A Perspective of the Design and Development of Metallic Ultra-High Temperature Materials: Refractory Metal Intermetallic Composites, Refractory Complex Concentrated Alloys and Refractory High Entropy Alloys
Abstract
:1. Introduction
Alloy Design
2. Design of Metallic UHTMs
3. Synergy
4. Synergy and Entanglement: The Case for Metallic UHTMs
- (a)
- The relationships/correlations between
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- alloy parameters and processing (macrosegregation), e.g., Figure 8 in [46],
- (b)
- the “co-habitation” in parameter maps
- (vii)
- (viii)
- (ix)
- (c)
- the function/role assumed in a particular situation by each parameter separately and by parameters together to give
- (1)
- (2)
- for B containing RM(Nb)ICs, RM(Nb)ICs/RCCAs and RM(Nb)ICs/RHEAs there is a gap in δss values, see the Figure 8a in [48]. Furthermore, in RM(Nb)ICs, RM(Nb)ICs/RCCAs and RM(Nb)ICs/RHEAs,
- (3)
- the parameter δss can differentiate
- (4)
- The parameter VEC can differentiate the effect of the concentrations of alloying additions on the type of bcc solid solution (meaning “conventional”, or CC/HE) in alloys, see the Figure 3b in [20]. Additionally, there are relationships between parameters of CC/HE and “conventional” bcc solid solution, see Figure 6b in [20], the parameter δss depends strongly on the Bss and (Ge+Sn)ss contents of the solid solution, see the Figure 7 in [20], and the parameters VECss, Δχss and δss increase with the concentration of oxygen in the solid solution, i.e., with interstitial content, see the Figure 11 in [20].
- (a)
- (b)
- (c)
- (d)
- (a)
- Their alloying behaviour can be described
- (b)
- (c)
- (d)
- they improve oxidation resistance in synergy with other phases, e.g., see the Figure 12c in [42].
- (1)
- Their alloying behaviour is described
- (2)
- There are gaps in the values of the parameters (ΔHmix)eutectic and Δχeutectic, see the Figures 3 and 4, respectively, in [57] and
- (3)
- (a)
- (b)
- (c)
- (d)
5. The Alloy Design “landscape” in NICE
- (a)
- macrosegregation (MACX) of solute addition(s) X for liquid route processing of the alloy (e.g., for cold hearth melting/casting [70]), and thus can guide to some extent the alloy developer about processing,
- (b)
- properties of the alloy (hardness, density, specific strength, creep, oxidation),
- (c)
- the chemical composition of alloy phases,
- (d)
- the volume fraction of phases and
- (e)
- mechanical properties of phases, and links
- (i)
- the alloy with its phases and vice versa, and
- (ii)
- the alloy properties and phase properties.
- (a)
- that metallic UHTMs have organised complexity,
- (b)
- that there is entanglement and
- (c)
- that the “affairs” of alloys cannot be separated from (are linked with)
- (i)
- the “affairs” of phases and
- (ii)
- the parameters that describe
- (1)
- alloying behaviour and
- (2)
- properties of alloys and phases, and
- (iii)
- the (effects of the) environment (e.g., environmental degradation because of interstitial contamination, oxidation).
- (d)
- to uncover
- (iv)
- new things about alloys and their phases, things s/he might never have suspected, and
- (v)
- regularities and linkages, and
- (e)
- to establish
- (vi)
- relationships between different properties and
- (vii)
- a framework of understanding that is subtle and mathematical.
5.1. Walk in the Superstructure of the “landscape”
5.2. Walk in the Substructure of the “Landscape”
- (1)
- the clarification of three phase equilibria between Nbss, Nb5Si3 and C14-NbCr2 in the Nb-Si-Cr ternary [38],
- (2)
- (3)
- precipitation of Nbss in Nb5Si3 in heat-treated alloys, see data for the alloys KZ7 (Nb-24Ti-18Si-5Al, [117,118]), JG1 (Nb-18Si-5Al-5Cr-5Mo, [119]), KZ5 (Nb-24Ti-18Si-5Al-5Cr), KZ6 (Nb-24Ti-18Si-5Al-5Cr-6Ta), KZ2 (Nb-24Ti-18Si-4Al-8Cr), KZ8 (Nb-24Ti-18Si-4Al-8Cr-6Ta) [118], ZF8 (Nb-18Si-5Al-5Ge) and ZF5 (Nb-24Ti-18Si-5Al-5Ge) [120] and the alloy CM1 (Nb-8Ti-21Si-5Mo-4W-1Hf) [74] (in the parentheses are given the nominal compositions, at.%),
- (4)
- precipitation of A15-Nb3X in heat-treated alloys, see data for the alloys EZ5 (Nb-24Ti-18Si-5Al-5Hf-5Sn), EZ8 (Nb-24Ti-18Si-5Al-5Cr-5Hf-5Sn) [61], ZX4 (Nb-24Ti-18Si-5Cr-5Sn), ZX6 (Nb-24Ti-18Si-5Al-5Sn) [42] and JG6 (Nb-24Ti-18Si-5Al-5Cr-5Hf-2Mo-5Sn) [121] (note that in JG6-HT the Sn rich Nbss that was reported in [121] subsequently was confirmed to be the A15 compound),
- (5)
- precipitation of Nbss and/or A15-Nb3X in heat treated alloys, see data or the alloys NV8 (Nb-24Ti-18Si-5Fe-5Sn) [122], NV5 (Nb-24Ti-18Si-5Cr-5Fe-5Sn) [123], JZ4 (Nb-11.5Ti-18Si-5Mo-2W-4.9Sn-4.6Ge-4.5Cr-4.7Al-1Hf), JZ5 (Nb-21Ti-18Si-6.7Mo-1.2W-4.4Sn-4.2Ge-4Cr-3.7Al-0.8Hf) [46], JZ3 (Nb-12.4Ti-17.7Si-6Ta-2.7W-3.7Sn-4.8Ge-4.7Al-5.2Cr-1Hf). JZ3+ (Nb-12.4Ti-19.7Si-5.7Ta-2.3W-5.7Sn-4.9Ge-4.6Al-5.2Cr-0.8Hf) [45], EZ4 (Nb-18Si-5Al-5Hf-5Sn) [62], ZX5 (Nb-24Ti-18Si-5Al-2Sn) and ZX7 (Nb-24Ti-18Si-5Al-5Cr-2Sn) [41],
- (6)
- (7)
- (8)
- phase transformations associated with CC/HE phases [61],
- (9)
- relationships between solutes in hexagonal D88 5-3 silicide in B containing RCCAs [48],
- (10)
- effects of different solute additions on the chemical composition of eutectics with Nbss and Nb5Si3 [61], and
- (11)
- solubility range of
- (12)
- the effects of processing and alloy chemical composition on the type of Nb5Si3 in metallic UHTMs [62],
- (13)
- subgrain formation in Nb5Si3 is cast and OFZ (optical floating zone) grown alloy CM1 (Nb-8Ti-21Si-5Mo-4W-1Hf) [74], and
- (14)
- (15)
- alloy oxidation, which improves with the addition of Ge and/or Sn that segregate to the surface where
- (16)
- correlations of the hardness
- (17)
- (18)
- correlations of the Young’s moduli of the bcc solid solution with the concentration of oxygen owing to interstitial contamination [20],
- (19)
- (20)
- correlations of the steady-state creep of Nb5Si3 with the parameters VECNb5Si3, δNb5Si3 and ΔχNb5Si3 [9],
- (21)
- relationships of the parameters VECss, δss and Δχss with the concentration of oxygen in the bcc solid solution owing to its interstitial contamination [20],
- (22)
- correlations about the contributions of solute elements to the steady state creep of the alloy [21] and
- (23)
- creep map for alloys [9].
