Silicon Is the Next Frontier in Plant Synthetic Biology
Abstract
1. Introduction to Silicon
2. Silicon and Plant Physiology
3. Silicon: From Abiogenic to Biogenic
4. Genetic Engineering and Synthetic Life
5. Current Developments and Future Directions
6. Silicon and Plant SynBio
7. Conclusions and Assessment
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NIPs | Nod 26-like intrinsic proteins |
IPNI | International Plant Nutrition Institute |
LTR | Long Terminal Repeat |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
Si | Silicon |
References
- White, P.J.; Brown, P. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef]
- Jacob, D.T. There is no Silicon-based Life in the Solar System. Silicon 2016, 8, 175–176. [Google Scholar] [CrossRef][Green Version]
- Kröger, N.; Poulsen, N. Diatoms—From cell wall biogenesis to nanotechnology. Annu. Rev. Genet. 2008, 42, 83–107. [Google Scholar] [CrossRef] [PubMed]
- Frew, A.; Weston, L.A.; Reynolds, O.L.; Gurr, G.M. The role of silicon in plant biology: A paradigm shift in research approach. Ann. Bot. 2018, 121, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Exley, C. A possible mechanism of biological silicification in plants. Front. Plant Sci. 2015, 6, 853. [Google Scholar] [CrossRef]
- Coskun, D.; Deshmukh, R.; Sonah, H.; Menzies, J.G.; Reynolds, O.; Ma, J.F.; Kronzucker, H.J.; Bélanger, R.R. In defence of the selective transport and role of silicon in plants. New Phytol. 2019, 223, 514–516. [Google Scholar] [CrossRef]
- Mandlik, R.; Thakral, V.; Raturi, G.; Shinde, S.; Nikolić, M.; Tripathi, D.K.; Sonah, H.; Deshmukh, R. Significance of silicon uptake, transport, and deposition in plants. J. Exp. Bot. 2020, 71, 6703–6718. [Google Scholar] [CrossRef]
- Grégoire, C.; Rémus-Borel, W.; Vivancos, J.; Labbé, C.; Belzile, F.; Bélanger, R.R. Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J. 2012, 72, 320–330. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Vivancos, J.; Guérin, V.; Sonah, H.; Labbé, C.; Belzile, F.; Bélanger, R.R. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol. Biol. 2013, 83, 303–315. [Google Scholar] [CrossRef]
- Epstein, E. Silicon. Annu. Rev. Plant Biol. 1999, 50, 641–664. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Zia-ur-Rehman, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Qayyum, M.F.; Irshad, M.K. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicol. Environ. Saf. 2015, 119, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Ibrahim, M.; Farid, M.; Adrees, M.; Bharwana, S.A.; Zia-ur-Rehman, M.; Qayyum, M.F.; Abbas, F. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ. Sci. Pollut. Res. 2015, 22, 15416–15431. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.; Elhindi, K.M.; Alotaibi, M.A. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol. Environ. Saf. 2020, 206, 111396. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Khan, A.L.; Kim, D.H.; Lee, S.Y.; Kim, K.M.; Waqas, M.; Jung, H.Y.; Shin, J.H.; Kim, J.G.; Lee, I.J. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 2014, 14, 13. [Google Scholar] [CrossRef]
- Luyckx, M.; Hausman, J.F.; Lutts, S.; Guerriero, G. Silicon and plants: Current knowledge and technological perspectives. Front. Plant Sci. 2017, 8, 411. [Google Scholar] [CrossRef]
- Guerriero, G.; Hausman, J.F.; Legay, S. Silicon and the plant extracellular matrix. Front. Plant Sci. 2016, 7, 463. [Google Scholar] [CrossRef]
- Pavlovic, J.; Kostic, L.; Bosnic, P.; Kirkby, E.A.; Nikolic, M. Interactions of silicon with essential and beneficial elements in plants. Front. Plant Sci. 2021, 12, 697592. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 2022, 34, 2106886. [Google Scholar] [CrossRef]
- Shanmugaiah, V.; Gauba, A.; Hari, S.K.; Prasad, R.; Ramamoorthy, V.; Sharma, M.P. Effect of silicon micronutrient on plant’s cellular signaling cascades in stimulating plant growth by mitigating the environmental stressors. Plant Growth Regul. 2023, 100, 391–408. [Google Scholar] [CrossRef]
- Petkowski, J.J.; Bains, W.; Seager, S. On the potential of silicon as a building block for life. Life 2020, 10, 84. [Google Scholar] [CrossRef]
- He, B.; Liu, W.; Li, J.; Xiong, S.; Jia, J.; Lin, Q.; Liu, H.; Cui, P. Evolution of Plant Genome Size and Composition. Genom. Proteom. Bioinform. 2024, 22, qzae078. [Google Scholar] [CrossRef]
