Processing of Aluminum Alloy 6182 with High Scanning Speed in LPBF by In-Situ Alloying with Zr and Ti Powder
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials and Processing
2.2. Characterization of the LPBF Parts
3. Results and Discussion
3.1. Status Quo: Microstructural Analysis of the Printed Parts Manufactured with Pre-Alloyed 6182 Powder
3.2. Characterization of the Printed Parts, Manufactured with the Powder Mixture
4. Conclusions
- LPBF parts made of pre-alloyed 6182 powder (with 0.2 wt.-% each of Zr and Ti) reveals a columnar, epitaxially grown grain structure permeated with hot cracks;
- The powder mixture containing 0.7 wt.-% each of Zr and Ti was processed using LPBF. A crack-free microstructure was achieved, showing a relative density of 99.95 ± 0.05%;
- Unmolten or only partially molten Zr and Ti particles remain in the microstructure;
- An equiaxed microstructure with a grain size of 1.2 µm on the average was obtained in the as-built specimen;
- Orthorhombic D022 Al3(Ti,Zr) particles work effectively as an heterogeneous grain refiner for α-Al, evidenced by the coherent interface that was found between D022 particles and α-Al;
- In the as-built condition, the material exhibits an average yield strength of 155 ± 5 MPa with an elongation at break of 25.1 ± 1.8 %. After T6 heat treatment, an average yield strength of 294 ± 2 MPa with an elongation at break of 11.4 ± 0.9 % can be achieved.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Poprawe, R.; Hinke, C.; Meiners, W.; Schrage, J.; Bremen, S.; Risse, J.; Merkt, S. Disruptive Innovation Through 3D Printing. In Supply Chain Integration Challenges in Commercial Aerospace; Richter, K., Walther, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 73–87. [Google Scholar]
- Zhang, J.; Song, B.; Wei, Q.; Bourell, D.; Shi, Y. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J. Mater. Sci. Technol. 2019, 35, 270–284. [Google Scholar] [CrossRef]
- Trevisan, F.; Calignano, F.; Lorusso, M.; Pakkanen, J.; Aversa, A.; Ambrosio, E.P.; Lombardi, M.; Fino, P.; Manfredi, D. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties. Materials 2017, 10, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos Macías, J.G.; Douillard, T.; Zhao, L.; Maire, E.; Pyka, G.; Simar, A. Influence on microstructure, strength and ductility of build platform temperature during laser powder bed fusion of AlSi10Mg. Acta Mater. 2020, 201, 231–243. [Google Scholar] [CrossRef]
- Hyer, H.; Zhou, L.; Park, S.; Gottsfritz, G.; Benson, G.; Tolentino, B.; McWilliams, B.; Cho, K.; Sohn, Y. Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy. Met. Microstruct. Anal. 2020, 9, 484–502. [Google Scholar] [CrossRef]
- Riener, K.; Oswald, S.; Winkler, M.; Leichtfried, G.J. Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF). Addit. Manuf. 2021, 39, 101896. [Google Scholar] [CrossRef]
- Yang, T.; Liu, T.; Liao, W.; MacDonald, E.; Wei, H.; Zhang, C.; Chen, X.; Zhang, K. Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties. J. Alloy. Compd. 2020, 849, 156300. [Google Scholar] [CrossRef]
- Lathabai, S. Additive Manufacturing of Aluminium-Based Alloys and Composites. In Fundamentals of Aluminium Metallurgy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–92. [Google Scholar]
- Galy, C.; Le Guen, E.; Lacoste, E.; Arvieu, C. Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences. Addit. Manuf. 2018, 22, 165–175. [Google Scholar] [CrossRef]
- Li, L.; Li, R.; Yuan, T.; Chen, C.; Zhang, Z.; Li, X. Microstructures and tensile properties of a selective laser melted Al–Zn–Mg–Cu (Al7075) alloy by Si and Zr microalloying. Mater. Sci. Eng. A 2020, 787, 139492. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Su, Y.; Wang, H.; Enz, J.; Ebel, T.; Yan, M. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: Cracking elimination by co-incorporation of Si and TiB2. Addit. Manuf. 2020, 36, 101458. [Google Scholar] [CrossRef]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Spierings, A.B.; Dawson, K.; Heeling, T.; Uggowitzer, P.J.; Schäublin, R.; Palm, F.; Wegener, K. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Mater. Des. 2017, 115, 52–63. [Google Scholar] [CrossRef]
- Mair, P.; Kaserer, L.; Braun, J.; Weinberger, N.; Letofsky-Papst, I.; Leichtfried, G. Microstructure and mechanical properties of a TiB2-modified Al–Cu alloy processed by laser powder-bed fusion. Mater. Sci. Eng. A 2021, 799, 140209. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Mertens, R.; Vanmeensel, K.; Vleugels, J.; van Humbeeck, J.; Kruth, J.-P. In situ alloying and reinforcing of Al6061 during selective laser melting. Procedia CIRP 2018, 74, 39–43. [Google Scholar] [CrossRef]
- Mertens, R.; Baert, L.; Vanmeensel, K.; van Hooreweder, B. Laser powder bed fusion of high strength aluminum. Mat. Des. Process. Comms. 2021, 3, e161. [Google Scholar] [CrossRef] [Green Version]
- Riener, K.; Pfalz, T.; Funcke, F.; Leichtfried, G. Processability of high-strength aluminum 6182 series alloy via laser powder bed fusion (LPBF). Int. J. Adv. Manuf. Technol. 2022, 119, 4963–4977. [Google Scholar] [CrossRef]
- Ivanovic, J. Scandium (Sc): Why Is Everyone Talking about It and How It Affects the Australian Industry? Available online: http://ozscience.com/chemistry-2/scandium-sc-everyone-talking-affects-australian-industry/ (accessed on 5 November 2020).