6. Self-Regulation
7. Synergistic Metallurgy
8. Afterword
9. Something to Think about
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CALPHAD | Calculation of Phase Diagrams |
CC | complex concentrated (also compositionally complex) |
FOMO | fear of missing out |
HE | high entropy |
HV | hardness Vickers |
MACX | macrosegregation of element X |
NICE | Niobium Intermetallic Composite Elaboration |
RM | refractory metal |
RMIC | refractory metal intermetallic composite |
RHEA | refractory metal high entropy alloy |
RCCA | refractory metal complex concentrated alloy |
RMIC/RHEA | RMIC that also meets the definition of RHEA |
RM(Nb)IC | refractory metal intermetallic composite based on Nb |
RM(Nb)IC/RCCA | RM(Nb)IC that also meets the definition of RCCA |
RM(Nb)IC/RHEA | RM(Nb)IC that also meets the definition of RHEA |
TM | transition metal |
UHTM | ultra-high temperature material |
Appendix A. Clarifications/“Definitions”
Citizen * | Person (see below) |
Culture * | the way of life of a particular society. For example, the people (persons, see πρόσωπον below) that lived in the ancient poleis (cities) of Athens and Sparta, i.e., the societies of Athens and Sparta, had different cultures (see polis below) |
Ecclesia * | public legislative assembly of citizens that put citizen participation at its very core and underpinned the growth of a polis. |
Entanglement | occurs when the (alloying) behaviour and properties (e.g., mechanical, environmental, thermo-physical) of a complex whole (alloy) cannot be described and understood independently from the behaviour of its parts (phases) |
Essere | to be and to exist (verb in Vulgar Latin) |
Intricateness | having many complexly interrelated parts (from intricate from Latin intricatus, which means entangled) |
Inter-subjective | opinion exists within a communication network and links the subjective opinions of many individuals. Communication network is the structure and flow of communication and information between individuals within a group [171]. |
Landscape | Land + scape, scape from Old English sceppan or scyppan, meaning to shape (e.g., landscape is human-made space on the land or an area of the Earth’s surface seen by an observer) |
Methodology | derived from the words method and logos, method from μέθοδος, which derives from the verb μετέρχομαι that means movement for some purpose, and logos from λóγος, which derives from the verb λέγω that means tell, say |
Polis * | City (here the word polis is used to describe the poleis (plural of polis) in ancient (classical age) Greece; see culture above) |
Person * | πρóσωπον in Greek. The word πρόσωπον is made up of the preposition προς (=towards) and the noun ωψ (ωπός in the genitive), which means face, thus the composite word προς-ωπον. A person (πρόσωπον) has their face towards someone or something, s/he is opposite someone or something [53] |
Synergy * | is derived from the Greek word συνεργία, which comes from syn/συν (=together) and ergon/έργον (=work), thus synergy = work together. |
Topography | from topos/τóπος (=place) + graphy/γραφή (γραφή from γράφω = write about), or description of place |
Appendix B. Partitioning of Solutes
References
- Cahn, R.W. Alloy design: A historical perspective. Proc. Indian. Acad. Sci. Eng. Sci. 1980, 3, 255–260. [Google Scholar] [CrossRef]
- Howe, A.; Farrugia, D. Alloy design: From composition to through process models. Mater. Sci. Technol. 1999, 15, 15–21. [Google Scholar] [CrossRef]
- Aeronautical Materials for Today and Tomorrow; Forum organised by the Air and Space Academy (AAE), French Aerospace Society (3AF) and Academy of Technologies; SAGEM: Paris, France, 2012; ISBN 978-2-913331-56-3/979-10-92518-09-2.
- Bewlay, B.P.; Jackson, M.R.; Gigliotti, M.F.X. Chapter 6: Niobium silicide high temperature in situ composites. In Intermetallic Compounds-Principles and Practice: Progress; Wiley: Hoboken, NJ, USA, 2002; Volume 3, pp. 541–560. [Google Scholar]
- Heilmaier, M.; Krüger, M.; Saage, H.; Rösler, J.; Mukherji, D.; Glatzel, U.; Völkl, R.; Hüttner, R.; Eggeler, G.; Somsen, C.; et al. Metallic materials for structural applications beyond nickel-based superalloys. JOM 2009, 61, 61–67. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. Beyond Nickel Based Superalloys. In Encyclopedia of Aerospace Engineering; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. On Nb Silicide Based Alloys: Alloy Design and Selection. Materials 2018, 11, 844. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. Alloys for application at ultra-high temperatures: Nb-silicide in situ composites. Prog. Mater. Sci. 2022, 123, 100714. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. Refractory Metal Intermetallic Composites, High-Entropy Alloys, and Complex Concentrated Alloys: A Route to Selecting Substrate Alloys and Bond Coat Alloys for Environmental Coatings. Materials 2022, 15, 2832. [Google Scholar] [CrossRef] [PubMed]
- Senkov, O.N.; Tsakiropoulos, P.; Couzinié, J.-P. Special Issue “Advanced Refractory Alloys”: Metals, MDPI. Metals 2022, 12, 333. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yeh, J.-W. High-Entropy Alloys: A Critical Review. Mater. Res. Let. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Wei, X.; Olson, G.B. Integrated computational materials design for high-performance alloys. MRS Bull. 2015, 40, 1035–1044. [Google Scholar]
- Deschamps, A.; Tancret, F.; Benrabah, I.-E.; De Geuser, F.; Van Landeghem, H.P. Combinatorial approaches for the design of metallic alloys. Comptes Rendus Phys. 2018, 19, 737–754. [Google Scholar] [CrossRef]
