Density-Based Optimization of the Laser Powder Bed Fusion Process Based on a Modelling Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modelling Framework
2.1.1. Framework Outline
2.1.2. Single Laser Scan Modelling and Simulation
2.1.3. Criteria for Melt Pool Geometry Characterization
2.1.4. Porosity Simulation
2.1.5. Effect of Hatch Spacing on Porosity
2.2. Experimental Data
3. Results and Discussion
3.1. Single Laser Scan-based Printability Map
3.2. Sample Porosity Prediction—Updated Printability Map
3.3. The Effect of Hatch Spacing Variation on the Process Map
4. Conclusions
- The suitability of LOF criteria depends on the examined material. In the case of 316L SS, the least conservative criterion describes the region better, while in the case of Ti-6Al-4V the most conservative criterion can estimate the LOF region better.
- The most conservative keyhole criterion seems to present better correlation with experimental characterization for Ti-6Al-4V. The experimental data of 316L SS are not adequate to characterize the threshold of keyhole formation. Future experimental work or correlation with the remaining literature experimental cases should be performed to identify the keyhole threshold in more detail and to support the modelling results.
- The optimum-density region of the process map based on single scan analysis seems to be restricted especially from the side of its boundary with the LOF region for both metals.
- The sample porosity prediction seems to be capable of resolving the previous issue, providing a better correlation with experimental characterization in both cases.
- The sample porosity analysis is limited to the laser power levels where the balling does not appear. This approach limits the investigation of the present analysis, as the unstable phenomena cannot be modelled; thus, the boundary between the optimum-density and balling cannot be explicitly designed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- du Plessis, A.; Razavi, S.M.J.; Benedetti, M.; Murchio, S.; Leary, M.; Watson, M.; Bhate, D.; Berto, F. Properties and applications of additively manufactured metallic cellular materials: A review. Prog. Mater. Sci. 2022, 125, 100918. [Google Scholar] [CrossRef]
- Shrivastava, A.; Mukherjee, S.; Chakraborty, S.S. Addressing the challenges in remanufacturing by laser-based material deposition techniques. Opt. Laser Technol. 2021, 144, 107404. [Google Scholar] [CrossRef]
- Keshavarz, M.K.; Gontcharov, A.; Lowden, P.; Chan, A.; Kulkarni, D.; Brochu, M. Turbine Blade Tip Repair by Laser Directed Energy Deposition Additive Manufacturing Using a Rene 142–MERL 72 Powder Blend. J. Manuf. Mater. Process 2021, 5, 21. [Google Scholar] [CrossRef]
- Lampeas, G.; Diamantakos, I.; Ptochos, E. Multifield modelling and failure prediction of cellular cores produced by selective laser melting. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1534–1547. [Google Scholar] [CrossRef]
- Gordon, J.V.; Narra, S.P.; Cunningham, R.W.; Liu, H.; Chen, H.; Suter, R.M.; Beuth, J.L.; Rollett, A.D. Defect structure process maps for laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 36, 101552. [Google Scholar] [CrossRef]
- Heiden, M.J.; Jensen, S.C.; Koepke, J.R.; Saiz, D.J.; Dickens, S.M.; Jared, B.H. Process and feedstock driven microstructure for laser powder bed fusion of 316L stainless steel. Materialia 2022, 21, 101356. [Google Scholar] [CrossRef]
- Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A.D. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019, 363, 849–852. [Google Scholar] [CrossRef]
- Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. 2014, 1, 87–98. [Google Scholar] [CrossRef]
- Seifi, M.; Salem, A.; Satko, D.; Shaffer, J.; Lewandowski, J.J. Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4V. Int. J. Fatigue 2017, 94, 263–287. [Google Scholar] [CrossRef]
