Seed Characterization and Evaluation of Pre-Germinative Barriers in the Genus Alstroemeria (Alstroemeriaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seeds Collection
2.2. Pre-Germination Treatments
2.3. Morphological Characterization of Seeds
2.4. Biochemical Characterization of Seeds
2.4.1. Chemical and Solvents
2.4.2. Extraction of Phenolic Compounds
2.4.3. Spectrophotometric Analyses
2.4.4. HPLC-DAD Analysis of Low-Molecular-Weight Phenolic Compounds
2.5. Statistical Analysis
3. Results
3.1. Emergence after 30 and 60 Days
3.1.1. Speed of Emergence
3.1.2. Shape and Texture of the Seeds
3.1.3. Seeds Mass and Size
3.2. Biochemical Characterization of Seeds
3.3. Multivariate Analysis
4. Discussion
4.1. Pre-Germination Treatments
4.2. Morphological Characterization of Seeds
4.3. Biochemical Characterization of Seeds
4.4. Multivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finot, V.; Baeza, C.; Muñoz-Schick, M.; Ruiz, E.; Espejo, J.; Alarcón, D.; Carrasco, P.; Novoa, P.; Eyzaguirre, M.T. Alstroemerias Chilenas: Guía de Campo; Corma: Ontario, CA, USA, 2018; ISBN 9568398112. [Google Scholar]
- Muñoz, M.; Moreira, A. Alstroemerias de Chile. Diversidad, Distribución y Conservación; Taller La Era: Santiago, Chile, 2003. [Google Scholar]
- Cavieres, L.; Peñaloza, A.; Arroyo, M. Effects of Flower Size and Flower Density on Pollinator Visitation in Alstroemeria pallida Graham (Amaryllidaceae). Gayana Bot. 1998, 55, 1–10. [Google Scholar]
- Aros, D.; Suazo, M.; Rivas, C.; Zapata, P.; Úbeda, C.; Bridgen, M. Molecular and Morphological Characterization of New Interspecific Hybrids of Alstroemeria Originated from A. caryophylleae Scented Lines. Euphytica 2019, 215, 93. [Google Scholar] [CrossRef]
- Bridgen, M.P. Alstroemeria. In Ornamental Crops. Handbook of Plant Breeding; Van Huylenbroeck, J., Ed.; Springer International Publishing: Cham, Switzerland, 2018; Voloume 11, pp. 231–236. ISBN 978-3-319-90698-0. [Google Scholar]
- Rodriguez, R.; Marticorena, C.; Alarcón, D.; Baeza, C.; Cavieres, L.; Finot, V.L.; Fuentes, N.; Kiessling, A.; Mihoc, M.; Pauchard, A.; et al. Catálogo de Las Plantas Vasculares de Chile Catalogue of the Vascular Plants of Chile. Gayana Bot. 2018, 75, 1–430. [Google Scholar] [CrossRef]
- Pañitrur-De la Fuente, C.; Ibáñez, S.T.; León, M.F.; Martínez-Tilleria, K.; Sandoval, A. Conservation of Native Plants in the Seed Base Bank of Chile. Conserv. Sci. Pract. 2020, 2, e292. [Google Scholar] [CrossRef]
- Armesto, J.J.; Arroyo, M.T.K.; Hinojosa Opazo, L. The Mediterranean Environment of Central Chile. In The physical Geography of South America; Veblen, T.T., Young, K.R., Orme, A.R., Eds.; Oxford University Press: Oxford, UK, 2007; pp. 184–199. [Google Scholar]
- Ministerio del Medio Ambiente—Gobierno de Chile Listado de Especies Clasificadas Desde El 1° Al 17° Proceso de Clasificación RCE. Available online: https://clasificacionespecies.mma.gob.cl/ (accessed on 27 September 2023).