- Hafner, J.; Wolverton, C.; Ceder, G. Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research. MRS Bull. 2006, 31, 659–668. [Google Scholar] [CrossRef]
- Wang, W.Y.; Li, J.; Liu, W.; Liu, Z.-K. Integrated computational materials engineering for advanced materials: A brief review. Comput. Mater. Sci. 2019, 158, 42–48. [Google Scholar] [CrossRef]
- Okamoto, H. Desk Handbook: Phase Diagrams for Binary Alloys; ASM International: Metals Park, OH, USA, 2000. [Google Scholar]
- Lukas, H.L.; Fries, S.G.; Sundman, B. Computational Thermodynamics: The Calphad Method; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Vellios, N.; Tsakiropoulos, P. The Effect of Fe Addition in the RM(Nb)IC Alloy Nb–30Ti–10Si–2Al–5Cr–3Fe–5Sn–2Hf (at.%) on Its Microstructure, Complex Concentrated and High Entropy Phases, Pest Oxidation, Strength and Contamination with Oxygen, and a Comparison with Other RM(Nb)ICs, Refractory Complex Concentrated Alloys (RCCAs) and Refractory High Entropy Alloys (RHEAs). Materials 2022, 15, 5815. [Google Scholar] [CrossRef] [PubMed]
- Tsakiropoulos, P. On the Stability of Complex Concentrated (CC)/High Entropy (HE) Solid Solutions and the Contamination with Oxygen of Solid Solutions in Refractory Metal Intermetallic Composites (RM(Nb)ICs) and Refractory Complex Concen-trated Alloys (RCCAs). Materials 2022, 15, 8479. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. Refractory Metal (Nb) Intermetallic Composites, High Entropy Alloys, Complex Concentrated Alloys and the Alloy Design Methodology NICE—Mise-en-scène † Patterns of Thought and Progress. Materials 2021, 14, 989. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, I.; Utton, C.; Scott, A.; Tsakiropoulos, P. Ab Initio study of the intermetallics in Nb–Si binary system. Intermetallics 2014, 54, 125–132. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Tsakiropoulos, P. Ab Initio investigation of the intermetallics in the Nb-Sn binary system. Acta Mater. 2015, 86, 23–33. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Tsakiropoulos, P. Ab Initio investigation of the Nb-Al system. Comput. Mater. Sci. 2015, 107, 116–121. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Scott, A.; Tsakiropoulos, P. Ab Initio study of binary and ternary Nb3(X,Y) A15 intermetallic phases (X,Y = Al, Ge, Si, Sn). Metall. Mater. Trans. A 2015, 46, 566–576. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Tsakiropoulos, P. On the Nb-Ge binary system. Metall. Mater. Trans. A 2015, 46, 5526–5536. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Tsakiropoulos, P. The impact of Ti and temperature on the stability of Nb5Si3 phases: A first-principles study. Sci. Technol. Adv. Mater. 2017, 18, 467–479. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Tsakiropoulos, P. Ab Initio Study of Ternary W5Si3 Type TM5Sn2X Compounds (TM = Nb, Ti and X = Al, Si). Materials 2019, 12, 3217. [Google Scholar] [CrossRef] [PubMed]
- Abel, M.-L.; Tsakiropoulos, P.; Watts, J.F.; Matthew, J.A.D. Auger parameter studies of aluminium-transition metal alloys. Surf. Interface Anal. 2002, 34, 360–364. [Google Scholar] [CrossRef]
- Diplas, S.; Shao, G.; Morton, S.A.; Tsakiropoulos, P.; Watts, J.F. Calculations of charge transfer in Nb–17Al and V–50Al alloys, using the Auger parameter. Intermetallics 1999, 7, 937–946. [Google Scholar] [CrossRef]
- Diplas, S.; Shao, G.; Tsakiropoulos, P.; Watts, J.F.; Matthew, J.A. D Calculations of charge transfer in Mg- and Al-transition metal alloys using the Auger parameter. Surf. Interface Anal. 2000, 29, 65–72. [Google Scholar] [CrossRef]
- Arvanitis, A.; Diplas, S.; Tsakiropoulos, P.; Watts, J.; Whiting, M.; Morton, S.; Matthew, J. An experimental study of bonding and crystal structure modifications in MoSi2 and MoSi2+xAl (x = 10 to 40 at% Al) via Auger parameter shifts and charge transfer calculations. Acta Mater. 2001, 49, 1063–1078. [Google Scholar] [CrossRef]
- Diplas, S.; Watts, J.F.; Tsakiropoulos, P.; Shao, G.; Beamson, G.; Matthew, J.A. D X-ray photoelectron spectroscopy studies of Ti–Al and Ti–Al–V alloys using Cr Kβ radiation. Surf. Interface Anal. 2001, 31, 734–744. [Google Scholar] [CrossRef]
- Abel, M.-L.; Tsakiropoulos, P.; Watts, J.F.; Matthew, J.A.D. Free-electron metal alloys: A study by high-energy XPS. Surf. Interface Anal. 2002, 33, 775–780. [Google Scholar] [CrossRef]
- Diplas, S.; Tsakiropoulos, P.; Shao, G.; Watts, J.F.; Matthew, J.A.D. A study of alloying behaviour in the Ti–Al–V system. Acta Mater. 2002, 50, 1951–1960. [Google Scholar] [CrossRef]
- Pankhurst, D.A.; Yuan, Z.; Nguyen-Manh, D.; Abel, M.-L.; Shao, G.; Watts, J.F.; Pettifor, D.G.; Tsakiropoulos, P. Electronic structure and bonding in, and alloys investigated by X-ray photoelectron spectroscopy and density-functional theory. Phys. Rev. B 2005, 71, 075114. [Google Scholar] [CrossRef]
- Mitchell, T.; Diplas, S.; Tsakiropoulos, P.; Watts, J.F.; Matthew, J.A.D. Study of alloying behaviour in metastable Mg-Ti solid solutions using Auger parameter measurements and charge-transfer calculations. Philos. Mag. A 2002, 82, 841–855. [Google Scholar] [CrossRef]
- Geng, J.; Shao, G.; Tsakiropoulos, P. Study of three-phase equilibrium in the Nb-rich corner of Nb–Si–Cr system. Intermetallics 2006, 14, 832–837. [Google Scholar] [CrossRef]
- Utton, C.A.; Papadimitriou, I.; Kinoshita, H.; Tsakiropoulos, P. Experimental and thermodynamic assessment of the Ge-Nb-Si ternary phase diagram. J. Alloys Compd. 2017, 717, 303–316. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Tsakiropoulos, P. Phase Equilibria in the Nb-Rich Region of Al-Nb-Sn at 900 and 1200 °C. Materials 2019, 12, 2759. [Google Scholar] [CrossRef]
