
sensors

Article

A Processing-in-Memory Architecture
Programming Paradigm for Wireless
Internet-of-Things Applications

Xu Yang 1 , Yumin Hou 2 and Hu He 2,*
1 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;

yangxu@tsinghua.edu.cn
2 Institute of Microelectronics, Tsinghua University, Beijing 100084, China; hou-ym12@mails.tsinghua.edu.cn
* Correspondence: hehu@tsinghua.edu.cn; Tel.: +86-010-6279-5139

Received: 6 December 2018; Accepted: 27 December 2018; Published: 3 January 2019
����������
�������

Abstract: The widespread applications of the wireless Internet of Things (IoT) is one of the leading
factors in the emerging of Big Data. Huge amounts of data need to be transferred and processed.
The bandwidth and latency of data transfers have posed a new challenge for traditional computing
systems. Under Big Data application scenarios, the movement of large scales of data would influence
performance, power efficiency, and reliability, which are the three fundamental attributes of a computing
system. Thus, changes in the computing paradigm are demanding. Processing-in- Memory (PIM),
aiming at placing computation as close as possible to memory, has become of great interest to academia
as well as industries. In this work, we propose a programming paradigm for PIM architecture that is
suitable for wireless IoT applications. A data-transferring mechanism and middleware architecture are
presented. We present our methods and experiences on simulation-platform design, as well as FPGA
demo design, for PIM architecture. Typical applications in IoT, such as multimedia and MapReduce
programs, are used as demonstration of our method’s validity and efficiency. The programs could
successfully run on the simulation platform built based on Gem5 and on the FPGA demo. Results
show that our method could largely reduce power consumption and execution time for those programs,
which is very beneficial in IoT applications.

Keywords: Processing-in-Memory; programming paradigm; Internet of Things

1. Introduction

We have entered the Era of Big Data, and the world is encountering the processing evolution of
those Big Data. Existing systems used in Big Data processing are becoming less energy-efficient and
fail to scale in terms of power consumption and area [1,2]. The widespread applications of the wireless
Internet of Things (IoT) is one of the leading factors in the emerging of Big Data. Huge amounts
of data need to be transferred and processed. Under Big Data application scenarios, the movement
of large scales of data influences performance, power efficiency, and reliability, which are the three
fundamental attributes of a computing system.

The trend of the ever-growing number of applications of wireless IoT is leading to changes in the
computing paradigm and, in particular, to the notion of moving computation to data in what we call
the Processing-in-Memory (PIM) approach. A traditional computing architecture is shown in Figure 1.
Computing units may include the CPU, GPU, and DSP. Data are transferred between the computing
units and the main memory through the memory-hierarchy levels. The bottleneck of data processing
for a traditional computing architecture is the bandwidth and latency of data transfer, since a large
amount of data are stored in the DRAM [3,4]. Although processors have large caches and an embedded

Sensors 2019, 19, 140; doi:10.3390/s19010140 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7983-6473
https://orcid.org/0000-0003-0379-9594
http://www.mdpi.com/1424-8220/19/1/140?type=check_update&version=1
http://dx.doi.org/10.3390/s19010140
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 140 2 of 23

memory, there is an increasing number of data stored in DRAM for high-throughput applications
(Big Data processing scenarios, as well as radar-signal processing, video/image data processing, deep
learning, etc.). If we want to overcome the shortage of traditional computing architectures to better suit
Big Data processing, we need to move some computation units to DRAM to exploit PIM technology.
With the evolution of emerging DRAM technologies, PIM has now become of great interest to academia
as well as different industries [5,6] after a period of dormancy. PIM prototypes always integrate simple
processing units with DRAM arrays to minimize data movement and perform computation right
at data’s home. This is in contrast to the movement of data toward a CPU independent of where it
resides, as it is done traditionally. It is also proposed that data computation can be performed in caches,
or persistent storage (Solid State Drive—SSD) [7].

CPU

DDR Memory

Memory Controller

GPU DSP

System Bus

DDR Memory

Figure 1. Traditional computing architecture.

Figure 2 shows the PIM concept. On the basis of a traditional computing architecture, a computing
unit (we call it the PIM core in this paper) is located near DDR memory. Three-dimensional packaging
technology supports the integration of DDR memory and the PIM core (the circled parts in Figure 2).
Three-dimensional packaging technology stacks heterogenous layers, including DRAM dice and a
logic die, in a single chip, which is called a PIM device, as shown in Figure 3. The logic layer includes
the PIM core, DMA, Through-Silicon Via (TSV) interface, BUS, and DDR PHY. Companies such as
Micron and Samsung are dedicated to the exploration of 3D packaging technology. Products such
as Hybrid Memory Cube (HMC) [8] and High Bandwidth Memory (HBM) [9,10] have already been
released to markets. Three-dimensionally packaged memory provides a new approach to the memory
system architecture. Heterogeneous layers are stacked with significantly more connections. TSVs
enable thousands of connections of the stacked layers. The PIM core can quickly access the DDR
memory. The HMC also provides a fast connection to the host CPU.

PACKAGE

3D-packaged DRAM

MEMORY DIE

MEMORY DIE

MEMORY DIE

MEMORY DIE

LOGIC DIE

CPU

Memory Controller

GPU DSP

System Bus

DDR 

Memory

P
IM

 c
o

re

P
IM

 c
o

re

DDR 

Memory

Figure 2. Processing-in-Memory (PIM) concept.



Sensors 2019, 19, 140 3 of 23

DDR PHY

TSV interface

BUS

PIM core DMA

Logic Die

DRAM

Logic Die

3D-DRAM

Figure 3. PIM device.

By adopting PIM, a PIM device becomes a small computing engine. With the PIM core fulfilling
the majority of the computing tasks, the data-transfer rate between CPU and memory is largely
reduced. In modern computing systems, load/store operation consumes much more power than
data-processing operations. For the Intel XEON CPU, power consumed by the data transfer between
CPU and memory is 19.5 times of that between CPU and the L1 cache [11]. Thus, PIM adoption largely
reduces the power consumption of the computing system. By moving data-processing units to the
memory, the burden of the CPU can be lightened, and the area of the CPU can also be reduced.

In typical IoT applications, huge amount of devices are connected to form a huge data transmissions
and an interaction network. Data collected from end-devices might be raw, doubtful, and in large
amounts. PIM could help in performing necessary end-device data preprocessing to provide a
preliminary understanding of those collected data. Further compressing the amount of data needs to
be transferred and exchanged, which might be very beneficial for IoT applications, where energy is
very important.

In this work, we present our methods and experiences on simulation-platform design, as well
as FPGA demo design, for a PIM architecture. The proposed programming paradigm was verified
on both platforms. The following of this paper is organized as follows: Related works are discussed
in Section 2. The target PIM architecture is introduced in Section 3. We provide details about our
programming paradigm in Section 4. In Section 5, we describe our approach of the implementation of
a simulator, and an FPGA demo, for the presented PIM architecture. The experiment results based
on the simulation platform are given in Section 6. We show the application prospects of the PIM
architecture in Section 7. Finally, we draw conclusions in Section 8.