- de Barros Ruas, R.; Costa, L.M.S.; Bered, F. Urbanization Driving Changes in Plant Species and Communities—A Global View. Glob. Ecol. Conserv. 2022, 38, e02243. [Google Scholar]
- Fatima, Z.; Naz, S.; Iqbal, P.; Khan, A.; Ullah, H.; Abbas, G.; Ahmed, M.; Mubeen, M.; Ahmad, S. Field Crops and Climate Change. In Building Climate Resilience in Agriculture: Theory, Practice and Future Perspective; Jatoi, W.N., Mubeen, M., Ahmad, A., Cheema, M.A., Lin, Z., Hashmi, M.Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 83–94. [Google Scholar]
- Žarković, B.; Radovanović, V. Environmental Impact of Climate Change on Crop Production BT—Handbook of Climate Change across the Food Supply Chain; Leal Filho, W., Djekic, I., Smetana, S., Kovaleva, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 321–333. ISBN 978-3-030-87934-1. [Google Scholar]
- Baskin, J.M.; Baskin, C.C. A Classification System for Seed Dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef]
- Zhou, Z.-Q.; Bao, W.-K.; Wu, N. Dormancy and Germination in Rosa multibracteata Hemsl. & E. H. Wilson. Sci. Hortic. 2009, 119, 434–441. [Google Scholar] [CrossRef]
- Phillips, N.C.; Drost, D.T.; Varga, W.A.; Shultz, L.M. Demography, Reproduction, and Dormancy along Altitudinal Gradients in Three Intermountain Allium Species with Contrasting Abundance and Distribution. Morphol. Distrib. Funct. Ecol. Plants 2011, 206, 164–171. [Google Scholar] [CrossRef]
- Vidigal, D.S.; Marques, A.C.S.S.; Willems, L.A.J.; Buijs, G.; Méndez-Vigo, B.; Hilhorst, H.W.M.; Bentsink, L.; Picó, F.X.; Alonso-Blanco, C. Altitudinal and Climatic Associations of Seed Dormancy and Flowering Traits Evidence Adaptation of Annual Life Cycle Timing in Arabidopsis thaliana. Plant Cell Environ. 2016, 39, 1737–1748. [Google Scholar] [CrossRef]
- Lamont, B.B.; Pausas, J.G. Seed Dormancy Revisited: Dormancy-Release Pathways and Environmental Interactions. Funct. Ecol. 2023, 37, 1106–1125. [Google Scholar] [CrossRef]
- Zhou, Z.; Bao, W. Levels of Physiological Dormancy and Methods for Improving Seed Germination of Four Rose Species. Sci. Hortic. 2011, 129, 818–824. [Google Scholar] [CrossRef]
- Koornneef, M.; Bentsink, L.; Hilhorst, H. Seed Dormancy and Germination. Curr. Opin. Plant Biol. 2002, 5, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed Dormancy and the Control of Germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Urbanova, T.; Leubner-Metzger, G. Gibberellins and Seed Germination. In Annual Plant Reviews; Wiley: Hoboken, NJ, USA, 2016; Volume 49, pp. 253–284. ISBN 9781119210436. [Google Scholar]
- Del Valle, J.C.; Buide, M.L.; Whittall, J.B.; Valladares, F.; Narbona, E. UV Radiation Increases Phenolic Compound Protection but Decreases Reproduction in Silene Littorea. PLoS ONE 2020, 15, e0231611. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.K.; Qaswar, M.; Ahmed, N.; Rabnawaz, M.; Rasool, S.J. Effect of Seed Soaking Time on Germination of Maize (Zea mays L.). PSM Biol. Res. 2017, 2, 46–50. [Google Scholar]
- Siddique, A.; Kumar, P. Physiological and Biochemical Basis of Pre-Sowing Soaking Seed Treatment-an Overview. Plant Arch. 2018, 18, 1933–1937. [Google Scholar]
- Mahajan, Y.A.; Shinde, B.A.; Torris, A.; Gade, A.B.; Patil, V.S.; John, C.K.; Kadoo, N.Y.; Nikam, T.D. Pre-Sowing Treatments, Seed Components and Water Imbibition Aids Seed Germination of Gloriosa Superba. Seeds 2023, 2, 15–29. [Google Scholar] [CrossRef]
- POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available online: http://www.Plantsoftheworldonline.Org/ (accessed on 27 September 2023).
- GBIF.org GBIF—Global Biodiversity Information Facility. Available online: https://www.gbif.org/ (accessed on 27 September 2023).
- Bayer, E. Die Gattung Alstroemeria in Chile. Mitteilungen Bot. Staatssamml. München 1987, 24, 1–362. [Google Scholar]
- Center for Climate and Resilience Research Climate Explorer. Available online: https://explorador.cr2.cl/ (accessed on 27 September 2023).