- Xu, Z.; Utton, C.; Tsakiropoulos, P. A study of the effect of 2 at.% Sn on the microstructure and isothermal oxidation at 800 and 1200 °C of Nb-24Ti-18Si based alloys with Al and/or Cr additions. Materials 2018, 11, 1826. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Utton, C.; Tsakiropoulos, P. A study of the effect of 5 at.% Sn on the microstructure and isothermal oxidation at 800 and 1200 °C of Nb-24Ti-18Si based alloys with Al and/or Cr additions. Materials 2020, 13, 245. [Google Scholar] [CrossRef]
- Xu, Z.; Utton, C.; Tsakiropoulos, P. The Effect of Ge Addition on the Oxidation of Nb-24Ti-18Si Silicide Based Alloys. Materials 2019, 12, 3120. [Google Scholar]
- Hernandez-Negrete, O.; Tsakiropoulos, P. On the microstructure and isothermal oxidation at 800 and 1200 °C of the Nb-24Ti-18Si5Al-5Cr-5Ge-5Sn (at.%) silicide based alloy. Materials 2020, 13, 722. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Utton, C.; Tsakiropoulos, P. On the Microstructure and Properties of Nb-12Ti-18Si-6Ta-5Al-5Cr-2.5W-1Hf (at.%) Silicide-Based Alloys with Ge and Sn Additions. Materials 2020, 13, 3719. [Google Scholar] [CrossRef]
- Zhao, J.; Utton, C.; Tsakiropoulos, P. On the Microstructure and Properties of Nb-18Si-6Mo-5Al-5Cr-2.5W-1Hf Nb-Silicide Based Alloys with Ge, Sn and Ti Additions (at.%). Materials 2020, 13, 4548. [Google Scholar] [CrossRef]
- Vellios, N.; Keating, P.; Tsakiropoulos, P. On the Microstructure and Properties of the Nb-23Ti-5Si-5Al-5Hf-5V-2Cr-2Sn (at.%) Silicide-Based Alloy—RM(Nb)IC. Metals 2021, 11, 1868. [Google Scholar] [CrossRef]
- Thandorn, T.; Tsakiropoulos, P. On the Microstructure and Properties of Nb-Ti-Cr-Al-B-Si-X (X = Hf, Sn, Ta) Refractory Complex Concentrated Alloys. Materials 2021, 14, 7615. [Google Scholar] [CrossRef] [PubMed]
- Kovacic, Z.; Strand, R.; Volker, T. The Circular Economy in Europe: Critical Perspectives on Policies and Imaginaries; Routledge: Oxfordshire, UK, 2020. [Google Scholar]
- Chen, Y.; Shang, J.-X.; Zhang, Y. Effects of alloying element Ti on αNb5Si3 and Nb3Al from first principles. J. Phys. Condens. Matter 2007, 19, 016215. [Google Scholar] [CrossRef]
- Sangiovanni, D.G.; Chirita, V.; Hultman, L. Electronic mechanism for toughness enhancement in TixM1-xN (M=Mo and W). Phys. Rev. B 2010, 81, 104107. [Google Scholar] [CrossRef]
- Long, Q.; Wang, J.; Du, Y.; Holec, D.; Nie, X.; Jin, Z. Predicting an alloying strategy for improving fracture toughness of C15 NbCr2 Laves phase: A first-principles study. Comput. Mater. Sci. 2016, 123, 59–64. [Google Scholar] [CrossRef]
- Yannaras, C. Person and Eros; Holy Cross Orthodox Press: Brookline, MA, USA, 2007; ISBN 1-885652-88-7/978-1-885652-88-1. [Google Scholar]
- Tsakiropoulos, P. Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys. Materials 2018, 11, 395. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. On the Nb silicide based alloys: Part I—The bcc Nb solid solution. J. Alloy. Compd. 2017, 708, 961–971. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. On the Alloying and Properties of Tetragonal Nb5Si3 in Nb-Silicide Based Alloys. Materials 2018, 11, 69. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. Alloying and Hardness of Eutectics with Nbss and Nb5Si3 in Nb-silicide Based Alloys. Materials 2018, 11, 592. [Google Scholar] [CrossRef] [PubMed]
- Tsakiropoulos, P. On the Nb5Si3 Silicide in Metallic Ultra-High Temperature Materials. Metals 2023, 13, 1023. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. On Nb silicide based alloys: Part II. J. Alloys Compd. 2018, 748, 569–576. [Google Scholar] [CrossRef]
- Thandorn, T.; Tsakiropoulos, P. The effect of Boron on the microstructure and properties of refractory metal intermetallic composites (RM(Nb)ICs) based on Nb-24Ti-xSi (x = 16, 17 or 18 at.%) with additions of Al, Cr or Mo. Materials 2021, 14, 6101. [Google Scholar] [CrossRef]
- Zacharis, E.; Utton, C.; Tsakiropoulos, P. A Study of the Effects of Hf and Sn on the Microstructure, Hardness and Oxidation of Nb-18Si Silicide-Based Alloys-RM(Nb)ICs with Ti Addition and Comparison with Refractory Complex Concentrated Alloys (RCCAs). Materials 2022, 15, 4596. [Google Scholar] [CrossRef] [PubMed]
- Zacharis, E.; Utton, C.; Tsakiropoulos, P. A Study of the Effects of Hf and Sn on the Microstructure, Hardness and Oxidation of Nb-18Si Silicide Based Alloys without Ti Addition. Materials 2018, 11, 2447. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.; Ghadyani, M.; Utton, C.; Tsakiropoulos, P. A Study of the Effects of Al, Cr, Hf, and Ti Additions on the Microstructure and Oxidation of Nb-24Ti-18Si Silicide Based Alloys. Materials 2018, 11, 1579. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Negrete, O.; Tsakiropoulos, P. On the Microstructure and Isothermal Oxidation at 800, 1200 and 1300 °C of the Al-25.5Nb-6Cr-0.5Hf (at.%) Alloy. Materials 2019, 12, 2531. [Google Scholar] [CrossRef]
- Zhao, J.; Utton, C.; Tsakiropoulos, P. On the Microstructure and Properties of Nb-12Ti-18Si-6Ta-2.5W-1Hf (at.%) Silicide-Based Alloys with Ge and Sn Additions. Materials 2020, 13, 1778. [Google Scholar] [CrossRef]
- Ghadyani, M.; Utton, C.; Tsakiropoulos, P. Microstructures and Isothermal Oxidation of the Alumina Scale Forming Nb1.7Si2.4Ti2.4Al3Hf0.5 and Nb1.3Si2.4Ti2.4Al3.5Hf0.4 Alloys. Materials 2019, 12, 222. [Google Scholar] [CrossRef]
- Ghadyani, M.; Utton, C.; Tsakiropoulos, P. Microstructures and Isothermal Oxidation of the Alumina Scale Forming Nb1.45Si2.7Ti2.25Al3.25Hf0.35 and Nb1.35Si2.3Ti2.3Al3.7Hf0.35 Alloys. Materials 2019, 12, 759. [Google Scholar] [CrossRef]