- Tammas-Williams, S.; Withers, P.J.; Todd, I.; Prangnell, P.B. The Influence of Porosity on Fatigue Crack Initiation in Additively Manufactured Titanium Components. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Beretta, S.; Romano, S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int. J. Fatigue 2017, 94, 178–191. [Google Scholar] [CrossRef]
- Masuo, H.; Tanaka, Y.; Morokoshi, S.; Yagura, H.; Uchida, T.; Yamamoto, Y.; Murakami, Y. Effects of Defects, Surface Roughness and HIP on Fatigue Strength of Ti-6Al-4V manufactured by Additive Manufacturing. Procedia Struct. Integr. 2017, 7, 19–26. [Google Scholar] [CrossRef]
- du Plessis, A.; Yadroitsava, I.; Yadroitsev, I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater. Des. 2019, 187, 108385. [Google Scholar] [CrossRef]
- Voisin, T.; Calta, N.P.; Khairallah, S.A.; Forien, J.B.; Balogh, L.; Cunningham, R.W.; Rollett, A.D.; Wang, Y.M. Defects-dictated tensile properties of selective laser melted Ti-6Al-4V. Mater. Des. 2018, 158, 113–126. [Google Scholar] [CrossRef]
- Liu, Q.C.; Elambasseril, J.; Sun, S.J.; Leary, M.; Brandt, M.; Sharp, P.K. The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting. Adv. Mater. Res. Trans. Tech. Publ. 2014, 891–892, 1519–1524. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A.; Phan, N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing. Mater. Des. 2019, 182, 108091. [Google Scholar] [CrossRef]
- Sabzi, H.E.; Rivera-Díaz-del-Castillo, P.E.J. Defect Prevention in Selective Laser Melting Components: Compositional and Process Effects. Mater 2019, 12, 3791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, C.; Pal, D.; Gong, H.; Zeng, K.; Briggs, K.; Patil, N.; Stucker, B. A review of defect modeling in laser material processing. Addit. Manuf. 2017, 14, 137–147. [Google Scholar] [CrossRef]
- Snow, Z.; Nassar, A.R.; Reutzel, E.W. Invited Review Article: Review of the formation and impact of flaws in powder bed fusion additive manufacturing. Addit. Manuf. 2020, 36, 101457. [Google Scholar] [CrossRef]
- Iebba, M.; Astarita, A.; Mistretta, D.; Colonna, I.; Liberini, M.; Scherillo, F.; Pirozzi, C.; Borrelli, R.; Franchitti, S.; Squillace, A. Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4V Components. J. Mater. Eng. Perform. 2017, 26, 4138–4147. [Google Scholar] [CrossRef]
- Cunningham, R.; Narra, S.P.; Montgomery, C.; Beuth, J.; Rollett, A.D. Synchrotron-Based X-ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V. JOM 2017, 69, 479–484. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Everitt, N.M.; Ashcroft, I.; Tuck, C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 2014, 1–4, 77–86. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, C.; Escano, L.I.; Young, Z.; Xiong, L.; Fezzaa, K.; Everhart, W.; Brown, B.; Sun, T.; Chen, L. Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy X-ray imaging. Acta Mater. 2018, 151, 169–180. [Google Scholar] [CrossRef]
- Fabbro, R.; Chouf, K. Keyhole modeling during laser welding. J. Appl. Phys. 2000, 87, 4075–4083. [Google Scholar] [CrossRef]
- Gu, D.; Shen, Y. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. J. Alloys Compd. 2007, 432, 163–166. [Google Scholar] [CrossRef]
- Nudelis, N.; Mayr, P. A Novel Classification Method for Pores in Laser Powder Bed Fusion. Metals 2021, 11, 1912. [Google Scholar] [CrossRef]
- Zhang, B.; Seede, R.; Xue, L.; Atli, K.C.; Zhang, C.; Whitt, A.; Karaman, I.; Arroyave, R.; Elwany, A. An efficient framework for printability assessment in Laser Powder Bed Fusion metal additive manufacturing. Addit. Manuf. 2021, 46, 102018. [Google Scholar] [CrossRef]
- Johnson, L.; Mahmoudi, M.; Zhang, B.; Seede, R.; Huang, X.; Maier, J.T.; Maier, H.J.; Karaman, I.; Elwany, A.; Arróyave, R. Assessing printability maps in additive manufacturing of metal alloys. Acta Mater. 2019, 176, 199–210. [Google Scholar] [CrossRef]
- Luo, Q.; Yin, L.; Simpson, T.W.; Beese, A.M. Effect of processing parameters on pore structures, grain features, and mechanical properties in Ti-6Al-4V by laser powder bed fusion. Addit. Manuf. 2022, 56, 102915. [Google Scholar] [CrossRef]