- Willan, R.L. Guía Para La Manipulación de Semillas Forestales; FAO: Rome, Italy, 1991. [Google Scholar]
- Barraza, P. Evaluación de Barreras Pre-Germinativas En La Propagación de Alstroemerias a Partir de Semillas. Bachelor’s Thesis, Universidad de Chile, Santiago, Chile, 2015. [Google Scholar]
- Baginsky, C.; Peña-Neira, Á.; Cáceres, A.; Hernández, T.; Estrella, I.; Morales, H.; Pertuzé, R. Phenolic Compound Composition in Immature Seeds of Fava Bean (Vicia faba L.) Varieties Cultivated in Chile. J. Food Compos. Anal. 2013, 31, 1–6. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.B.T.-M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. ISBN 0076-6879. [Google Scholar]
- Porter, L.J.; Hrstich, L.N.; Chan, B.G. The Conversion of Procyanidins and Prodelphinidins to Cyanidin and Delphinidin. Phytochemistry 1985, 25, 223–230. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Phenolic Compounds. In Handbook of Enology, The Chemistry of Wine Stabilization and Treatments; John Wiley & Sons, Ltd.: Chinchester, UK, 2006; Volume 2, pp. 141–203. [Google Scholar]
- Peña-Neira, A.; Dueñas, M.; Duarte, A.; Hernandez, T.; Estrella, I.; Loyola, E. Effects of Ripening Stages and of Plant Vegetative Vigor on the Phenolic Composition of Grapes (Vitis vinifera L.) Cv. Cabernet Sauvignon in the Maipo Valley (Chile). Vitis 2004, 43, 51–57. [Google Scholar] [CrossRef]
- Little, T.M. Analysis of Percentage and Rating Scale Data. HortScience 1985, 20, 642–644. [Google Scholar] [CrossRef]
- Nasri, F.; Khoshesh Saba, M.; Ghaderi, A.; Akbar Mozafari, A.; Javadi, T. Improving Germination and Dormancy Breaking in Alstromeria ligtu Hybrid Seeds. Trakia J. Sci. 2014, 1, 38–46. [Google Scholar]
- Guerra, F.; Peñaloza, P.; Vidal, A.; Cautín, R.; Castro, M. Seed Maturity and Its In Vitro Initiation of Chilean Endemic Geophyte Alstroemeria pelegrina L. Horticulturae 2022, 8, 464. [Google Scholar] [CrossRef]
- Cruz, V.M.V.; Walters, C.T.; Dierig, D.A. Dormancy and After-Ripening Response of Seeds from Natural Populations and Conserved Physaria (Syn. Lesquerella) Germplasm and Their Association with Environmental and Plant Parameters. Ind. Crops Prod. 2013, 45, 191–199. [Google Scholar] [CrossRef]
- Bawa, K.S.; Ingty, T.; Revell, L.J.; Shivaprakash, K.N. Correlated Evolution of Flower Size and Seed Number in Flowering Plants (Monocotyledons). Ann. Bot. 2019, 123, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, P. Carbohydrate Degradation during Germination. In Seed Development and Germination; Routledge: London, UK, 1995; pp. 447–474. [Google Scholar]
- Zinsmeister, J.; Leprince, O.; Buitink, J. Molecular and Environmental Factors Regulating Seed Longevity. Biochem. J. 2020, 477, 305–323. [Google Scholar] [CrossRef]
- Barrett, S.C.H. Influences of Clonality on Plant Sexual Reproduction. Proc. Natl. Acad. Sci. USA 2015, 112, 8859–8866. [Google Scholar] [CrossRef]
- Cerabolini, B.; Ceriani, R.M.; Caccianiga, M.; De Andreis, R.; Raimondi, B. Seed Size, Shape and Persistence in Soil: A Test on Italian Flora from Alps to Mediterranean Coasts. Seed Sci. Res. 2003, 13, 75–85. [Google Scholar] [CrossRef]
- Schwienbacher, E.; Marcante, S.; Erschbamer, B. Alpine Species Seed Longevity in the Soil in Relation to Seed Size and Shape—A 5-Year Burial Experiment in the Central Alps. Morphol. Distrib. Funct. Ecol. Plants 2010, 205, 19–25. [Google Scholar] [CrossRef]