- Hernández-Negrete, O.; Tsakiropoulos, P. On the Microstructure and Isothermal Oxidation of Silica and Alumina Scale Forming Si-23Fe-15Cr-15Ti-1Nb and Si-25Nb-5Al-5Cr-5Ti (at.%) Silicide Alloys. Materials 2019, 12, 1091. [Google Scholar] [CrossRef]
- Hernández-Negrete, O.; Tsakiropoulos, P. On the Microstructure and Isothermal Oxidation of the Si-22Fe-12Cr-12Al-10Ti-5Nb (at.%) Alloy. Materials 2019, 12, 1806. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. On the macrosegregation of silicon in niobium silicide based alloys. Intermetallics 2014, 55, 95–101. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011, 21, 433–446. [Google Scholar] [CrossRef]
- Bewlay, B.P.; Sitzman, S.D.; Brewer, L.N.; Jackson, M.R. Analyses of eutectoid phase transformations in Nb-silicide in-situ composites. Microsc. Microanal. 2004, 10, 470–480. [Google Scholar] [CrossRef]
- Li, Z.; Tsakiropoulos, P. On the microstructure and hardness of the Nb-24Ti-18Si-5Al-5Cr-5Ge and Nb-24Ti-18Si-5Al-5Cr-5Ge-5Hf (at.%) silicide based alloys. Materials 2019, 12, 2655. [Google Scholar] [CrossRef]
- McCaughey, C.; Tsakiropoulos, P. Type of Primary Nb5Si3 and Precipitation of Nbss in αNb5Si3 in a Nb-8.3Ti-21.1Si-5.4Mo-4W-0.7Hf (at.%) Near Eutectic Nb-Silicide-Based Alloy. Materials 2018, 11, 967. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Huang, S.; Zhu, S.; Wang, F.; Li, D. Manufacturing and Analysis of High-Performance Refractory High-Entropy Alloy via Selective Laser Melting (SLM). Materials 2019, 12, 720. [Google Scholar] [CrossRef]
- Moravcikova-Gouvea, L.; Moravcik, I.; Pouchly, V.; Kovacova, Z.; Kitzmantel, M.; Neubauer, E.; Dlouhy, I. Tailoring a Refractory High Entropy Alloy by Powder Metallurgy Process Optimization. Materials 2021, 14, 5796. [Google Scholar] [CrossRef]
- Srikanth, M.; Annamalai, A.R.; Muthuchamy, A.; Jen, C.-P. A Review of the Latest Developments in the Field of Refractory High-Entropy Alloys. Crystals 2021, 11, 612. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Chaput, K.J.; Couzinie, J.-P. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 2018, 33, 3092–3128. [Google Scholar] [CrossRef]
- Yao, H.W.; Qiao, J.W.; Hawk, J.A.; Zhou, H.F.; Chen, M.W.; Gao, M.C. Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd. 2017, 696, 1139–1150. [Google Scholar] [CrossRef]
- Shang, Y.; Brechtl, J.; Pistidda, C.; Liaw, P.K. Mechanical Behavior of High-Entropy Alloys: A Review; Springer: Cham, Switzerland, 2021; pp. 435–522. [Google Scholar] [CrossRef]
- Ye, Y.F.; Liu, C.T.; Yang, Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 2015, 94, 152–161. [Google Scholar] [CrossRef]
- Pradeep, K.; Tasan, C.; Yao, M.; Deng, Y.; Springer, H.; Raabe, D. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng. A 2015, 648, 183–192. [Google Scholar] [CrossRef]
- Lilensten, L.; Couzinié, J.-P.; Perrière, L.; Hocini, A.; Keller, C.; Dirras, G.; Guillot, I. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. 2017, 142, 131–141. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Liaw, P.K. Alloy Design and Properties Optimization of High-Entropy Alloys. JOM 2012, 64, 830–838. [Google Scholar] [CrossRef]
- Oh, H.S.; Kim, S.J.; Odbadrakh, K.; Ryu, W.H.; Yoon, K.N.; Mu, S.; Körmann, F.; Ikeda, Y.; Tasan, C.C.; Raabe, D.; et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Chan, K.S. Modelling creep behaviour of niobium silicide in-situ composites. Mater. Sci. Eng. A 2002, 337, 59–66. [Google Scholar] [CrossRef]
- Suzuki, T. On the Studies of Solid Solution Hardening. Jpn. J. Appl. Phys. 1981, 20, 449. [Google Scholar] [CrossRef]
- Sha, J.; Hirai, H.; Tabaru, T.; Kitahara, A.; Ueno, H.; Hanada, S. Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in situ composites at high temperatures. Metal. Mater. Trans. A 2003, 34, 85–94. [Google Scholar] [CrossRef]
- Schneibel, J.; Rawn, C.; Payzant, E.; Fu, C. Controlling the thermal expansion anisotropy of Mo5Si3 and Ti5Si3 silicides. Intermetallics 2004, 12, 845–850. [Google Scholar] [CrossRef]
- Sekido, N.; Kimura, Y.; Miura, S.; Wei, F.-G.; Mishima, Y. Fracture toughness and high temperature strength of unidirectionally solidified Nb–Si binary and Nb–Ti–Si ternary alloys. J. Alloys Compd. 2006, 425, 223–229. [Google Scholar] [CrossRef]
- Sha, J.; Yang, C.; Liu, J. Toughneing and strengthening behaviour of an Nb-8Si-20Ti-6Hf alloy with addition of Cr. Scr. Mater. 2010, 62, 859–862. [Google Scholar] [CrossRef]
- Guo, H.; Guo, X. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb–Ti–Si based ultrahigh temperature alloy. Scr. Mater. 2011, 64, 637–640. [Google Scholar] [CrossRef]
- Singh, A.K.; Liermann, H.-P. Strength and elasticity of niobium under high pressure. J. Appl. Phys. 2011, 109, 113539. [Google Scholar] [CrossRef]
- Qi, L.; Chrzan, D.C. Tuning Ideal Tensile Strengths and Intrinsic Ductility of bcc Refractory Alloys. Phys. Rev. Lett. 2014, 112, 115503. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Geng, H.Y.; Wu, Q.; Chen, X.R.; Sun, Y. First-principles investigation of elastic anomalies in niobium at high pressure and temperature. J. Appl. Phys. 2017, 122, 235903. [Google Scholar] [CrossRef]
- Christman, T.; Needleman, A.; Suresh, S. An experimental and numerical study of deformation in metal-ceramic composites. Acta Met. 1989, 37, 3029–3050. [Google Scholar] [CrossRef]
- Grabke, H.J.; Meier, G.H. Accelerated oxidation; internal oxidation, intergranular oxidation and pesting on intermetallic compounds. Oxid. Met. 1995, 44, 147–176. [Google Scholar] [CrossRef]