- Beuth, J.; Fox, J.; Gockel, J.; Yang, R.; Qiao, H.; Soylemez, E.; Reeseewatt, P.; Anvari, A.; Narra, S.; Klingbeil, N. Process Mapping for Qualification Across Multiple Direct Metal Additive Manufacturing Processes. In Proceedings of the 2013 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 14–16 August 2013. [Google Scholar]
- Dilip, J.J.S.; Zhang, S.; Teng, C.; Zeng, K.; Robinson, C.; Pal, D.; Stucker, B. Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog. Addit. Manuf. 2017, 2, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Farah, J.; Akram, J.; Teng, C.; Ginn, J.; Misra, M. Influence of laser processing parameters on porosity in Inconel 718 during additive manufacturing. Int. J. Adv. Manuf. Technol. 2019, 103, 1497–1507. [Google Scholar] [CrossRef]
- Bosio, F.; Aversa, A.; Lorusso, M.; Marola, S.; Gianoglio, D.; Battezzati, L.; Fino, P.; Manfredi, D.; Lombardi, M. A time-saving and cost-effective method to process alloys by Laser Powder Bed Fusion. Mater. Des. 2019, 181, 107949. [Google Scholar] [CrossRef]
- Wei, P.; Wei, Z.; Chen, Z.; Du, J.; He, Y.; Li, J.; Zhou, Y. The AlSi10Mg samples produced by selective laser melting: Single track, densification, microstructure and mechanical behavior. Appl. Surf. Sci. 2017, 408, 38–50. [Google Scholar] [CrossRef]
- Scime, L.; Beuth, J. Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 2019, 29, 100830. [Google Scholar] [CrossRef]
- Tang, M.; Pistorius, P.C.; Beuth, J.L. Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 2017, 14, 39–48. [Google Scholar] [CrossRef]
- Rubenchik, A.M.; King, W.E.; Wu, S.S. Scaling laws for the additive manufacturing. J. Mater. Process. Technol. 2018, 257, 234–243. [Google Scholar] [CrossRef]
- Ning, J.; Wang, W.; Zamorano, B.; Liang, S.Y. Analytical modeling of lack-of-fusion porosity in metal additive manufacturing. Appl. Phys. A Mater. Sci. Process. 2019, 125, 1–11. [Google Scholar] [CrossRef]
- Wang, W.; Ning, J.; Liang, S.Y. Analytical Prediction of Balling, Lack-of-Fusion and Keyholing Thresholds in Powder Bed Fusion. Appl. Sci. 2021, 11, 12053. [Google Scholar] [CrossRef]
- Wang, W.; Ning, J.; Liang, S.Y. Analytical prediction of keyhole porosity in laser powder bed fusion. Int. J. Adv. Manuf. Technol. 2022, 119, 6995–7002. [Google Scholar] [CrossRef]
- Khorasani, M.; Ghasemi, A.H.; Leary, M.; Sharabian, E.; Cordova, L.; Gibson, I.; Downing, D.; Bateman, S.; Brandt, M.; Rolfe, B. The effect of absorption ratio on meltpool features in laser-based powder bed fusion of IN718. Opt. Laser Technol. 2022, 153, 108263. [Google Scholar] [CrossRef]
- Cook, P.S.; Murphy, A.B. Simulation of melt pool behaviour during additive manufacturing: Underlying physics and progress. Addit. Manuf. 2020, 31, 100909. [Google Scholar] [CrossRef]
- Körner, C.; Attar, E.; Heinl, P. Mesoscopic simulation of selective beam melting processes. J. Mater. Process. Technol. 2011, 211, 978–987. [Google Scholar] [CrossRef]
- Bayat, M.; Dong, W.; Thorborg, J.; To, A.C.; Hattel, J.H. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies. Addit. Manuf. 2021, 47, 102278. [Google Scholar] [CrossRef]
- Luo, Z.; Zhao, Y. A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion Additive Manufacturing. Addit. Manuf. 2018, 21, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Bruna-Rosso, C.; Demir, A.G.; Previtali, B. Selective laser melting finite element modeling: Validation with high-speed imaging and lack of fusion defects prediction. Mater. Des. 2018, 156, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Letenneur, M.; Kreitcberg, A.; Brailovski, V. Optimization of Laser Powder Bed Fusion Processing Using a Combination of Melt Pool Modeling and Design of Experiment Approaches: Density Control. J. Manuf. Mater. Process. 2019, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Ansys Additive User’s Guide (Print and Science) 2020 R2; Ansys Inc.: Canonsburg, PA, USA, 2020.