- Arroyo, M.T.K.; Cavieres, L.A.; Humaña, A.M. Experimental Evidence of Potential for Persistent Seed Bank Formation at a Subantarctic Alpine Site in Tierra Del Fuego, Chile. Ann. Missouri Bot. Gard. 2004, 91, 357–365. [Google Scholar]
- Long, R.L.; Gorecki, M.J.; Renton, M.; Scott, J.K.; Colville, L.; Goggin, D.E.; Commander, L.E.; Westcott, D.A.; Cherry, H.; Finch-Savage, W.E. The Ecophysiology of Seed Persistence: A Mechanistic View of the Journey to Germination or Demise. Biol. Rev. 2015, 90, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Shaver, T.M.; Peterson, G.A.; Ahuja, L.R.; Westfall, D.G.; Sherrod, L.A.; Dunn, G. Surface Soil Physical Properties After Twelve Years of Dryland No-Till Management. Soil Sci. Soc. Am. J. 2002, 66, 1296–1303. [Google Scholar] [CrossRef]
- Soltani, E.; Baskin, C.C.; Baskin, J.M.; Heshmati, S.; Mirfazeli, M.S. A Meta-Analysis of the Effects of Frugivory (Endozoochory) on Seed Germination: Role of Seed Size and Kind of Dormancy. Plant Ecol. 2018, 219, 1283–1294. [Google Scholar] [CrossRef]
- Jurado, E.; Flores, J. Is Seed Dormancy under Environmental Control or Bound to Plant Traits? J. Veg. Sci. 2005, 16, 559–564. [Google Scholar] [CrossRef]
- Yilmaz, G. Seed Morphology Studies on Some Veronica L. Species (Plantaginaceae) with Scanning Electron Microscopy. Rom. Biotechnol. Lett. 2013, 18, 8180–8189. [Google Scholar]
- Güneş, F.; Ali, Ç. Seed Characteristics and Testa Textures Some Taxa of Genus Lathyrus L. (Fabaceae) from Turkey. Int. J. Agric. Biol. 2011, 13, 888–894. [Google Scholar]
- Shui, Y.-M.; Janssens, S.; Huang, S.-H.; Chen, W.-H.; Yang, Z.-G. Three New Species of Impatiens L. from China and Vietnam: Preparation of Flowers and Morphology of Pollen and Seeds. Syst. Bot. 2011, 36, 428–439. [Google Scholar] [CrossRef]
- Chapple, C.C.S.; Shirley, B.W.; Zook, M.; Hammerschmidt, R.; Sommerville, S.C. Secondary Metabolism in Arabidopsis. In Arabidopsis; Meyerowitz, M.E., Sommerville, C.R., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1994; pp. 989–1030. [Google Scholar]
- Debeaujon, I.; Léon-Kloosterziel, K.M.; Koornneef, M. Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiol. 2000, 122, 403–414. [Google Scholar] [CrossRef]
- Kuang, A.; Xiao, Y.; Musgrave, M.E. Cytochemical Localization of Reserves during Seed Development in Arabidopsis thaliana under Spaceflight Conditions. Ann. Bot. 1996, 78, 343–351. [Google Scholar] [CrossRef]
- Beeckman, T.; De Rycke, R.; Viane, R.; Inzé, D. Histological Study of Seed Coat Development in Arabidopsis thaliana. J. Plant Res. 2000, 113, 139–148. [Google Scholar] [CrossRef]
- Devic, M.; Guilleminot, J.; Debeaujon, I.; Bechtold, N.; Bensaude, E.; Koornneef, M.; Pelletier, G.; Delseny, M. The BANYULS Gene Encodes a DFR-like Protein and Is a Marker of Early Seed Coat Development. Plant J. 1999, 19, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Moïse, J.A.; Han, S.; Gudynaitę-Savitch, L.; Johnson, D.A.; Miki, B.L.A. Seed Coats: Structure, Development, Composition, and Biotechnology. Vitr. Cell. Dev. Biol. Plant 2005, 41, 620–644. [Google Scholar] [CrossRef]