- Meier, G.H. Research on oxidation and embrittlement of Intermetallic Compounds in the U.S. Mater. Corros. 1996, 47, 595–618. [Google Scholar] [CrossRef]
- Shang, C.; Van Heerden, D.; Gavens, A.; Weihs, T. An X-ray study of residual stresses and bending stresses in free-standing Nb/Nb5Si3 microlaminates. Acta Mater. 2000, 48, 3533–3543. [Google Scholar] [CrossRef]
- Kim, J.-H.; Tabaru, T.; Hirai, H. Evaluation Technique of the Hardness and Elastic Modulus of Materials with Fine Microstructures. Mater. Trans. 2003, 44, 673–676. [Google Scholar] [CrossRef]
- Bowman, C.; Ritzert, F.; Smialek, J.; Jaster, M.; Barker, S. Compatibility of Niobium alloys and superalloys in a flowing He-Xe power conversion system. In Proceedings of the 2nd International Energy Conversion Engineering Conference, Providence, RI, USA, 16–19 August 2004. [Google Scholar] [CrossRef]
- Mitra, R. Mechanical behaviour and oxidation resistance of structural silicides. Int. Mater. Rev. 2006, 51, 13–64. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. En-Gineering Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Liang, H.; Chang, Y.A. Thermodynamic modelling of the Nb-Si-Ti ternary system. Intermetallics 1999, 7, 561–570. [Google Scholar] [CrossRef]
- Shao, G. Thermodynamic assessment of the Nb-Si-Al system. Intermetallics 2004, 12, 655–664. [Google Scholar] [CrossRef]
- Yang, Y.; Bewlay, B.P.; Chang, Y.A. Liquid-Solid Phase Equilibria in Metal-Rich Nb-Ti-Hf-Si Alloys. J. Phase Equilibria Diffus. 2007, 28, 107–114. [Google Scholar] [CrossRef]
- Geng, T.; Li, C.; Bao, J.; Zhao, X.; Du, Z.; Guo, C. Thermodynamic assessment of the Nb-Si-Ti system. Intermetallics 2009, 17, 343–357. [Google Scholar] [CrossRef]
- Bulanova, M.; Fartushna, I. Niobium-silicon-titanium. In Landolt-Börnstein New Series IV/11E3; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Li, Y.; Li, C.-R.; Du, Z.-M.; Guo, C.-P.; Zhao, X.-Q. As cast microstructures and solidification paths of the Nb-Si-Ti ternary alloys in Nb5Si3-Ti5Si3 region. Rare Met. 2013, 32, 502–511. [Google Scholar] [CrossRef]
- Bewlay, B.P.; Yang, Y.; Casey, R.L.; Jackson, M.R.; Chang, Y.A. Experimental study of the liquid-solid phase equilibria at the metal rich region of the Nb-Cr-Si system. Intermetallics 2009, 17, 120–127. [Google Scholar] [CrossRef]
- Yang, Y.; Chang, Y.A. Thermodynamic modelling of Nb–Cr–Si system. Intermetallics 2005, 13, 69–78. [Google Scholar] [CrossRef]
- Meschel, S.; Kleppa, O. Standard enthalpies of formation of some 4d transition metal silicides by high temperature direct synthesis calorimetry. J. Alloys Compd. 1998, 274, 193–200. [Google Scholar] [CrossRef]
- European Commission. EUROPE 2020: A Strategy for Smart, Sustainable and Inclusive Growth, COM(2010)2020; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Owen, R.; Macnaghten, P.; Stilgoe, J. Responsible research and innovation: From science in society to science for society, with society. Sci. Public Policy 2012, 39, 751–760. [Google Scholar] [CrossRef]
- Owen, R.; Stilgoe, J.; Macnaghten, P.; Gorman, M.; Fisher, E.; Guston, D. A framework for responsible innovation. In Responsible Innovation: Managing the Responsible Innovation of Science and Innovation in Society; Owen, R., Bessant, J., Heintz, M., Eds.; John Wiley: London, UK, 2013; pp. 27–50. [Google Scholar]
- Schomberg, V.R. A vision of responsible innovation. In Responsible Innovation: Man-aging the Responsible Innovation of Science and Innovation in Society; Owen, R., Bessant, J., Heintz, M., Eds.; John Wiley: London, UK, 2013; pp. 51–74. [Google Scholar]
- Zelenitsas, K.; Tsakiropoulos, P. Study of the role of Cr and Al additions in the microstructure of Nb-Ti-Si in situ composites. Intermetallics 2005, 13, 1079–1095. [Google Scholar] [CrossRef]
- Zelenitsas, K.; Tsakiropoulos, P. Study of the role of Ta and Cr additions in the microstructure of Nb-Ti-Si-Al in situ composites. Intermetallics 2006, 14, 639–659. [Google Scholar] [CrossRef]
- Geng, J.; Tsakiropoulos, P.; Shao, G. The effects of Ti and Mo additions on the microstructure of Nb-silicide based in situ composites. Intermetallics 2006, 14, 227–235. [Google Scholar] [CrossRef]
- Li, Z.; Tsakiropoulos, P. The microstructure of Nb-18Si-5Ge-5Al and Nb-24Ti-18Si-5Ge-5Al in situ composites. J. Alloys Compd. 2013, 550, 553–560. [Google Scholar] [CrossRef]
- Geng, J.; Tsakiropoulos, P. A study of the microstructures and oxidation of Nb-Si-Cr-Al-Mo In Situ composites alloyed with Ti, Hf and Sn. Intermetallics 2007, 15, 382–395. [Google Scholar] [CrossRef]
- Vellios, N.; Tsakiropoulos, P. The role of Fe and Ti additions in the microstructure of Nb-18Si-5Sn silicide based alloys. Inter-metallics 2007, 15, 1529–1537. [Google Scholar] [CrossRef]
- Vellios, N.; Tsakiropoulos, P. Study of the role of Fe and Sn additions in the microstructure of Nb-24Ti-18Si-5Cr silicide based alloys. Intermetallics 2010, 18, 1729–1736. [Google Scholar] [CrossRef]
- Fromm, E.; Heinkel, O. The carbon monoxide equilibrium pressure above Ta-C-O solid solution. Z. Metallk. 1967, 58, 805–810. [Google Scholar]
- Fromm, E.; Jehn, H. Thermodynamics and phase relations in refractory metal solid solutions containing carbon, nitrogen, and oxygen. Met. Trans. 1972, 3, 1685–1692. [Google Scholar] [CrossRef]
- Nguyen-Manh, D. Ab-Initio Modelling of Point Defect-Impurity Interaction in Tungsten and other BCC Transition Metals. Adv. Mater. Res. 2008, 59, 253–256. [Google Scholar] [CrossRef]