2. Related Works

Many works have been done on PIM since the 1990s. EXECUBE [12], the first multinode PIM
chip based on DRAM, was developed in 1992. During the same era, Intelligent RAM (IRAM) [13,14],
Computational RAM (CRAM) [15], Parallel Processing RAM (PPRAM) [16], FlexRAM [5], DIVA [17],
Smart Memories [18], and Intelligent Memory Manger [19] were developed. IRAM was designed
for multimedia applications that include large amounts of computation. CRAM integrates many
simple one-bit data-processing elements at the sense amplifiers of a standard RAM to realize the
high-speed execution of applications with high parallelism. Most PIM projects of that era share the
same characteristics. The PIM chip always includes several simple processing cores located near the
DRAM arrays. They all realize high-speed parallel data processing.

Though promising results were witnessed at that time, no widespread commercial product
emerged because producing such PIM chips was very expensive. After decades of dormancy,
the interest to study PIM has been revived. With the emergence of 3D-staking technology, Big Data
workloads and distributed programming paradigm, a new concept of Near Data Processing (NDP)
was proposed.



Sensors 2019, 19, 140 4 of 23

Recent studies on NDP include References [1,20–23], of which References [1,22,23] all propose an
ARM-like core as the PIM core integrated in 3D-DRAM. Our research most resembles Reference [1].
We both propose an ARM-like PIM core and we used gem5 [24] to realize the simulation of the
PIM architecture. McPAT [25] was applied to analyze power consumption. The difference is that
Reference [1] focused on PIM design-space exploration, simply simulating the PIM core based on the
gem5 simulator. In our research, we simulated the PIM computing system, including both the host
processor and the PIM core. Workloads were assigned between host processor and the PIM core, and
communication between them was realized.

The contributions of this paper are listed as follows:

• We propose a programming paradigm for PIM architecture. Drivers and APIs were implemented.
An elaborate programming example is provided.

• We simulated a complete PIM computing system, including the host CPU and PIM cores, based on
the gem5 simulator. We implemented the proposed programming paradigm using system calls.

• We built a board-to-board FPGA demo for the PIM architecture. The proposed programming
paradigm was verified in this demo.

• We provide a performance comparison between the PIM computing architecture and traditional
architectures.

• We show the application prospects of the PIM architecture, where our programming paradigm
could also be utilized.

3. Target Architecture

We first introduce the design philosophy of the PIM architecture. As shown in Figure 4, the PIM
architecture (shown inside the large gray rectangle) should be composed of a host CPU, a PIM core,
memory controller, and memory (DRAM in Figure 4). The host CPU should be a computation light
processor. The host CPU, for example, can be an ARM without a NEON Out-of-Order core. According
to the design methodology of PIM systems, the PIM core is integrated in the same chip with DRAM.
The PIM core could be an SIMD machine, a GPU-like multithreading machine [4], a reconfigurable
array, many core systems, etc. References [26,27] also states that an SIMD/VLIW/vector processor
is fit for the data-processing unit in a PIM system. The host CPU and PIM cores share the same
physical memory. The host CPU can access the whole memory space, making some memory space
in the DRAM uncacheable. The PIM core uses the uncacheable memory space to run the program.
The cached memory space is read-only for the PIM core. Users can control the PIM core through
drivers. The software-development environment provides APIs for programmers.

Based on this design philosophy, we designed a PIM architecture as shown in Figure 5. The whole
system consists of a host chip and a DDR chip. The host chip contains the host CPU, CPU cache, CPU
TLB, internal system bus, and DDR interface. The DDR chip is a PIM device that contains the DDR
memory, PIM core, and DMA. We used a simple ARM core as the PIM core, which could be configured
to have one or two PIM cores. In the example presented in Figure 5, the number of PIM cores was set
to two. More PIM cores can be placed in the logic layer of a 3D-packaged memory, but we limited the
number to reduce simulation time. The host CPU is in charge of running the OS to control the whole
system, while the PIM cores (core1 and core2) on the DDR chip focus on applications that need large
amounts of computation and memory access. The CPU and the PIM cores can claim buffers in DDR
memory for program execution, as shown in Figure 5. For the efficient transfer of large-scale data
between the buffer of the CPU program and the buffers of PIM core program, a DMA was integrated
in the DDR chip.



Sensors 2019, 19, 140 5 of 23

API

 Host CPU

A Computation 

Light Core (Ex: 

ARM without 

NEON Out-of-

Order 

Architecture)

PIM core

Application

Driver

M
em

o
ry

 C
o
n

tr
o
ll

er

Uncacheable 

Memory 

Space

DRAM

The PIM core is only related to data in 

uncacheable memory space.

A computation light core accesses all 

memory space. So we can remove the issue 

of cache coherence.

Figure 4. Design philosophy of the PIM architecture.

CPU

CPU TLB

Buffer of 

CPU 

program

Buffer of 

core2 

program

DMA

Virtual 

Address 
Physical 

Address 

DDR Memory

CPU Cache

Internal System Bus

DDR PHY
Host Chip

DDR Chip

CPU program

OS

APPLICATION

API

DRIVER

core1

 program

PIM

core1

PIM

core2

Physical Address 

core2

 program

Buffer of 

core1 

program

Figure 5. Presented PIM architecture.

4. Programming Paradigm

In order to fully explore the potential of the PIM computing architecture, we have designed
a programming paradigm, which is discussed in detail in this section.



Sensors 2019, 19, 140 6 of 23

4.1. Task-Dividing Mechanism

First, a program should be analyzed to identify the behavior of each part.
As discussed before, in the presented PIM computing architecture, there is one host CPU and one

PIM device. The host CPU is mainly in charge of running OS, JVM, and control-intensive tasks. The PIM
cores in the PIM device are used to deal with a large scale of data processing. So, according to the results
of program analysis, a program is divided into two parts: control-intensive tasks and data-intensive
tasks. Control-intensive tasks are assigned to the host CPU, while data-intensive tasks are assigned
to PIM cores. The division of tasks should follow predefined rules to ensure the granularity of those
tasks in an appropriate level, thus reducing unnecessary frequent intercommunications between the
host CPU and PIM cores.

4.2. Data-Transferring Mechanism

After task division, the data flow of the program between host CPU and PIM cores is clear. Then,
the data-transferring mechanism for this program should be designed.

The data-exchange mechanism between the host CPU and the PIM cores is illustrated in Figure 6.
In the target architecture, the CPU and the PIM cores share the same physical memory space. The CPU
can access the memory by two means. Generally, data are transferred between CPU and memory
through the CPU cache. The CPU can also transfer large-scale data to the PIM memory space through
the DMA. The DMA does not adhere to the memory-consistent protocol, so the CPU has to perform a
special process before exchanging data with the PIM cores. Before the CPU transfers data to the PIM
cores, it should flush the cache data into the memory. After the PIM cores transfer data to the CPU, the
CPU has to invalidate the corresponding cache line, and refresh the data from the memory. The PIM
cores can directly access the DDR memory.