- Metlen, K.L.; Aschehoug, E.T.; Callaway, R.M. Plant Behavioural Ecology: Dynamic Plasticity in Secondary Metabolites. Plant. Cell Environ. 2009, 32, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.D.; Kennedy, J.A. Plant Metabolism and the Environment: Implications for Managing Phenolics. Crit. Rev. Food Sci. Nutr. 2010, 50, 620–643. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.M.; Rehill, B.; Zhang, Y.; Gower, J. A Test of the Latitudinal Defense Hypothesis: Herbivory, Tannins and Total Phenolics in Four North American Tree Species. Ecol. Res. 2009, 24, 697–704. [Google Scholar] [CrossRef]
- Jaakola, L.; Hohtola, A. Effect of Latitude on Flavonoid Biosynthesis in Plants. Plant. Cell Environ. 2010, 33, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.M.; Albuquerque, U.P.; Lins Neto, E.M.F.; Araújo, E.L.; Albuquerque, M.M.; Amorim, E.L.C. The Effects of Seasonal Climate Changes in the Caatinga on Tannin Levels in Myracrodruon urundeuva (Engl.) Fr. All. and Anadenanthera colubrina (Vell.) Brenan. Rev. Bras. Farm. 2006, 16, 338–344. [Google Scholar] [CrossRef]
- Alonso-Amelot, M.E.; Oliveros-Bastidas, A.; Calcagno-Pisarelli, M.P. Phenolics and Condensed Tannins of High Altitude Pteridium arachnoideum in Relation to Sunlight Exposure, Elevation, and Rain Regime. Biochem. Syst. Ecol. 2007, 35, 1–10. [Google Scholar] [CrossRef]
- Zhang, L.H.; Shao, H.B.; Ye, G.F.; Lin, Y.M. Effects of Fertilization and Drought Stress on Tannin Biosynthesis of Casuarina equisetifolia Seedlings Branchlets. Acta Physiol. Plant. 2012, 34, 1639–1649. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Li, H.; Gao, Y.; Yang, Y.; Lu, Y. Bottom-Up Effects of Drought-Stressed Cotton Plants on Performance and Feeding Behavior of Aphis Gossypii. Plants 2023, 12, 2886. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wu, X.; Liu, X. Phenolic Characteristics and Antioxidant Activity of Merlot and Cabernet Sauvignon Wines Increase with Vineyard Altitude in a High-Altitude Region. S. Afr. J. Enol. Vitic. 2017, 38, 132–143. [Google Scholar] [CrossRef]
- Mertoğlu, K.; Gülbandilar, A.; Bulduk, İ. Growing Conditions Effect on Fruit Phytochemical Composition and Anti-Microbial Activity of Plum (Cv. Black Diamond). Int. J. Agric. For. Life Sci. 2020, 4, 56–61. [Google Scholar]
- Bu, H.; Chen, X.; Xu, X.; Liu, K.; Jia, P.; Du, G. Seed Mass and Germination in an Alpine Meadow on the Eastern Tsinghai–Tibet Plateau. Plant Ecol. 2007, 191, 127–149. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; Silveira, F.A.O.; Fidelis, A.; Poschlod, P.; Commander, L.E. Seed Germination Traits Can Contribute Better to Plant Community Ecology. J. Veg. Sci. 2016, 27, 637–645. [Google Scholar] [CrossRef]
- Muscolo, A.; Panuccio, M.R.; Sidari, M. The Effect of Phenols on Respiratory Enzymes in Seed Germination. Plant Growth Regul. 2001, 35, 31–35. [Google Scholar] [CrossRef]
- Pereira, C.E.; Von Pinho, É.V.R.; Oliveira, D.F.; Kikuti, A.L.P. Determinação de Inibidores Da Germinação No Espermoderma de Sementes de Café (Coffea arabica L.). Rev. Bras. Sementes 2002, 24. [Google Scholar] [CrossRef]
- Valares, C. Variación Del Metabolismo Secundario En Plantas Debida Al Genotipo y Al Ambiente; Universidad de Extremadura: Badajoz, Spain, 2011. [Google Scholar]
- Inácio, M.C.; Moraes, R.M.; Mendonça, P.C.; Morel, L.J.F.; França, S.C.; Bertoni, B.W.; Pereira, A.M.S. Phenolic Compounds Influence Seed Dormancy of Palicourea Rigida HBK (Rubiaceae), a Medicinal Plant of the Brazilian Savannah. J. Plant Sci. 2013, 4, 129–133. [Google Scholar]