- Liu, B.; Fang, G.; Lei, L.; Yan, X. Predicting the porosity defects in selective laser melting (SLM) by molten pool geometry. Int. J. Mech. Sci. 2022, 228, 107478. [Google Scholar] [CrossRef]
- Fergani, O.; Brotan, V.; Bambach, M.; Pérez-Prado, M.T. Texture evolution in stainless steel processed by selective laser melting and annealing. Mat. Sc. Technol. 2018, 34, 2223–2230. [Google Scholar] [CrossRef]
- Mukherjee, T.; Zuback, J.S.; De, A.; DebRoy, T. Printability of alloys for additive manufacturing. Sci. Rep. 2016, 6, 19717. [Google Scholar] [CrossRef] [Green Version]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Du, L.; Qian, G.; Zheng, L.; Hong, Y. Influence of processing parameters of selective laser melting on high-cycle and very-high-cycle fatigue behaviour of Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 240–256. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L. An effective analytical model of selective laser melting. Virtual Phys. Prototyp. 2016, 11, 21–26. [Google Scholar] [CrossRef]
- Carter, L.N.; Martin, C.; Withers, P.J.; Attallah, M.M. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J. Alloys Compd. 2014, 615, 338–347. [Google Scholar] [CrossRef]
- Jia, H.; Sun, H.; Wang, H.; Wu, Y.; Wang, H. Scanning strategy in selective laser melting (SLM): A review. Int. J. Adv. Manuf. Technol. 2021, 113, 2413–2435. [Google Scholar] [CrossRef]
- Barrionuevo, G.O.; Ramos-Grez, J.A.; Walczak, M.; Sánchez-Sánchez, X.; Guerra, C.; Debut, A.; Haro, E. Microstructure simulation and experimental evaluation of the anisotropy of 316 L stainless steel manufactured by laser powder bed fusion. Rapid Prototyp. J. 2022, 57, 133–164. [Google Scholar] [CrossRef]
- Psihoyos, H.O.; Lampeas, G.N. Efficient thermomechanical modelling of Laser Powder Bed Fusion additive manufacturing process with emphasis on parts residual stress fields. AIMS Mater. Sci. 2022, 9, 455–480. [Google Scholar] [CrossRef]
- Shaikh, M.Q.; Berfield, T.A.; Atre, S.V. Residual stresses in additively manufactured parts: Predictive simulation and experimental verification. Rapid Prototyp. J. 2022, 28, 1895–1905. [Google Scholar] [CrossRef]
Type of Porosity | Criterion | References | Examined Metals |
---|---|---|---|
Lack of Fusion | D < t | [28] | NiNb5 |
D < 1.1∙t | [52] | Ti-6Al-4V, IN718 | |
D < 1.5∙t | [18,52] | Ti-6Al-4V, 316L SS | |
Keyhole | W ≤ 1.2∙D | [28,29] | NiNb5 |
W ≤ 1.5∙D | [28,29] | NiNb5 | |
W ≤ 2∙D | [6,8,18] | Ti-6Al-4V, 316L SS | |
Balling | L/W < 2.3 | [18,29] | IN718, NiNb5 |
Laser Power [W] | Scan Speed [mm/s] | Melt Pool Depth (D) [mm] | Melt Pool Width (W) [mm] | Melt Pool Length (L) [mm] |
---|---|---|---|---|
50 | 500 | 0.005 | 0.005 | 0.095 |
100 | 500 | 0.015 | 0.081 | 0.181 |
100 | 1000 | 0.007 | 0.007 | 0.146 |
100 | 2000 | 0.006 | 0.008 | 0.171 |
200 | 500 | 0.084 | 0.150 | 0.361 |