CPU PIM core1

CPU TLB

Buffer of 

CPU 

program

Buffer of 

core1 

program

DMA

Virtual 

Address 

Physical 

Address 

Physical 

Address 

DDR Memory

CPU 

Cache

PIM core2

Physical 

Address 

Buffer of 

core2 

program

Figure 6. Data-transferring mechanism.

Some basic functions are designed to realize the operations stated above, as shown in Figure 7.
With the help of those functions, the data-transferring mechanism between the host CPU and PIM
cores is designed and decided.



Sensors 2019, 19, 140 7 of 23

Function 

name
Description

settarget-

memory

When executed by CPU, it creates a 

memory space to receive data from a PIM 

core. It do the same thing for PIM cores.

switch2cpu
Switch from current PIM core to CPU 

and suspend the PIM core

switch2dev
Switch from CPU to a specified PIM 

core, and suspend CPU.

cpu2dev
Switch from CPU to a PIM core, and 

transfer data to the PIM core.

cpu2devs
Switch from CPU to current PIM cores, 

and transfer data to them.

dev2cpu
Switch from current PIM core to CPU, 

and transfer data to CPU.

freecpu Free CPU to run.

freedev Free a specified PIM core to run.

freedevs Free all PIM cores to run.

invalidate-

cache

After a PIM core transfer data to CPU, 

CPU has to invalidate the cache line 

associate with memory space of CPU 

buffer.

suspendcpu

Get current PIM device ID.

suspenddev Suspend PIM cores.

cacheflush

Before CPU transfer data to PIM core, 

CPU should first flush cache data into 

memory.

getdevID

wakeupcpu Wakeup CPU.

wakeupdev Wakeup a specified PIM core.

Suspend CPU.

Figure 7. Basic functions supporting the proposed programming paradigm.

4.3. Software-Level Architecture

The software-level architecture of the PIM computing system is shown in Figure 8. This includes
application, API, driver, and firmware. User application programs and API are all located in the file
system. API codes are substantial library functions. Drivers run on the host CPU. Through the drivers,
the CPU can interact with the firmware running on the PIM device, and control the operation the
PIM device.

PIM device

CPU core

File System

Application

API/Lib

Driver

Firmware (Algorithms, Lib)

Figure 8. Software-level architecture of the PIM computing system.



Sensors 2019, 19, 140 8 of 23

Firmware is a microsystem running on the PIM device. Note that the PIM device does not
run an operating system. The firmware allows the PIM device to interact with the user. It makes
specific allocation of the whole address space. The firmware includes application-targeted algorithms.
It provides plenty of functions that can be called in user applications. Users can call these
functions by calling the PIM_context, which we define below. PIM_context includes three pointers.
User_func_pointer points to the user function. PIM_func_pointer points to PIM firmware functions.
Vars_pointer points to global variables used in these functions. PIM_context enables the PIM device to
receive CPU-transferred programs and data. This helps improve users’ programming efficiency. In the
firmware operation process, firmware is started at first. Then, it waits until the data and algorithm
are configured. Firmware uses the data to fulfil the algorithm execution. After execution is finished,
it informs the driver of the end of execution, and stops working.

typedef struct{
void *user_func_pointer;
void *PIM_func_pointer;
void *vars_pointer;

}PIM_context_t;

PIM drivers provide the following functions:

• Firmware download: The PIM device receives firmware sent by the user and downloads it to a
specified location. Then, it frees the PIM device to run the firmware.

• Data transfer: This includes data send and receive. After firmware download is finished, data
sent by a user are transferred to the PIM device and stored in a specific firmware location. After
computation is finished, the specific length of the data is obtained from the specific location of the
firmware, and then, the data are sent to the user.

• Algorithm configuration and execution: When the firmware is downloaded, the user can
decide which algorithm the PIM device will run, and instruct the PIM device to start execution.
The algorithm can be provided by the firmware or by the users.

• Status check: The user can check the status of the PIM device during execution. Only the
PIM device itself can update its status. PIM device status includes PIM_start, PIM_wait_data,
PIM_check_alg, PIM_running, and PIM_finish.

APIs can be divided into user-mode APIs and kernel-mode APIs. Kernel-mode APIs provide an
interface to call drivers. User-mode APIs encapsulate kernel-mode APIs, and are more convenient
for users to use user-mode APIs. User-mode APIs provide the following functions (A means address,
indicating pointer type):

• File operation : to obtain file size, and read file to buffer.

get_file_size(A file)

read_file(A buffer, A file)

• Function transfer : CPU transfer user functions to PIM device. This realizes input and output
buffer management for the PIM device. Since the CPU may transfer multiple functions to the PIM
device, we should specify the main function running on the PIM device by the entry pointer.

build_buf(A Obuf, A entry, A Ibuf, len)

free_buf(A buffer)

• Driver interaction : The CPU obtains the PIM device information, and updates the firmware on
the PIM device.

find_device(A PIM_device)

update_firmware(PIM_device, A buffer, len)



Sensors 2019, 19, 140 9 of 23

• Operational configuration : The CPU configures the PIM device to conduct computation. It
chooses the algorithm on the PIM device firmware, sends and collects computation data, obtains
the computation status of the PIM device, and waits for the PIM device computation to finish.

set_algorithm(PIM_device, alg)

get_data(PIM_device, A buffer, len)

put_data(PIM_device, A recv_buffer, len)

check_status(PIM_device)

wait(PIM_device)

4.4. Programming Instructions

In a program running on PIM computing architecture, the host CPU and PIM device interact
with each other through PIM_context, as shown in Figure 9. When programming, users should use
the PIM_func prefix to indicate the function running on PIM device, and use the PIM_vars prefix to
indicate global variables used by PIM device functions. The PIM entry function and PIM variables
are included in PIM_context. Through PIM_context, PIM device can call user functions, as well as
firmware functions. Users should follow predefined rules to call functions and to use global variables.

CPU 

program

PIM

context

PIM

firmware

Figure 9. Program structure for the PIM computing architecture.

Execution of a program targeting the PIM computing architecture includes the following steps:
find PIM device→ send firmware function→ set algorithm→ send data→ wait for computation
finish→ receive data. A program example is given below.