- Reigosa, M.J.; Souto, X.C.; Gonz’lez, L. Effect of Phenolic Compounds on the Germination of Six Weeds Species. Plant Growth Regul. 1999, 28, 83–88. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.-A. Phenolics and Plant Allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef]
- Kong, L.; Wang, F.; Si, J.; Feng, B.; Li, S. Water-Soluble Phenolic Compounds in the Coat Control Germination and Peroxidase Reactivation in Triticum aestivum Seeds. Plant Growth Regul. 2008, 56, 275–283. [Google Scholar] [CrossRef]
- Garnett, E.; Jonsson, L.M.; Dighton, J.; Murnen, K. Control of Pitch Pine Seed Germination and Initial Growth Exerted by Leaf Litters and Polyphenolic Compounds. Biol. Fertil. Soils 2004, 40, 421–426. [Google Scholar] [CrossRef]
Alstroemeria Species * | Location | Coordinates | Conservation Category ** | |
---|---|---|---|---|
Latitude | Longitude | |||
A. angustifolia subsp. angustifolia | El Morado, Metropolitan Region, Chile | 33°48.426′ | 70°04.235′ | no record |
A. hookeri subsp. maculata Ehr.Bayer | Los Vilos, Region of Coquimbo, Chile | 31°53.145′ | 71°30.089′ | LC |
A. ligtu subsp. simsii (Spreng.) Ehr.Bayer | Rinconada de Maipú, Metropolitan Region, Chile | 33°29.648′ | 70°53.823′ | no record |
A. magnifica var. magenta (Ehr.Bayer) Muñoz-Schick | Los Vilos, Region of Coquimbo, Chile | 31°53.071′ | 71°30.137′ | LC |
A. magnifica subsp. maxima (Phil.) Ehr.Bayer | Rinconada de Maipú, Metropolitan Region, Chile | 33°29.822′ | 70°54.521′ | LC |
A. pallida Graham | Farellones, Metropolitan Region, Chile | 33°20.804′ | 70°18.207′ | no record |
A. pelegrina L. | Los Vilos, Region of Coquimbo, Chile | 31°53.092′ | 71°30.188′ | VU |
A. pseudospathulata Ehr.Bayer | Piedra Blanca, Maule Region, Chile | 35°37.283′ | 71°02.720′ | VU |
A. pulchra subsp. pulchra | Rinconada de Maipú, Metropolitan Region, Chile | 33°29.808′ | 70°54.597′ | LC |
A. umbellata Meyen | Farellones, Metropolitan Region, Chile | 33°21.635′ | 70°15.377′ | VU |
Treatment Code | Scarification | Stratification |
---|---|---|
Control | No | No |
SW | Soaking water | No |
SWSt1° | Soaking water | 1 °C |
SWSt13° | Soaking water | 13 °C |
St1° | No | 1 °C |
St13° | No | 13 °C |
Alstroemeria Species * | % of Emergence (Mean ± SE) ** | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | SW | SWSt1° | SWSt13° | St1° | St13° | |||||||
A. angustifolia subsp. angustifolia | 0 ± 0 | 5 ± 0 | B,c | 55 ± 7 | A,b | 92 ± 3 | AB,a | 0 ± 0 | 52 ± 3 | A,b | ||
A. hookeri subsp. maculata Ehr.Bayer | 2 ± 2 | B,c | 0 ± 0 | 0 ± 0 | 80 ± 6 | B,a | 0 ± 0 | 47 ± 2 | A,b | |||
A. ligtu subsp. simsii (Spreng.) Ehr.Bayer | 0 ± 0 | 2 ± 2 | B,c | 35 ± 5 | A,b | 82 ± 4 | B,a | 0 ± 0 | 2 ± 2 | B,c | ||
A. magnifica var. magenta (Ehr.Bayer) Muñoz-Schick | 0 ± 0 | 0 ± 0 | 0 ± 0 | 32 ± 7 | C | 0 ± 0 | 0 ± 0 | |||||
A. magnifica subsp. maxima (Phil.) Ehr.Bayer | 0 ± 0 | 0 ± 0 | 0 ± 0 | 17 ± 2 | C,a | 0 ± 0 | 2 ± 2 | B,b | ||||
A. pallida Graham | 0 ± 0 | 0 ± 0 | 1± 1 | B,b | 27 ± 6 | C,a | 0 ± 0 | 0 ± 0 | ||||
A. pelegrina L. | 78 ± 3 | A,b | 38 ± 11 | A,c | 3 ± 3 | B,d | 98 ± 2 | A,a | 12 ± 3 | cd | 13 ± 8 | B,cd |
A. pseudospathulata Ehr.Bayer | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | ||||||