- Ford, D.C.; Zapol, P.; Cooley, L.D. First-principles study of carbon and vacancy structures in niobium. J. Phys. Chem. C 2015, 119, 14728–14736. [Google Scholar] [CrossRef]
- Blanter, M.S.; Dmitriev, V.V.; Mogutnov, B.M.; Ruban, A.V. Interaction of carbon, nitrogen and oxygen with vacancies and solutes in tungsten. RSC Adv. 2015, 5, 23261–23270. [Google Scholar] [CrossRef]
- Blanter, M.S.; Dmitriev, V.V.; Mogutnov, B.M.; Ruban, A.V. Interaction of interstitial atoms and configurational contri-bution to their thermodynamic activity in V, Nb, and Ta. Phys. Met. Metallogr. 2017, 118, 105–112. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, C. Effect of oxygen interstitials on structural stability in refractory metals (V, Mo, W) from DFT calculations. Eur. Phys. J. B 2021, 94, 1–9. [Google Scholar] [CrossRef]
- Martin, H.; Abavare, E.K.K.; Amoako-Yirenkyi, P. Thermodynamic stable site for interstitial solute (N or O) in bcc refractory metals (Mo and Nb) using density functional theory. MRS Adv. 2022, 7, 474–481. [Google Scholar] [CrossRef]
- Xing, H.; Hu, P.; Han, J.; Li, S.; Ge, S.; Hua, X.; Hu, B.; Yang, F.; Wang, K.; Feng, P. Effects of oxygen on micro-structure and evolution mechanism of body-centred-cubic molybdenum. Int. J. Refract. Met. Hard Mater. 2022, 103, 105747. [Google Scholar] [CrossRef]
- Miura, S.; Ikeda, K.-I.; Takizawa, S.; Watanabe, S. Formation of an onion-like two-phase structure and its effect on mechanical properties of refractory-metal based alloys. In Proceedings of the International Conference Beyond Nickel Based Superalloys IV, Potsdam, Germany, 26–30 June 2023. [Google Scholar]
- Bonsteel, R.M.; Rowcliffe, D.J.; Tietz, T.E. Mechanical Properties and Structure of Internally Oxidized Nb-12Zr Alloy. Trans. Jap. Inst. Met. 1968, 9, 597. [Google Scholar]
- Rowcliffe, D.J.; Bonsteel, R.M.; Tietz, T.E. Strengthening of Niobium-Zirconium Alloys by Internal Oxidation. Met. Soc. Conf. 1968, 47, 741–750. [Google Scholar]
- Liu, C.; Inouye, H.; Carpenter, R. Mechanical Properties and Structure of Oxygen-Doped Tantalum-Base Alloy; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1972. [Google Scholar] [CrossRef]
- Fisher, E.S.; Westlake, D.G.; Ockers, S.T. Effect of hydrogen and oxygen on the elastic moduli of vanadium, niobium and tan-talum single crystals. Phys. Status Solidi A 1975, 28, 591–602. [Google Scholar] [CrossRef]
- Wadsworth, J.; Nieh, T.G.; Stephens, J.J. Recent advances in aerospace refractory metal alloys. Int. Mater. Rev. 1988, 33, 131–150. [Google Scholar] [CrossRef]
- Miura, E.; Yoshimi, K.; Hanada, S. Solid-Solution Strengthening by Oxygen in Nb-Ta and Nb-Mo Single Crystals. Phys. Status Solidi A 2001, 185, 357–372. [Google Scholar] [CrossRef]
- Sankar, M.; Baligidad, R.; Gokhale, A. Effect of oxygen on microstructure and mechanical properties of niobium. Mater. Sci. Eng. A 2013, 569, 132–136. [Google Scholar] [CrossRef]
- Zhou, W.; Sahara, R.; Tsuchiya, K. First-principles study of the phase stability and elastic properties of Ti-X alloys (X= Mo, Nb, Al, Sn, Zr, Fe, Co, and O). J. Alloys Compd. 2017, 727, 579–595. [Google Scholar] [CrossRef]
- Chong, Y.; Poschmann, M.; Zhang, R.; Zhao, S.; Hooshmand, M.S.; Rothchild, E.; Olmsted, D.L.; Morris, J.W.; Chrzan, D.C.; Asta, M.; et al. Mechanistic basis of oxygen sensitivity in titanium. Sci. Adv. 2020, 6, eabc4060. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yu, L.; Liu, Y.; Ma, Z.; Li, H.; Li, C.; Liu, C. Interactions between interstitial oxygen and substitutional niobium atoms in Ti–Nb–O BCC alloys: First-principles calculations. AIP Adv. 2020, 10, 025309. [Google Scholar] [CrossRef]
- Jones, D.W.; McQuillan, A.D. Magnetic susceptibility and hydrogen affinity of bcc alloys of Nb-Mo, Nb-Re and Mo-Re. J. Phys. Chem. Solids 1962, 23, 1441–1447. [Google Scholar] [CrossRef]
- McLintock, C.H.; Stringer, J. The pressure dependence of the linear oxidation of Niobium in the temperature range 450 °C–1050 °C. J. Less Common Met. 1963, 5, 278–294. [Google Scholar] [CrossRef]
- Ravi, K.; Gibala, R. The strength of niobium-oxygen solid solutions. Acta Met. 1970, 18, 623–634. [Google Scholar] [CrossRef]
- Ulitchny, M.; Gibala, R. The effects of interstitial solute additions on the mechanical properties of niobium and tantalum single crystals. J. Less Common Met. 1973, 33, 105–116. [Google Scholar] [CrossRef]
- Sethi, V.; Gibala, R. Surface oxide softening of Nb and Ta single crystals. Scr. Met. 1975, 9, 527–531. [Google Scholar] [CrossRef]
- Kassem, M.A.; Koch, C.C. Effect of Interstitials on the Phase Stability of Selected Intermetallics. MRS Proc. 1990, 213, 801–806. [Google Scholar] [CrossRef]
- Sethi, V.; Gibala, R. Surface oxide softening of niobium single crystals. Acta Met. 1977, 25, 321–332. [Google Scholar] [CrossRef]
- Duquette, D.J. Environmental resistance of intermetallic compounds. In Critical Issues in the Development of High Temperature Structural Materials; Stoloff, N.S., Duquette, D.J., Giamei, A.F., Eds.; International Atomic Energy Agency (IAEA): Vienna, Austria, 1993; pp. 431–443. [Google Scholar]
- Rigney, J.D.; Singh, P.M.; Lewandowski, J.J. Effects of environmental exposure on ductile-phase toughness in Niobi-um-silicide-Niobium composites. Mat. Res. Soc. Symp. Proc. 1994, 322, 503–509. [Google Scholar] [CrossRef]
- de Souza, A.C.; Grandini, C.R.; Florêncio, O. Effect of heavy interstitials on anelastic properties of Nb-1.0 wt% Zr alloys. J. Mater. Sci. 2008, 43, 1593–1598. [Google Scholar] [CrossRef]
- Chandran, M.; Subramanian, P.R.; Gigliotti, M.F. Energetics of interstitial oxygen in β-TiX (X=transition metal) alloys using first principles methods. J. Alloys Compd. 2013, 571, 107–113. [Google Scholar] [CrossRef]