/*A program example */
/*some parameters are omitted ,
data types are omitted */

// callee on PIM device
PIM_func int callee ()

//entry function run on PIM device
PIM_func int entry(PIM_context)
{

PIM_CALL_USER_FUNC(PIM_context , callee)
}

// firmware file
#define FIRMWARE "PIM_EXEC.bin"

int intput[n];
int output[n];
int main()
{

//get PIM device
find_device (& PIM_dev );



Sensors 2019, 19, 140 10 of 23

//send program run on PIM device
size = get_file_size(FIRMWARE );
buffer = malloc(size);
read_file(buffer , FIRMWARE );
update_firmware(PIM_dev , buffer , size);
free(buffer );

//set algorithm
set_algorithm(PIM_dev , ALG);

//send function and variables
buffer = 0;
size = build_buf (&buffer , entry , input)
get_data(PIM_dev , buffer , size);
free_buf(buffer );

//wait for computation finish
wait(PIM_dev );

// collect computation data
put_data(PIM_dev , output );

}

5. Evaluation Platform Design

5.1. Simulator Based on Gem5

We have built a simulation platform based on gem5 [24] to evaluate the PIM computing
architecture, and to verify the proposed programming paradigm. During the implementation
of this platform, we experienced new challenges. Gem5 [28,29] is an open-source platform for
computer-system architecture research, encompassing system-level architecture as well as processor
microarchitecture. Gem5 is written in the C++ and Python languages. It has several interchangeable
CPU models, and can support the simulating of multiprocessor systems. Gem5 has event-driven
memory systems. However, the Gem5 simulator does not support the EPIC architecture processor
models and VLIW ISA simulation.

A fast simulation methodology is crucial for exploring a sufficiently broad spectrum of applications
and relevant design points. An evaluation method proposed in Reference [4] is first gathering hardware
performance and power statics during execution on the current hardware. Then, the data are fed into a
machine-learning model that predicts the performance and power on future PIM and host hardware
configurations. However, this method is not accurate.

Recently, AMD proposed a work to explore the PIM design space [1]. They used gem5 to simulate
the PIM architecture. They used a minor CPU model and a gem5 DRAM module to run MapReduce
applications. In their simulation framework, the host processor was not included because gem5 does
not yet support such systems.

Gem5 can now support multicore and multisystem simulations. In conjunction with full-system
modeling, this feature allows the simulation of entire client–server networks. For multicore simulations,
the cores are constrained to use the same CPU model. In the proposed PIM architecture, we put the
PIM core near the memory, while the CPU still accessed the memory through memory hierarchy.
The CPU and PIM core access memory differently. In gem5, AtomicSimpleCPU is the only CPU
model that supports the fast memory (fastmem) access method, which most resembles the memory
access method of the PIM core. AtomicSimpleCPU is the simplest CPU model in gem5. It finishes one



Sensors 2019, 19, 140 11 of 23

instruction in one cycle. AtomicSimpleCPU can be used as the PIM core. Different CPU models should
be used to simulate the host CPU. We have to modify the gem5 simulator to realize this architecture.

Figure 10 shows the gem5 simulation model we designed. The host CPU was implemented based
on the O3CPU model. O3CPU is an Out-of-Order CPU model with five pipeline stages. We used the
AtomicSimpleCPU as the PIM core. The number of CPUs and PIM cores can be set to an arbitrary
value. The basic functions shown in Figure 7 are realized in the form of system calls on gem5 to
support the programming paradigm. CPUs and PIM cores can communicate with each other using
system calls.

C
P

U
P

IM
 

co
re

O3CPU

with traditional

memory hierarchy 

AtomicSimpleCPU

with

fastmem access

gem5 simulator

0 … m

0 … n

S
y
sc

al
l 

n
u
m

b
er

S
y
sc

al
l 

n
u
m

b
er

PIM

Device

list

CPU

list

Figure 10. Gem5 simulator of the PIM computing architecture.

5.2. Board-to-Board FPGA Demo

We also built a board-to-board FPGA demo to verify the proposed programming paradigm.
We used two Xilinx ZC706 evaluation boards to build the proposed PIM architecture. One of the
boards worked as the master board, and the other board worked as the slave board. The Xilinx
ZC706 board embraces a ZYNQ device, which integrates an ARM Cortex-A9 processor with FPGA
in a single chip. We used the ARM Cortex-A9 on the master board that works as the host CPU.
A self-designed ARM-compatible processor, working as the PIM core, was implemented on the FPGA
of the slave board.

As shown in Figure 11, the two boards can be connected by an FPGA Mezzanine Card (FMC)
Interface. Host board and slave board can communicate with each other through the chip2chip module,
which is software IP supported by the ZC706 board. In the PIM computing system, the slave board
can be regarded as a device of the master board. The master board can access the DDR and the control
register of the slave board through the chip2chip module by accessing mapped address space. The host
CPU can send control signals through the chip2chip master module to the chip2chip slave module.
The PIM core receives the control signals and starts working. During execution, the PIM core can access
the DDR though the AXI bus. When execution is finished, the slave board can send interrupt signals to
the AXI interrupt controller, and then to the host CPU. The host CPU collects the result data from DDR.

On this FPGA demo, we were able to verify that the proposed programming paradigm is feasible
and efficient.



Sensors 2019, 19, 140 12 of 23

Master board

C
h

ip
2

C
h

ip
 

m
o

d
u

le
ARM Cortex-A9

processor

PIM core

C
h

ip
2

C
h

ip
 

m
o

d
u

le

control 

register

Memory controller

DDR

Slave board

Memory controller

DDR

Figure 11. FPGA demo.

6. Experiments

6.1. Experimental Framework

Several experiments were conducted on the gem5 simulation platform. We used the Mpeg2decode
and MapReduce programs to test our programming paradigm.

Mpeg2decode programs convert Mpeg2 video bit streams into uncompressed video, so there is
much data-intensive work. We chose two code stream files for Mpeg2decode programs to process. The
two files were centaur_1.mpg and cinedemo.m2v. Centaur_1.mpg was a black and white image, and
cinedemo.m2v was a color image. The color image had a larger bitmap size, and was more time-consuming
to decode. These two files are typical and illustrative enough as test files for Mpeg2decode programs.

MapReduce is a popular programming framework for parallel computing of large-scale datasets.
We realized MapReduce algorithms in C language. Four testbenches, wordcount, histogram, stringmatch,
and matrix-multiply, were implemented. The four MapReduce testbenches were ported to the PIM
computing architecture based on the proposed programming paradigm. Note that when the dataset
size was 10 MB, the matrix-multiply program was estimated to run days to finish computing on this
evaluation platform. So, it was assigned to compute just 10 rows of the matrix under all datasets.

To provide a comprehensive performance comparison between the PIM architecture and other
traditional architectures, four architecture models, including CPU-only, PIM, PIM2, and GPU, are
referred to in the experiments. Configuration details of the four models are shown in Table 1. CPU-only
is a traditional CPU architecture that is modeled by the O3CPU model in gem5. For the PIM model,
the host CPU is configured the same as CPU-only model, and the PIM core is configured as the PIM
core shown in the table. PIM core is modeled by AtomicSimpleCPU in gem5. For the PIM2 model, the
host CPU is also configured in the same way as the CPU-only model, and it had two PIM cores. These
three models were all implemented on gem5 simulator. The target ISA is ARM ISA, and the compiler
we used was gcc linaro-4.7-2013.06-1. We used McPAT [25] for power analysis. McPAT is fed with the
statistic generated by gem5 simulator to provide power-analysis results. Since GPU is widely used in
the Big Data domain, we also provide performance comparison with GPU model. The GPU model we
used is NVIDIA GeForce GTX480, based on the GPGPU-sim simulation platform. The GPUWattch



Sensors 2019, 19, 140 13 of 23

model in GPGPU-sim is used for power evaluation. GPUWattch is a modified version of McPAT,
dedicated for GPU architecture.