A. pulchra subsp. pulchra | 0 ± 0 | 0 ± 0 | 0 ± 0 | 18 ± 2 | C,a | 0 ± 0 | 10 ± 0 | B,a | ||||
A. umbellata Meyen | 0 ± 0 | 0 ± 0 | 7± 1 | B,b | 40 ± 9 | C,a | 0 ± 0 | 0 ± 0 |
Alstroemeria Species * | % of Emergence (Mean ± SE) ** | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | SW | SWSt1° | SWSt13° | St1° | St13° | |||||||
A. angustifolia subsp. angustifolia | 30 ± 12 | B,bc | 10 ± 0 | B,c | 60 ± 3 | A,ab | 92 ± 3 | AB,a | 5 ± 3 | A,c | 55 ± 6 | A,b |
A. hookeri subsp. maculata Ehr.Bayer | 8 ± 2 | B,b | 0 ± 0 | 0 ± 0 | 82 ± 4 | AB,a | 0 ± 0 | 50 ± 3 | A,a | |||
A. ligtu subsp. simsii (Spreng.) Ehr.Bayer | 3 ± 2 | B,c | 5 ± 3 | B,c | 38 ± 7 | AB,b | 83 ± 3 | AB,a | 5 ± 3 | A,c | 2 ± 2 | C,c |
A. magnifica var. magenta (Ehr.Bayer) Muñoz-Schick | 0 ± 0 | 0 ± 0 | 0 ± 0 | 32 ± 7 | CD | 0 ± 0 | 0 ± 0 | |||||
A. magnifica subsp. maxima (Phil.) Ehr.Bayer | 0 ± 0 | 0 ± 0 | 0 ± 0 | 17 ± 2 | D,a | 0 ± 0 | 2 ± 2 | C,a | ||||
A. pallida Graham | 0 ± 0 | 0 ± 0 | 2 ± 2 | C,b | 27 ± 6 | CD,a | 0 ± 0 | 0 ± 0 | ||||
A. pelegrina L. | 98 ± 2 | A,a | 93 ± 2 | A,a | 5 ± 5 | C,b | 98 ± 2 | A,a | 27 ± 7 | A,b | 27 ± 14 | AB,b |
A. pseudospathulata Ehr.Bayer | 0 ± 0 | 0 ± 0 | 0 ± 0 | 5 ± 2 | D | 0 ± 0 | 0 ± 0 | |||||
A. pulchra subsp. pulchra | 0 ± 0 | 0 ± 0 | 0 ± 0 | 20 ± 3 | D,a | 0 ± 0 | 10 ± 0 | BC,a | ||||
A. umbellata Meyen | 2 ± 2 | B,b | 0 ± 0 | 7 ± 2 | BC,b | 62 ± 4 | BC,a | 0 ± 0 | 0 ± 0 |
Alstroemeria Species * | Emergence Speed (% of Emergence/Day) (Mean ± SE) ** | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | SW | SWSt1° | SWSt13° | St1° | St13° | |||||||
A. angustifolia subsp. angustifolia | 0.60 ± 0.22 | AB,c | 0.26 ± 0.01 | B,c | 3.59 ± 0.55 | A,b | 8.09 ± 0.61 | AB,a | 0.10 ± 0.06 | B,c | 4.37 ± 0,55 | A,b |
A. hookeri subsp. maculata Ehr.Bayer | 0.20 ± 0.05 | AB,c | 0.00 ± 0.00 | 0.00 ± 0.00 | 7.97 ± 0.23 | B,a | 0.00 ± 0.00 | 4.38 ± 0.17 | A,b | |||
A. ligtu subsp. simsii (Spreng.) Ehr.Bayer | 0.07 ± 0.03 | B,b | 0.13 ± 0.08 | B,b | 1.89 ± 0.25 | B,b | 8.61 ± 1.35 | AB,a | 0.12 ± 0.07 | B,b | 0.09 ± 0.09 | B,b |
A. magnifica var. magenta (Ehr.Bayer) Muñoz-Schick | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 3.35 ± 1.14 | C | 0.00 ± 0.00 | 0.00 ± 0.00 | |||||
A. magnifica subsp. maxima (Phil.) Ehr.Bayer | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1.54 ± 0.30 | C,a | 0.00 ± 0.00 | 0.12 ± 0.12 | B,b | ||||
A. pallida Graham | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.11 ± 0.11 | D,b | 2.05 ± 0.30 | C,a | 0.00 ± 0.00 | 0.00 ± 0.00 | ||||
A. pelegrina L. | 3.37 ± 0.13 | A,b | 2.48 ± 0.16 | A,bc | 0.20 ± 0.20 | D,c | 11.48 ± 0.92 | A,a | 0.74 ± 0.17 | A,c | 0.84 ± 0.45 | B,c |
A. pseudospathulata Ehr.Bayer | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.11 ± 0.05 | C | 0.00 ± 0.00 | 0.00 ± 0.00 | |||||
A. pulchra subsp. pulchra | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1.76 ± 0.45 | C,a | 0.00 ± 0.00 | 1.45 ± 0.12 | B,a | ||||
A. umbellata Meyen | 0.03 ± 0.03 | B,b | 0.00 ± 0.00 | 0.28 ± 0.06 | CD,b | 2.16 ± 0.27 | C,a | 0.00 ± 0.00 | 0.00 ± 0.00 |
Alstroemeria Species | mg g−1 Seed (Mean ± SE) | |||||
---|---|---|---|---|---|---|
Phenols * | Tannins * | Anthocyanins * | ||||
A. angustifolia subsp. Angustifolia | 3.37 ± 0.19 | B | 1.31 ± 0.18 | B | - | |
A. hookeri subsp. maculata Ehr.Bayer | 4.71 ± 0.11 | A | 30.95 ± 0.72 | A | - | |
