New Species Isolated from Spores of Glomus iranicum Var. Tenuihypharum. Curr. Microbiol. 2020, 77, 2031–2041. [Google Scholar] [CrossRef]
- Gang, S.; Sharma, S.; Saraf, M.; Buck, M.; Schumacher, J. Analysis of Indole-3-Acetic Acid (IAA) Production in Klebsiella by LC-MS/MS and the Salkowski Method. Bio Protoc. 2019, 9, e3230. [Google Scholar] [CrossRef] [PubMed]
- de Souza Antunes de Lima, N.; Felipe Vogel, G.; Fey, R. Rates of Application of Azospirillum brasilense in Tomato Crop. Rev. Agric. Neotrop. 2018, 4, 81–87. [Google Scholar] [CrossRef]
- Mangmang, J.S.; Deaker, R.; Rogers, G. Early Seedling Growth Response of Lettuce, Tomato and Cucumber to Azospirillum brasilense Inoculated by Soaking and Drenching. Hortic. Sci. 2015, 42, 37–46. [Google Scholar] [CrossRef]
- Antonio Lucas García, J.; Probanza, A.; Ramos, B.; Palomino, M.; Javier Gutiérrez Mañero, F.; Antonio Lucas García, J.; Ruiz Palomino, M.; Javier Gutiérrez Mañero, F. Effect of Inoculation of Bacillus licheniformis on Tomato and Pepper. Agronomie 2004, 24, 169–176. [Google Scholar] [CrossRef]
- He, Y.; Pantigoso, H.A.; Wu, Z.; Vivanco, J.M. Co-Inoculation of Bacillus Sp. and Pseudomonas putida at Different Development Stages Acts as a Biostimulant to Promote Growth, Yield and Nutrient Uptake of Tomato. J. Appl. Microbiol. 2019, 127, 196–207. [Google Scholar] [CrossRef]
- Peterson, P.S.; de Medeiros, F.H.V.; de Oliveira, T.S.; de Almeida Zago, J.R.; Bettiol, W. Bacillus subtilis and Bacillus licheniformis Promote Tomato Growth. Braz. J. Microbiol. 2023, 54, 397–406. [Google Scholar] [CrossRef]
- Subhaswaraj, P.; Jobina, R.; Parasuraman, P.; Siddhardha, B. Plant Growth Promoting Activity of Pink Pigmented Facultative Methylotroph—Methylobacterium extorquens MM2 on Lycopersicon esculentum L. J. Appl. Biol. Biotechnol. 2017, 5, 42–46. [Google Scholar] [CrossRef]
- Torres Vera, R.; Bernabé García, A.J.; Carmona Álvarez, F.J.; Martínez Ruiz, J.; Fernández Martín, F. Application and Effectiveness of Methylobacterium symbioticum as a Biological Inoculant in Maize and Strawberry Crops. Folia Microbiol 2024, 69, 121–131. [Google Scholar] [CrossRef]
- Arrobas, M.; Correia, C.M.; Rodrigues, M.Â. Methylobacterium symbioticum Applied as a Foliar Inoculant Was Little Effective in Enhancing Nitrogen Fixation and Lettuce Dry Matter Yield. Sustainability 2024, 16, 4512. [Google Scholar] [CrossRef]
- Bartolini, S.; Pappalettere, L.; Toffanin, A. Assessing the Effect of Azospirillum baldaniorum Sp245 on Rooting Ability of Olive Cuttings (Olea europaea L., Cultivar Santa Caterina). Agrochimica 2022, 66, 215–224. [Google Scholar] [CrossRef]
- Lobo, L.L.B.; de Andrade da Silva, M.S.R.; Castellane, T.C.L.; Carvalho, R.F.; Rigobelo, E.C. Effect of Indole-3-Acetic Acid on Tomato Plant Growth. Microorganisms 2022, 10, 2212. [Google Scholar] [CrossRef]
- Safara, S.; Harighi, B.; Bahramnejad, B.; Ahmadi, S. Antibacterial Activity of Endophytic Bacteria against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. Front. Microbiol. 2022, 13, 921762. [Google Scholar] [CrossRef]
- Nabrdalik, M.; Moliszewska, E.; Wierzba, S. Importance of Endophytic Strains Pantoea agglomerans in the Biological Control of Rhizoctonia solani. Ecol. Chem. Eng. S. 2018, 25, 331–342. [Google Scholar] [CrossRef]
Species | Strain | Reference/Source | Isolated from |
---|---|---|---|
Azospirillum baldaniorum | Sp245 | Baldani et al., 1986 [33]; Dobbelaere et al., 1999 [34]; dos Santos Ferreira 2020 [35] | Triticum aestivum—Brazil |
Azospirillum brasilense | Sp7 | DSMZ | Digitaria decumbens roots—Brazil |
Azospirillum brasilense | Cd | DSMZ | Cynodon dactylon roots—USA |
Bacillus amyloliquefaciens | Fukumoto strain F | DSMZ | Soil—unknown county |
Bacillus licheniformis | Gibson 46 | DSMZ | Country of unknown origin |
Bacillus subtilis | 101BS | Filippi et al., 1984 [36]; Citernesi et al., 1994 [37] | Rhizosphere of Dianthus caryophyllus L. |
Methylobacterium symbioticum | SB0023/3 T | Pascual et al., 2020 [38]; Symborg Inc. (EP Application No. EP3747267A1) | Spores of Glomus iranicum var. tenuihypharum |
STEP 1 | STEP 2 | STEP 3 | STEP 4 |
---|---|---|---|
Seven microbial strains as | |||
(i) Cell suspension (CS) | (i) Microbial strain cultures | (i) Priming of tomato seeds with CS and CFS | (i) Repeated treatments of tomato seedlings with CS and CFS |
(ii) Cell-free supernatant (CFS) | (ii) IAA quantification | (ii) Seed germination test | (ii) Plantlets growth parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappalettere, L.; Bartolini, S.; Toffanin, A. Enhancement of Tomato Seed Germination and Growth Parameters through Seed Priming with Auxin-Producing Plant Growth Promoting Bacteria Strains. Seeds 2024, 3, 479-492. https://doi.org/10.3390/seeds3030032
Pappalettere L, Bartolini S, Toffanin A. Enhancement of Tomato Seed Germination and Growth Parameters through Seed Priming with Auxin-Producing Plant Growth Promoting Bacteria Strains. Seeds. 2024; 3(3):479-492. https://doi.org/10.3390/seeds3030032
Chicago/Turabian StylePappalettere, Livia, Susanna Bartolini, and Annita Toffanin. 2024. "Enhancement of Tomato Seed Germination and Growth Parameters through Seed Priming with Auxin-Producing Plant Growth Promoting Bacteria Strains" Seeds 3, no. 3: 479-492. https://doi.org/10.3390/seeds3030032
APA StylePappalettere, L., Bartolini, S., & Toffanin, A. (2024). Enhancement of Tomato Seed Germination and Growth Parameters through Seed Priming with Auxin-Producing Plant Growth Promoting Bacteria Strains. Seeds, 3(3), 479-492. https://doi.org/10.3390/seeds3030032