- Inouye, H. Interactions of Refractory Metals with Active Gases in Vacua and Inert Gas Environments. In Refractory Metal Alloys Metallurgy Technology; Machlin, I., Begley, R.T., Weisert, E.D., Eds.; Springer: Boston, MA, USA, 1968; pp. 165–195. [Google Scholar]
- Ketchum, M.D.; Barrett, C.A. Contamination of Refractory Metals by Oxygen, Water Vapour and Carbon Monoxide; NASACR: Daytona Beach, FL, USA, 1970. [Google Scholar]
- Hörz, G. Mechanisms and kinetics of absorption and desorption reactions in systems of refractory metals with nitrogen, oxygen or carbon. Met. Trans. 1972, 3, 3069–3076. [Google Scholar] [CrossRef]
- de Almeida, L.H.; Pires, K.C.C.; Grandini, C.R.; Florêncio, O. Measurement of oxygen atom diffusion in Nb and Ta by anelastic spectroscopy. Mater. Res. 2005, 8, 239–243. [Google Scholar] [CrossRef]
- Alkhamees, A.; Liu, Y.-L.; Zhou, H.-B.; Jin, S.; Zhang, Y.; Lu, G.-H. First-principles investigation on dissolution and diffusion of oxygen in tungsten. J. Nucl. Mater. 2009, 393, 508–512. [Google Scholar] [CrossRef]
- He, K.-N.; Song, C.; Hou, J.; Xu, Y.-C.; You, Y.-W.; Kong, X.-S.; Liu, C. The influence of transition metal solutes on the dissolution and diffusion of oxygen in tungsten. J. Nucl. Mater. 2020, 537, 152250. [Google Scholar] [CrossRef]
- Mitchell, J.B. Mechanisms of growth and loss of coherency of HfN particles in Mo. Acta Met. 1971, 19, 1063–1077. [Google Scholar] [CrossRef]
- Ghosh, G.; Olson, G.B. Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics and experimental results. Acta Mater. 2007, 55, 3281–3303. [Google Scholar] [CrossRef]
- Sabol, S.; Randall, B.; Edington, J.; Larkin, C.; Close, B. Barrier Coatings for Refractory Metals and Superalloys; Bettis Atomic Power Laboratory: West Mifflin, PA, USA, 2006. [Google Scholar] [CrossRef]
- Bomchil, G.; Goeltz, G.; Torres, J. Influence of oxygen on the formation of refractory metal silicides. Thin Solid Films 1986, 140, 59–70. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Yang, L.; Wang, F. The vacancy defects and oxygen atoms occupation effects on mechanical and electronic properties of Mo5Si3 silicides. Commun. Theor. Phys. 2021, 73, 045702. [Google Scholar] [CrossRef]
- Zhu, N.; Guo, Y.; Zhang, X.; Wang, F. The effects of vacancies defects and oxygen atoms occupation on physical properties of chromium silicide from a first-principles calculations. Solid State Commun. 2021, 340, 114535. [Google Scholar] [CrossRef]
- Uttley, J. Study of the Hardness of the Nb Solid Solution and Nb5Si3 Silicide in Nb Silicide Based Alloys Exposed to High Temperatures. Bachelor’s Thesis, Final Year Project, University of Sheffield, Sheffield, UK, 2010. [Google Scholar]
- Chapman, O. Study of the Hardness of the Nbss and Nb5Si3 Phases in a Nb Silicide Based Alloy; Final Year Project; University of Sheffield: Sheffield, UK, 2010. [Google Scholar]
- Schlesinger, M.E.; Okamoto, H.; Gokhale, A.B.; Abbaschian, R. The Nb-Si (Niobium-Silicon) System. J. Phase Equilibria 1993, 14, 502–509. [Google Scholar] [CrossRef]
- Tankov, N. Processing of Niobium Silicide Based Alloys. MPhil Thesis, University of Sheffield, Sheffield, UK, 2023. [Google Scholar]
- Encyclopaedia Britannica. Available online: https://www.britannica.com/ (accessed on 29 January 2023).
- Tsakiropoulos, P.; Zelenitsas, K.; Vellios, N. Study of the effect of Al, Cr and Sn additions on the microstructure and properties of Nb silicide based alloys. MRS Proc. 2011, 1295, 367–372. [Google Scholar] [CrossRef]
- Grammenos, I.; Tsakiropoulos, P. Study of the role of Hf, Mo and W additions in the microstructure of Nb-20Si silicide based alloys. Intermetallics 2011, 19, 1524–1530. [Google Scholar] [CrossRef]
- Grammenos, I.; Tsakiropoulos, P. Study of the role of Mo and Ta additions in the microstructure of Nb–18Si–5Hf silicide based alloy. Intermetallics 2010, 18, 1524–1530. [Google Scholar] [CrossRef]
Attributes | Composition | Properties | Links with ** | Affiliates + | |||
---|---|---|---|---|---|---|---|
N I C E | Synergy Entanglement Self-regulation | Metallic UHTM Material System * Phases | Metallic UHTM Material System Phases | Costs Energy Processing Raw materials | Risks Sustainability Recyclability Environment | IRIS CEMI ETS | E S S E R E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakiropoulos, P. A Perspective of the Design and Development of Metallic Ultra-High Temperature Materials: Refractory Metal Intermetallic Composites, Refractory Complex Concentrated Alloys and Refractory High Entropy Alloys. Alloys 2023, 2, 184-212. https://doi.org/10.3390/alloys2030014
Tsakiropoulos P. A Perspective of the Design and Development of Metallic Ultra-High Temperature Materials: Refractory Metal Intermetallic Composites, Refractory Complex Concentrated Alloys and Refractory High Entropy Alloys. Alloys. 2023; 2(3):184-212. https://doi.org/10.3390/alloys2030014
Chicago/Turabian StyleTsakiropoulos, Panos. 2023. "A Perspective of the Design and Development of Metallic Ultra-High Temperature Materials: Refractory Metal Intermetallic Composites, Refractory Complex Concentrated Alloys and Refractory High Entropy Alloys" Alloys 2, no. 3: 184-212. https://doi.org/10.3390/alloys2030014
APA StyleTsakiropoulos, P. (2023). A Perspective of the Design and Development of Metallic Ultra-High Temperature Materials: Refractory Metal Intermetallic Composites, Refractory Complex Concentrated Alloys and Refractory High Entropy Alloys. Alloys, 2(3), 184-212. https://doi.org/10.3390/alloys2030014