A. ligtu subsp. simsii (Spreng.) Ehr.Bayer | 2.44 ± 0.09 | C | 11.09 ± 0.62 | AB | 0.06 | |
A. magnifica subsp. maxima (Phil.) Ehr.Bayer | 3.49 ± 0.06 | B | - | - | ||
A. pelegrina L. | 3.53 ± 0.14 | B | 13.12 ± 0.56 | AB | - | |
A. umbellata Meyen | 3.12 ± 0.12 | B | 12.90 ± 0.57 | AB | - |
Phenolic Compound | A. angustifolia subsp. angustifolia | A. hookeri subsp. maculata Ehr.Bayer | A. ligtu subsp. simsii (Spreng.) Ehr.Bayer | A. magnifica subsp. maxima (Phil.) Ehr.Bayer | A. pelegrina L. | A. umbellata Meyen |
---|---|---|---|---|---|---|
mg kg−1 Seed | ||||||
protocatechuic acid | 10.17 | 26.38 | 1.68 | 0.59 | 2.77 | 4.74 |
benzoic aldehyde | 74.61 | 76.36 | 70.44 | 70.77 | - | 70.62 |
p-hydroxybenzoic acid | 0.39 | - | - | - | - | - |
tyrosol | 41.04 | 34.37 | 35.18 | 34.76 | 33.18 | 33.35 |
(+)-catechin | 18.69 | - | - | - | - | - |
vanillic acid | 72.54 | 71.30 | 70.07 | 71.39 | 70.96 | 70.77 |
syringic acid | 9.19 | - | - | - | - | 10.10 |
p-vanillin | 73.07 | - | - | - | - | - |
(−)-epicatechin | 11.82 | - | - | - | - | 5.85 |
trans-ferulic acid | 6.47 | - | - | - | - | - |
resveratrol | 5.83 | - | 5.75 | - | 5.99 | 7.30 |
quercetin 3-glucoside | 4.75 | 7.89 | - | - | - | 3.58 |
quercetin 3-galactoside | 13.60 | 7.43 | - | - | 30.48 | - |
quercetin 3-rhamnoside | 9.41 | 10.45 | 11.27 | - | 166.11 | - |
dihydroxyflavonol | 18.72 | - | 14.06 | - | - | - |
flavonol glucoside | 26.52 | - | 7.43 | - | 31.70 | 3.58 |
Emergence (%) after 60 Days | ||||||
---|---|---|---|---|---|---|
SWSt1° | SWSt13° | St1° | St13° | SW | Control | |
Altitude | 0.42 | −0.51 ** | −0.48 ** | −0.37 | −0.40 | −0.52 * |
Mean Temperature | −0.45 | 0.45 | 0.37 | 0.39 | 0.28 | 0.47 * |
Max Temperature | −0.17 | −0.09 | 0.11 | −0.22 | −0.02 | −0.22 * |
Min Temperature | −0.45 | 0.45 | 0.37 | 0.39 | 0.28 | 0.47 |
Precipitation | 0.59 ** | −0.28 | −0.26 | −0.16 | −0.11 | −0.30 |
Longitude | 0.75 ** | −0.19 | −0.27 | −0.14 | −0.14 | −0.30 |
Latitude | −0.53 * | 0.31 | 0.27 | 0.08 | 0.14 | 0.36 |
Seed diameter | 0.49 * | 0.43 * | 0.60 ** | −0.03 | 0.53 ** | 0.40 * |
Mass of 100 Seeds | 0.64 ** | 0.43 * | 0.47 * | −0.10 | 0.48 ** | 0.34 |
Total phenolics | 0.22 | 0.60 ** | 0.27 | 0.57 ** | 0.37 * | 0.67 ** |
Total tannins | 0.35 | 0.79 ** | 0.41 * | 0.48 ** | 0.43 * | 0.73 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aros, D.; Barraza, P.; Peña-Neira, Á.; Mitsi, C.; Pertuzé, R. Seed Characterization and Evaluation of Pre-Germinative Barriers in the Genus Alstroemeria (Alstroemeriaceae). Seeds 2023, 2, 474-495. https://doi.org/10.3390/seeds2040035
Aros D, Barraza P, Peña-Neira Á, Mitsi C, Pertuzé R. Seed Characterization and Evaluation of Pre-Germinative Barriers in the Genus Alstroemeria (Alstroemeriaceae). Seeds. 2023; 2(4):474-495. https://doi.org/10.3390/seeds2040035
Chicago/Turabian StyleAros, Danilo, Paulina Barraza, Álvaro Peña-Neira, Christina Mitsi, and Ricardo Pertuzé. 2023. "Seed Characterization and Evaluation of Pre-Germinative Barriers in the Genus Alstroemeria (Alstroemeriaceae)" Seeds 2, no. 4: 474-495. https://doi.org/10.3390/seeds2040035
APA StyleAros, D., Barraza, P., Peña-Neira, Á., Mitsi, C., & Pertuzé, R. (2023). Seed Characterization and Evaluation of Pre-Germinative Barriers in the Genus Alstroemeria (Alstroemeriaceae). Seeds, 2(4), 474-495. https://doi.org/10.3390/seeds2040035