Table 1. Configuration detail of the test models.

Architecture Parameters

CPU-only

Out-of-Order
L1-cache 64 KB

(64 KB Icache and 64 KB Dcache)
L2-cache 1 MB
block size 64 B

memory capacity 2 GB
Clock rate 1 GHz

PIM core

in-order
L1-cache 64 KB

(64 KB Icache and 64 KB Dcache)
Clock rate 1 GHz

PIM CPU-only + one PIM core

PIM2 CPU-only + two PIM cores

GPU

NVIDIA GeForce GTX480
Fermi GPU architecture

15 streaming multiprocessors
each containing 32 cores

virtual memory page size 4 GB
Clock rate 700 MHz

6.2. Results

6.2.1. Mpeg2decode Programs—CPU-Only vs. PIM

The first test case is Mpeg2decode. We first evaluated the performance of CPU-only and PIM
architecture with different CPU cache sizes. Only one level CPU cache was set in this experiment.
Two code stream files, centau_1.mpg and cinedemo.m2v, were tested on the CPU-only model and
PIM model.

Figure 12 shows the execution-time comparison between CPU-only and PIM model with an
increasing CPU data cache size. For the CPU-only model, performance improved with the increase of
the CPU data cache size, while the performance of the PIM architecture was not affected by the size of
the CPU data cache. The results show that the PIM architecture did not require a large cache size to
achieve high performance. For the CPU-only model, a larger data cache brought better performance,
since more data could be locally processed. This result also demonstrates the significance of processing
data at the data’s home. When the data cache size was 64 kB, the performance of the CPU-only model
was about twice of the PIM architecture. This is because the speed of the O3CPU was twice that of the
AtomicSimpleCPU in gem5.

Processor power consumption, which includes the power consumption of the processor core and
L1 cache, is shown in Figure 13. The results show that the power consumption of the PIM model was
much less than that of CPU-only model. On average, the PIM architecture reduced processor power
consumption by 93% compared to the CPU-only model.

Comparison of cache power consumption is shown in Table 2. Comparison of bus power
consumption is shown in Table 3. It is shown that the cache power consumption of the PIM model
was much smaller than that of the CPU-only model. On average, cache power consumption of the
CPU-only model was about 106 times of that of the PIM architecture. Bus power consumption of the
CPU-only model was about 105 times of that of the PIM model.



Sensors 2019, 19, 140 14 of 23

Figure 12. Execution-time comparison between the CPU-only and PIM models running Mpeg2decode
programs, with an increasing CPU data cache size.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

CPU-only PIM

p
o

w
er

 c
o

n
su

m
p

ti
o
n
 (

m
J)

 

centaur_1.mpg 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

CPU-only PIM

p
o

w
er

 c
o

n
su

m
p

ti
o
n
 (

m
J)

 
cinedemo.m2v 

Figure 13. Comparison of processor power consumption between the CPU-only and PIM models
running Mpeg2decode programs.

Table 2. Comparison of cache power consumption between the CPU-only and PIM models running
Mpeg2decode programs (mJ).

Centaur_1.mpg Cinedemo.m2v

CPU-only 1.27× 10−2 3.74× 10−2

PIM 2.90× 10−8 6.72× 10−9

Table 3. Comparison of bus power consumption between the CPU-only and PIM models running
Mpeg2decode programs (mJ).

Centaur_1.mpg Cinedemo.m2v

CPU-only 4.33× 10−3 1.80× 10−2

PIM 4.12× 10−8 4.15× 10−8

6.2.2. MapReduce Programs—CPU-Only vs. PIM

The second test case was the MapReduce algorithm. The dataset processed by the four MapReduce
programs was about 10 MB for all.

Figure 14 shows the execution-time comparison between the CPU-only and PIM models running
the four MapReduce programs. We assumed the time used by the CPU-only model was 100%. We can
see from Figure 14, that for wordcount, histogram, and matrix-multiply, the PIM architecture reduced
runtime by 44%, 24%, and 15%, respectively. For string-match, PIM architecture ran 30% longer than
the CPU-only model. The reason is the disadvantage of the CPU-only model being long memory access



Sensors 2019, 19, 140 15 of 23

delay. For the programs that require frequent memory access, the PIM architecture outperformed the
CPU-only model, while for those programs that do not access memory that often, PIM might be slower
than the CPU-only model. This result can also be partly attributed to the performance disparity of
the AtomicSimpleCPU and O3CPU models in gem5. In other words, in the PIM model, the PIM core
ran slower than the host CPU. Table 4 shows the memory access latency of the four programs in the
CPU-only model. As we can see, memory access latency takes large percentage of the total runtime for
wordcount, histogram, and matrix-multiply, while for string-match, memory access latency was not as
significant as the other three programs. Thus, the PIM model showed performance loss when running
string-match.

Comparison of processor, cache, and bus power consumption is shown in Figure 15,
Tables 5 and 6 separately.

As shown in Figure 15, for the four programs, processor power consumption of the PIM model
was reduced by 92.4%, 88.6%, 90.7% and 90.3%, respectively, than the CPU-only model. Table 5 shows
that, for the four programs, cache power consumption of CPU-only is 103–104 times of that of PIM
model. We can see from Table 6 that bus power consumption of the CPU-only model was about
104 times that of the PIM architecture. PIM architecture reduced processor, cache, and bus power
consumption to a large extent compared to the CPU-only model.

The experimental results demonstrate the characteristics of the PIM architecture. Since the PIM
core directly accesses memory, it reduces the total cache and bus access. So, cache and bus power
consumption is reduced. This result shows that the PIM architecture is suitable for applications
processing large datasets and requiring frequent memory access.

0%

20%

40%

60%

80%

100%

120%

140% CPU-only

PIM

Figure 14. Execution-time comparison between the CPU-only model and PIM model running
MapReduce programs.

Table 4. Memory access latency in the CPU-only model.