- Horovitz, C.T. Scandium Its Occurrence, Chemistry Physics, Metallurgy, Biology and Technology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Costantino, N.; Pellegrino, R. Choosing between single and multiple sourcing based on supplier default risk: A real options approach. J. Purch. Supply Manag. 2010, 16, 27–40. [Google Scholar] [CrossRef]
- Zeng, F.-L.; Wei, Z.-L.; Li, J.-F.; Li, C.-X.; Tan, X.; Zhang, Z.; Zheng, Z.-Q. Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Trans. Nonferrous Met. Soc. China 2011, 21, 2559–2567. [Google Scholar] [CrossRef]
- Knight, S.P.; Birbilis, N.; Muddle, B.C.; Trueman, A.R.; Lynch, S.P. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys. Corros. Sci. 2010, 52, 4073–4080. [Google Scholar] [CrossRef]
- Wang, P.; Gebert, A.; Yan, L.; Li, H.; Lao, C.; Chen, Z.; Kosiba, K.; Kühn, U.; Scudino, S. Corrosion of Al-3.5Cu-1.5 Mg–1Si alloy prepared by selective laser melting and heat treatment. Intermetallics 2020, 124, 106871. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Q.; Jia, Z.; Xing, Y.; Ding, L.; Wang, X. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content. Appl. Surf. Sci. 2017, 405, 489–496. [Google Scholar] [CrossRef]
- Zhan, H.; Mol, J.M.C.; Hannour, F.; Zhuang, L.; Terryn, H.; de Wit, J.H.W. The influence of copper content on intergranular corrosion of model AlMgSi(Cu) alloys. Mater. Corros. 2008, 59, 670–675. [Google Scholar] [CrossRef]
- Blanc, C.; Lavelle, B.; Mankowski, G. The role of precipitates enriched with copper on the susceptibility to pitting corrosion of the 2024 aluminium alloy. Corros. Sci. 1997, 39, 495–510. [Google Scholar] [CrossRef]
- Buha, J.; Lumley, R.N.; Crosky, A.G.; Hono, K. Secondary precipitation in an Al–Mg–Si–Cu alloy. Acta Mater. 2007, 55, 3015–3024. [Google Scholar] [CrossRef]
6182 | Powder Mixture | |
---|---|---|
Si (wt.-%) | 1.05 | 1.04 |
Mg (wt.-%) | 1.08 | 1.07 |
Mn (wt.-%) | 0.60 | 0.59 |
Fe (wt.-%) | 0.13 | 0.13 |
Ti (wt.-%) | 0.19 | 0.69 |
Zr (wt.-%) | 0.20 | 0.70 |
Al (wt.-%) | bal. | bal. |
6182 | Ti | Zr | |
---|---|---|---|
d10 (µm) | 22.6 | 20.2 | 24.4 |
d50 (µm) | 37.8 | 39.9 | 42.4 |
d90 (µm) | 57.0 | 51.9 | 52.0 |
Substrate plate temperature (°C) | 300 |
Laser power (W) | 520 |
Scanning speed (mm/sec) | 1600 |
Hatch distance (mm) | 0.13 |
Laser spot diameter (µm) | 105 |
Layer thickness (µm) | 50 |
Scanning strategy | Stripes in zig-zag pattern, 67° rotation between adjacent layers |
Hardness (HV3) | Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Elongation at Break (%) | |
---|---|---|---|---|
As-Built | 62 ± 3 | 155 ± 5 | 191 ± 2 | 25.1 ± 1.8 |
T6 | 117 ± 1 | 294 ± 2 | 329 ± 4 | 11.4 ± 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riener, K.; Nagler, A.; Letofsky-Papst, I.; Leichtfried, G. Processing of Aluminum Alloy 6182 with High Scanning Speed in LPBF by In-Situ Alloying with Zr and Ti Powder. Alloys 2022, 1, 277-287. https://doi.org/10.3390/alloys1030018
Riener K, Nagler A, Letofsky-Papst I, Leichtfried G. Processing of Aluminum Alloy 6182 with High Scanning Speed in LPBF by In-Situ Alloying with Zr and Ti Powder. Alloys. 2022; 1(3):277-287. https://doi.org/10.3390/alloys1030018
Chicago/Turabian StyleRiener, Kirstin, Alexander Nagler, Ilse Letofsky-Papst, and Gerhard Leichtfried. 2022. "Processing of Aluminum Alloy 6182 with High Scanning Speed in LPBF by In-Situ Alloying with Zr and Ti Powder" Alloys 1, no. 3: 277-287. https://doi.org/10.3390/alloys1030018
APA StyleRiener, K., Nagler, A., Letofsky-Papst, I., & Leichtfried, G. (2022). Processing of Aluminum Alloy 6182 with High Scanning Speed in LPBF by In-Situ Alloying with Zr and Ti Powder. Alloys, 1(3), 277-287. https://doi.org/10.3390/alloys1030018