200 | 1000 | 0.023 | 0.097 | 0.217 |
200 | 2000 | 0.004 | 0.004 | 0.27 |
350 | 1000 | 0.073 | 0.138 | 0.537 |
350 | 2000 | 0.01 | 0.073 | 0.302 |
Laser Power [W] | Scan Speed [mm/s] | Melt Pool Depth (D) [mm] | Melt Pool Width (W) [mm] | Melt Pool Length (L) [mm] |
---|---|---|---|---|
50 | 500 | 0.009 | 0.066 | 0.153 |
100 | 500 | 0.051 | 0.132 | 0.282 |
200 | 500 | 0.087 | 0.176 | 0.391 |
100 | 1000 | 0.012 | 0.081 | 0.165 |
200 | 2000 | 0.014 | 0.08 | 0.180 |
350 | 1000 | 0.083 | 0.159 | 0.418 |
100 | 2000 | 0.004 | 0.004 | 0.254 |
200 | 2000 | 0.014 | 0.08 | 0.172 |
350 | 2000 | 0.048 | 0.115 | 0.237 |
316L SS | Ti-6Al-4V | ||||||
---|---|---|---|---|---|---|---|
Laser Power [W] | Scanning Speed [mm/s] | Experimental Characterization [50] | Prediction (Single Laser Scan) | Experimental Characterization [50] | Prediction (Single Laser Scan) | ||
50 | 500 | LOF | ✓ | LOF | LOF | ✓ | LOF |
100 | 500 | Dense-optimum | ✕ | LOF | Dense-optimum | ✓ | Dense-optimum |
100 | 1000 | LOF | ✓ | LOF | LOF | ✓ | LOF |
100 | 2000 | LOF | ✓ | LOF | LOF | ✓ | LOF |
200 | 500 | Keyhole | ✕ | Dense-optimum | Keyhole | ✓ | Keyhole |
200 | 1000 | Dense-optimum | ✕ | LOF | Dense-optimum | ✓ | Dense-optimum |
200 | 2000 | LOF | ✓ | LOF | Dense-optimum | ✕ | LOF |
370 | 1000 | Dense-optimum | ✓ | Dense-optimum | Keyhole | ✓ | Keyhole |
370 | 2000 | LOF | ✓ | LOF | Dense-optimum | ✕ | Balling |
316L SS | Ti-6Al-4V | ||||||
---|---|---|---|---|---|---|---|
Laser Power [W] | Scanning Speed [mm/s] | Experimental Characterization [50] | Prediction (Single Laser Scan) | Experimental Characterization [50] | Prediction (Single Laser Scan) | ||
50 | 500 | LOF | ✓ | LOF | LOF | ✓ | LOF |
100 | 500 | Dense-optimum | ✓ | LOF | Dense-optimum | ✓ | Dense-optimum |
100 | 1000 | LOF | ✓ | LOF | LOF | ✓ | LOF |
100 | 2000 | LOF | ✓ | LOF | LOF | ✓ | LOF |
200 | 500 | Keyhole | ✕ | Dense-optimum | Keyhole | ✓ | Keyhole |
200 | 1000 | Dense-optimum | ✕ | LOF | Dense-optimum | ✓ | Dense-optimum |
200 | 2000 | LOF | ✓ | LOF | Dense-optimum | ✕ | LOF |
370 | 1000 | Dense-optimum | ✓ | Dense-optimum | Keyhole | ✓ | Keyhole |
370 | 2000 | LOF | ✓ | LOF | Dense-optimum | ✕ | Balling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psihoyos, H.O.; Lampeas, G.N. Density-Based Optimization of the Laser Powder Bed Fusion Process Based on a Modelling Framework. Alloys 2023, 2, 55-76. https://doi.org/10.3390/alloys2010004
Psihoyos HO, Lampeas GN. Density-Based Optimization of the Laser Powder Bed Fusion Process Based on a Modelling Framework. Alloys. 2023; 2(1):55-76. https://doi.org/10.3390/alloys2010004
Chicago/Turabian StylePsihoyos, Harry O., and George N. Lampeas. 2023. "Density-Based Optimization of the Laser Powder Bed Fusion Process Based on a Modelling Framework" Alloys 2, no. 1: 55-76. https://doi.org/10.3390/alloys2010004