Memory Access Latency Others

wordcount 24% 76%
histogram 59% 41%

matrix-multiply 69% 31%
string-match 10% 90%



Sensors 2019, 19, 140 16 of 23

0

200

400

600

800

1000

1200

CPU-only PIMp
o

w
er

 c
o

n
su

m
p

ti
o
n
 (

m
J)

 

wordcount 

0

10

20

30

40

50

60

70

CPU-only PIMp
o

w
er

 c
o

n
su

m
p

ti
o
n
 (

m
J)

 

histogram 

0

5

10

15

20

25

30

35

40

45

CPU-only PIM

p
o

w
er

 c
o

n
su

m
p

ti
o
n
(m

J)
 matrix-multipily 

0

50

100

150

200

250

300

350

CPU-only PIM

p
o

w
er

 c
o

n
su

m
p

ti
o
n
(m

J)
 string-match 

Figure 15. Comparison of processor power consumption between the CPU-only model and PIM model
running MapReduce programs.

Table 5. Comparison of cache power consumption between the CPU-only model and PIM model
running MapReduce programs (mJ).

CPU-Only PIM

wordcount 0.52 4.72× 10−5

histogram 0.16 3.87× 10−5

matrix-multiply 2.18 5.82× 10−5

string-match 0.13 4.77× 10−5

Table 6. Comparison of bus power consumption between the CPU-only model and PIM model running
MapReduce programs (mJ).

CPU-Only PIM

wordcount 2.93 6.00× 10−5

histogram 0.40 5.26× 10−5

matrix-multiply 0.87 6.30× 10−5

string-match 0.18 5.92× 10−5

6.2.3. MapReduce Programs—CPU-Only vs. PIM vs. PIM2

In this experiment, we fed different dataset sizes to the MapReduce programs. When input data
size increased from 1 to 10 MB, the performance and power consumption of the CPU-only, PIM, and
PIM2 models was evaluated.

Figure 16 shows the execution-time comparison of the three models. For wordcount and
histogram, the run time of the CPU-only model was always longer than the PIM and PIM2 models.
The PIM2 model showed better performance than the PIM model. With the increase of the dataset
size, the gap between the three models becomes larger, and the advantage of the PIM architecture
becomes more evident. For matrix-multiply, the run time of the three models increased when the data
size expanded. The run time of the PIM model became shorter than the CPU-only model when the
dataset was larger than 4 MB. The PIM2 model always ran faster than the CPU-only model and PIM



Sensors 2019, 19, 140 17 of 23

model. For string-match, the run time of the PIM model was always longer than the CPU-only model.
The reason is that memory access is less frequent in this program, as shown in Table 4, while the PIM2
model showed better performance than the CPU-only model.

0

1

2

3

4

5

6

1M 2M 4M 8M 10M

ti
m

e(
se

co
n

d
) 

wordcount 

CPU-only

PIM

PIM2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1M 2M 4M 8M 10M

ti
m

e(
se

co
n

d
) 

histogram 

CPU-only

PIM

PIM2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1M 2M 4M 8M 10M

ti
m

e(
se

co
n

d
) 

matrix-multiply 

CPU-only

PIM

PIM2

0

0.2

0.4

0.6

0.8

1

1.2

1M 2M 4M 8M 10M

ti
m

e(
se

co
n

d
) 

string-match 

CPU-only

PIM

PIM2

Figure 16. Execution-time comparison between the CPU-only, PIM, and PIM2 models running MapReduce
programs with increasing datasets.

Comparison of processor power consumption is shown in Figure 17. For the four programs,
processor power consumption of the PIM model and PIM2 model were almost the same, since two
identical cores share the work that was previously done by a single core. The energy consumed should
be approximate. Processor power consumption of the PIM model and PIM2 model slightly increased
when the data size expanded. Processor power consumption of the CPU-only model running the four
programs increased substantially. This result shows that PIM architecture can largely reduce processor
power consumption.

0

200

400

600

800

1000

1200

1M 2M 4M 8M 10M

p
ro

ce
ss

o
r 

p
o

w
er

 

co
n

su
m

p
ti

o
n

(m
J)

 

wordcount 

CPU-only

PIM

PIM2

0

10

20

30

40

50

60

70

1M 2M 4M 8M 10M

p
ro

ce
ss

o
r 

p
o

w
er

 

co
n

su
m

p
ti

o
n

(m
J)

 

histogram 

CPU-only

PIM

PIM2

0

10

20

30

40

50

1M 2M 4M 8M 10M

p
ro

ce
ss

o
r 

p
o

w
er

 

co
n

su
m

p
ti

o
n

(m
J)

 

matrix-multiply 

CPU-only

PIM

PIM2

0

50

100

150

200

250

300

350

1M 2M 4M 8M 10M

p
ro

ce
ss

o
r 

p
o

w
er

 

co
n

su
m

p
ti

o
n

(m
J)

 

string-match 

CPU-only

PIM

PIM2

Figure 17. Comparison of processor power consumption between the CPU-only, PIM, and PIM2
models running MapReduce programs with increasing datasets.



Sensors 2019, 19, 140 18 of 23

Comparisons of cache and bus power consumption are shown in Figures 18 and 19, respectively.
Logarithmic co-ordinates are adopted in these two figures. Cache and bus power consumption of
the CPU-only model increased to a large extent for the four programs, while cache and bus power
consumption of the PIM model and PIM2 model were much smaller comparatively.

Figure 18. Comparison of cache power consumption between the CPU-only, PIM, and PIM2 models
running MapReduce programs with increasing datasets.

Figure 19. Comparison of bus power consumption between CPU-only, PIM, and PIM2 models running
MapReduce programs with increasing datasets.

Figure 20 shows the performance per Joule of the three models. Logarithmic co-ordinates were
adopted in this figure. The result is the ratio of reciprocal value of total runtime and average energy.
We can see from the figure that performance per Joule of the three models decreased with increasing
input data size. However, the PIM and PIM2 models showed about one order of magnitude higher



Sensors 2019, 19, 140 19 of 23

performance per Joule than the CPU-only model. The PIM2 model showed better performance per
Joule than PIM model.

Figure 20. Performance per Joule comparison between the CPU-only, PIM, and PIM2 models running
MapReduce programs with increasing datasets.

From the experimental results, we can conclude that the run time of the PIM architecture is
largely affected by the nature of the application and input dataset size. For the programs requiring
frequent memory access, the PIM architecture can improve program performance. For all the tested
applications, PIM architecture reduces processor, cache, and bus power consumption to a large extent.
When the input dataset size increased, the advantage of the PIM architecture became more noticeable.
Performance per Joule of the PIM and PIM2 models was also much higher than the CPU-only model.
The PIM2 model could further improve the performance of the PIM architecture, and also showed
better performance per Joule.

6.2.4. MapReduce Programs —CPU-Only vs. PIM2 vs. GPU

In this experiment, we ran the four MapReduce programs on the CPU-only, PIM2, and GPU models,
with the data size increasing from 1 to 10 MB. Run time and performance per Joule were evaluated.

Figure 21 shows the execution time of the four MapReduce programs on CPU-only model, PIM2
model and GPU model. We can see from the result that the GPU run much faster than CPU-only
model and PIM2 model. For the wordcount program, the advantage of GPU was less evident than the
other three programs. GPU showed the best performance running the matrix-multiply program.
Matrix-multiply is quite computing-intensive, and there are many approaches to accelerate the
algorithm on GPU. We adopted one of the approaches in our experiment, while the wordcount
program was less suitable to run on GPU. For applications running on GPU, the assignment was
divided into many small parts, with each part running on a thread of the GPU. However, for wordcount,
we had to assign enough workload to each thread to simplify the final data-collecting work to the CPU.

Figure 22 shows the performance per Joule of the three models. For matrix-multiply, GPU showed
the best performance per Joule among the three models. Since this program quite suitable to run on
GPU, and the performance advantage is evident enough to hide the high power of GPU. For wordcount,
GPU showed the worst performance per Joule. Since the run time of GPU was close to the PIM2 model,
as shown in Figure 21, and the power of the GPU was much higher than the CPU-only model and
PIM2 model. For histogram and string-match, performance per Joule of the GPU was between the



Sensors 2019, 19, 140 20 of 23

CPU-only model and PIM2 model. This result shows that the PIM architecture has an advantage over
GPU for the applications that are comparatively less computing-intensive. The reason is that the PIM
core is a general-purpose processor. By analyzing all the experimental results above, it can be predicted
that the PIM architecture can achieve better performance for more computing-intensive tasks if the
PIM core is replaced with specialized computing units.

Figure 21. Execution-time comparison between the CPU-only, PIM2, and GPU models running
MapReduce programs with increasing datasets.

Figure 22. Performance per Joule comparison between CPU-only, PIM2, and GPU models running
MapReduce programs with increasing datasets.

7. Application Prospect

In this paper, we focused on studying a PIM computing architecture with one host CPU and one
PIM device. A general-purpose ARM processor was used as the PIM core integrated in the PIM device.



Sensors 2019, 19, 140 21 of 23

This architecture can be extended by allowing the host CPU access many PIM devices, as shown in
Figure 23. The host CPU and the PIM devices can be connected via PCIe and SerDes. This computing
architecture can be adopted by future servers to provide instant response service. The ARM processor
can be replaced by other computing units according to the target application domain. The proposed
programming paradigm can be also applied to the PIM computing architecture with multiple PIM
devices. If a processor with embedded flash or ROM is used as the PIM core, firmware can be stored
in the embedded flash/ROM to eliminate the operation of sending firmware to PIM devices every
time. Users only need to update firmware when necessary. The PIM core can even be designed to run
a simple operating system.

Host

processor

Processor

DRAM

DRAM controller

Processor

Processor

DRAM

DRAM controller

Processor

Processor

DRAM

DRAM controller

Processor

Processor

DRAM

DRAM controller

Processor

Processor

DRAM

DRAM controller

Processor

Processor

DRAM

DRAM controller

Processor

…

…

PCIe

Figure 23. Server demo based on PIM computing architecture.

We believe that this programming paradigm might be very helpful for wireless IoT applications.
IoT applications now encompass a lot of different domains, such as medicine, surveillance,
transportation, and environmental protection. In those IoT applications, a lot of data might be
collected in the end-devices. However, not all data, or not all raw data, need to be transferred or
exchanged. Thus, PIM could be very beneficial in improving data-transmission and energy efficiency
for those end-devices.

8. Conclusions

IoT applications are very popular today. It brings alive the Big Data scenario. Under such
a scenario, huge amounts of data would be collected, transferred, and exchanged. In this paper,
we proposed a programming paradigm for a PIM architecture suitable for wireless IoT applications.
This programming paradigm with PIM could help perform data processing in the end-device near
where the raw data are collected. Thus, preliminary understanding of the data could be given, and the
amount of data needing to be transferred could be largely reduced and, hence, the required energy for
IoT devices in data transmission. We have implemented several typical programs that are popular in
wireless IoT applications based on the proposed programming paradigm. We ran these programs on
a simulation platform, and on an FPGA demo. The proposed programming paradigm was proven
to be feasible and efficient. The evaluation results based on the simulation platform were collected.
The results show that, by adopting the proposed programming paradigm, we could exploit the benefits
coming with a PIM architecture to largely improve data-processing performance and energy efficiency
compared to traditional computing architectures. The proposed programming paradigm could also be
used in future PIM computing architectures.



Sensors 2019, 19, 140 22 of 23

Author Contributions: Conceptualization, H.H. and Y.H.; Methodology, Y.H.; Software, Y.H.; Validation, X.Y., Y.H.
and H.H.; Formal Analysis, Y.H.; Data Curation, Y.H.; Writing-Original Draft Preparation, X.Y.; Writing-Review &
Editing, X.Y.; Visualization, X.Y.; Supervision, X.Y. and H.H.; Funding Acquisition, X.Y. and H.H.

Funding: This work was supported by the National Natural Science Foundation of China under Grant
No. 91846303, the National Natural Science Foundation of China under Grant No. 61502032, and the Tsinghua
and Samsung Joint Laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Scrbak, M.; Islam, M.; Kavi, K.M.; Ignatowski, M.; Jayasena, N. Processing-in-memory: Exploring the design
space. In Proceedings of the 28th International Conference on Architecture of Computing Systems (ARCS 2015);
Springer International Publishing: Cham, Switzerland, 2015; pp. 43–54.

2. Ferdman, M.; Adileh, A.; Kocberber, O.; Volos, S.; Alisafaee, M.; Jevdjic, D.; Kaynak, C.; Popescu, A.D.;
Ailamaki, A.; Falsafi, B. A case for specialized processors for scale-out workloads. IEEE Micro 2014, 34, 31–42.
[CrossRef]

3. Hennessy, J.L.; Patterson, D.A. Computer Architecture: A Quantitative Approach; Elsevier: Amsterdam,
The Netherlands, 2011.

4. Zhang, D.; Jayasena, N.; Lyashevsky, A.; Greathouse, J.L.; Xu, L.; Ignatowski, M. Top-pim: Throughput-oriented
programmable processing in memory. In Proceedings of the International Symposium on High-performance
Parallel and Distributed Computing, Vancouver, BC, Canada, 23–27 June 2014; pp. 85–98.

5. Torrellas, J. Flexram: Toward an advanced intelligent memory system: A retrospective paper. In Proceedings
of the 2012 IEEE 30th International Conference on Computer Design (ICCD), Montreal, QC, Canada,
30 September–3 October 2012; pp. 3–4.

6. Zhang, D.; Jayasena, N.; Lyashevsky, A.; Greathouse, J.; Meswani, M.; Nutter, M.; Ignatowski, M. A new
perspective on processing-in-memory architecture design. In Proceedings of the ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness, Seattle, WA, USA, 16–19 June 2013; pp. 1–3.

7. Balasubramonian, R.; Chang, J.; Manning, T.; Moreno, J.H.; Murphy, R.; Nair, R.; Swanson, S. Near-data
processing: Insights from a micro-46 workshop. IEEE Micro 2014, 34, 36–42. [CrossRef]

8. Jeddeloh, J.; Keeth, B. Hybrid memory cube new dram architecture increases density and performance.
In Proceedings of the Symposium on VLSI Technology, Honolulu, HI, USA, 12–14 June 2012; pp. 87–88.

9. Lee, D.U.; Kim, K.W.; Kim, K.W.; Lee, K.S.; Byeon, S.J.; Kim, J.H.; Cho, J.H.; Lee, J.; Chun, J.H. A 1.2v 8 gb
8-channel 128 gb/s high-bandwidth memory (hbm) stacked dram with effective i/o test circuits. IEEE J.
Solid-State Circ. 2015, 50, 191–203. [CrossRef]

10. Jun, H.; Cho, J.; Lee, K.; Son, H.Y.; Kim, K.; Jin, H.; Kim, K. Hbm (high bandwidth memory) dram technology
and architecture. In Proceedings of the Memory Workshop (IMW), Monterey, CA, USA, 14–17 May 2017;
pp. 1–4.

11. Molka, D.; Hackenberg, D.; Schone, R.; Muller, M.S. Characterizing the energy consumption of data transfers
and arithmetic operations on x86-64 processors. In Proceedings of the International Conference on Green
Computing, Hangzhou, China, 30 October–1 November 2010; pp. 123–133.

12. Kogge, P.M. Execube—A new architecture for scaleable mpps. In Proceedings of the International Conference
on Parallel Processing, Raleigh,NC, USA, 15–19 August 1994; pp. 77–84.

13. Patterson, D.; Anderson, T.; Cardwell, N.; Fromm, R.; Keeton, K.; Kozyrakis, C.; Thomas, R.; Yelick, K.
Intelligent RAM (IRAM): Chips that remember and compute. In Proceedings of the IEEE International
Solid-State Circuits Conference (43rd ISSCC), San Francisco, CA, USA, 8 February 1997; pp. 224–225.

14. Patterson, D.; Anderson, T.; Cardwell, N.; Fromm, R.; Keeton, K.; Kozyrakis, C.; Thomas, R.; Yelick, K. A case
for intelligent RAM: IRAM. IEEE Micro 1997, 17, 34–44. [CrossRef]

15. Nyasulu, P.M. System Design for a Computational-RAM Logic-In-Memory Parallel-Processing Machine.
Ph.D. Thesis, Carleton University, Ottawa, ON, Canada, 1999,

16. Murakami, K.; Inoue, K.; Miyajima, H. Parallel processing ram (ppram). Comp. Biochem. Physiol. Part
A Physiol. 1997, 94, 347–349. [CrossRef]

http://dx.doi.org/10.1109/MM.2014.41
http://dx.doi.org/10.1109/MM.2014.55
http://dx.doi.org/10.1109/JSSC.2014.2360379
http://dx.doi.org/10.1109/40.592312
http://dx.doi.org/10.1016/0300-9629(89)90557-4


Sensors 2019, 19, 140 23 of 23

17. Draper, J.; Chame, J.; Hall, M.; Steele, C.; Barrett, T.; LaCoss, J.; Granacki, J.; Shin, J.; Chen, C.; Kang, C.W.; et al.
The architecture of the diva processing-in-memory chip. In Proceedings of the International Conference on
Supercomputing, New York, NY, USA, 22–26 June 2002; pp. 26–37.

18. Mai, K.; Paaske, T.; Jayasena, N.; Ho, R.; Dally, W.J.; Horowitz, M. Smart memories: A modular reconfigurable
architecture. In Proceedings of the 27th International Symposium on Computer Architecture, Vancouver,
BC, Canada, 10–14 June 2000; pp. 161–171.

19. Rezaei, M.; Kavi, K.M. Intelligent memory manager: Reducing cache pollution due to memory management
functions. J. Syst. Archit. 2006, 52, 41–55. [CrossRef]

20. Tseng, H.W.; Tullsen, D.M. Data-triggered multithreading for near-data processing. In Proceedings of the
Workshop on Near-Data Processing, Waikiki, HI, USA, 5 December 2003.

21. Chu, M.L.; Jayasena, N.; Zhang, D.P.; Ignatowski, M. High-level programming model abstractions for
processing in memory. In Proceedings of the Workshop on Near-Data Processing, Waikiki, HI, USA,
5 December 2003.

22. Pugsley, S.H.; Jestes, J.; Zhang, H.; Balasubramonian, R.; Srinivasan, V.; Buyuktosunoglu, A.; Davis, A.; Li, F.
NDC: Analyzing the impact of 3d-stacked memory+logic devices on mapreduce workloads. In Proceedings
of the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Monterey,
CA, USA, 23–25 March 2014; pp. 190–200.

23. Islam, M.; Scrbak, M.; Kavi, K.M.; Ignatowski, M.; Jayasena, N. Improving Node-Level MapReduce Performance
Using Processing-in-Memory Technologies; Springer International Publishing: Cham, Switzerland, 2014.

24. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.;
Sardashti, S. The gem5 simulator. ACM SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

25. Li, S.; Ahn, J.H.; Strong, R.D.; Brockman, J.B.; Tullsen, D.M.; Jouppi, N.P. Mcpat: An integrated power, area,
and timing modeling framework for multicore and manycore architectures. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, New York, NY, USA, 12–16 December
2009; pp. 469–480.

26. Ahn, J.; Hong, S.; Yoo, S.; Mutlu, O.; Choi, K. A scalable processing-in-memory accelerator for parallel
graph processing. In Proceedings of the ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), Portland, OR, USA, 13–17 June 2015; pp. 105–117.

27. Morad, A.; Yavits, L.; Ginosar, R. GP-SIMD processing-in-memory. ACM Trans. Archit. Code Optim. 2015,
11, 53. [CrossRef]

28. The gem5 Simulator. Available online: http://gem5.org/Main_Page (accessed on 30 December 2018).
29. Binkert, N.L.; Dreslinski, R.G.; Hsu, L.R.; Lim, K.T.; Saidi, A.G.; Reinhardt, S.K. The M5 Simulator: Modeling

Networked Systems. IEEE Micro 2006, 26, 52–60. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.sysarc.2005.02.004
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2686875
http://gem5.org/Main_Page
http://dx.doi.org/10.1109/MM.2006.82
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Target Architecture
	Programming Paradigm
	Task-Dividing Mechanism
	Data-Transferring Mechanism
	Software-Level Architecture
	Programming Instructions

	Evaluation Platform Design
	Simulator Based on Gem5
	Board-to-Board FPGA Demo

	Experiments
	Experimental Framework
	Results
	Mpeg2decode Programs—CPU-Only vs. PIM
	MapReduce Programs—CPU-Only vs. PIM
	MapReduce Programs—CPU-Only vs. PIM vs. PIM2
	MapReduce Programs —CPU-Only vs. PIM2 vs. GPU


	Application Prospect
	Conclusions
	References