- Robertson, W.E.; Funke, L.F.; de la Torre, D.; Fredens, J.; Elliott, T.S.; Spinck, M.; Christova, Y.; Cervettini, D.; Böge, F.L.; Buse, S.; et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 2021, 372, 1057–1062. [Google Scholar] [CrossRef]
- Jahnke, K.; Huth, V.; Mersdorf, U.; Liu, N.; Göpfrich, K. Bottom-up assembly of synthetic cells with a DNA cytoskeleton. ACS Nano 2022, 6, 7233–7241. [Google Scholar] [CrossRef] [PubMed]
- White, R.A., III. The future of virology is synthetic. Msystems 2021, 6, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Venter, J.C.; Glass, J.I.; Hutchison, C.A.; Vashee, S. Synthetic chromosomes, genomes, viruses, and cells. Cell 2022, 185, 2708–2724. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Corrigan, N.; Wong, E.H.; Boyer, C. Bioactive synthetic polymers. Adv. Mater. 2022, 34, 2105063. [Google Scholar] [CrossRef]
- Teng, F.; Cui, T.; Zhou, L.; Gao, Q.; Zhou, Q.; Li, W. Programmable synthetic receptors: The next-generation of cell and gene therapies. Signal Transduct. Target. Ther. 2024, 9, 7. [Google Scholar] [CrossRef]
- Kwon, K.K.; Lee, J.; Kim, H.; Lee, D.H.; Lee, S.G. Advancing high-throughput screening systems for synthetic biology and biofoundry. Curr. Opin. Syst. Biol. 2024, 37, 100487. [Google Scholar] [CrossRef]
- Katalinic, J.; Richards, M.; Auyang, A.; Millett, J.H.; Kogenaru, M.; Windbichler, N. Do the shuffle: Expanding the synthetic biology toolkit for shufflon-like recombination systems. ACS Synth. Biol. 2025, 14, 363–372. [Google Scholar] [CrossRef]
- Drienovská, I.; Roelfes, G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat. Catal. 2020, 3, 193–202. [Google Scholar] [CrossRef]
- Shapiro, B. Pathways to de-extinction: How close can we get to resurrection of an extinct species? Funct. Ecol. 2017, 31, 996–1002. [Google Scholar] [CrossRef]
- Albani Rocchetti, G.; Carta, A.; Mondoni, A.; Godefroid, S.; Davis, C.C.; Caneva, G.; Albrecht, M.A.; Alvarado, K.; Bijmoer, R.; Borosova, R.; et al. Selecting the best candidates for resurrecting extinct-in-the-wild plants from herbaria. Nat. Plants 2022, 8, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, T.F. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs. Science 2022, 378, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Adamala, K.P.; Agashe, D.; Belkaid, Y.; Bittencourt, D.M.D.C.; Cai, Y.; Chang, M.W.; Chen, I.A.; Church, G.M.; Cooper, V.S.; Davis, M.M.; et al. Confronting risks of mirror life. Science 2024, 386, 1351–1353. [Google Scholar] [CrossRef]
- Niiler, E. Terminator technology temporarily terminated. Nat. Biotechnol. 1999, 17, 1054. [Google Scholar] [CrossRef]
- Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 2018, 9, 1911. [Google Scholar] [CrossRef]
- Stewart, C.N., Jr. (Ed.) Plant Biotechnology and Genetics: Principles, Techniques, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2025. [Google Scholar]
- Gibson, D.G.; Glass, J.I.; Lartigue, C.; Noskov, V.N.; Chuang, R.Y.; Algire, M.A.; Benders, G.A.; Montague, M.G.; Ma, L.; Moodie, M.M.; et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010, 329, 52–56. [Google Scholar] [CrossRef]
- Kan, S.J.; Lewis, R.D.; Chen, K.; Arnold, F.H. Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life. Science 2016, 354, 1048–1051. [Google Scholar] [CrossRef]
- Sarai, N.S.; Fulton, T.J.; O’Meara, R.L.; Johnston, K.E.; Brinkmann-Chen, S.; Maar, R.R.; Tecklenburg, R.E.; Roberts, J.M.; Reddel, J.C.T.; Katsoulis, D.E.; et al. Directed evolution of enzymatic silicon-carbon bond cleavage in siloxanes. Science 2024, 383, 438–443. [Google Scholar] [CrossRef]
- Sarai, N.S.; Levin, B.J.; Roberts, J.M.; Katsoulis, D.E.; Arnold, F.H. Biocatalytic transformations of silicon—The other group 14 element. ACS Cent. Sci. 2021, 7, 944–953. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, X.; Liu, T.; Wang, Y.; Ahmed, N.; Li, Z.; Jiang, H. Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. Plant Commun. 2021, 2, 100229. [Google Scholar] [CrossRef]
- Nawaz, T.; Gu, L.; Hu, Z.; Fahad, S.; Saud, S.; Zhou, R. Advancements in synthetic biology for enhancing cyanobacterial capabilities in sustainable plastic production: A green horizon perspective. Fuels 2024, 5, 394–438. [Google Scholar] [CrossRef]
- Bhat, J.A.; Rajora, N.; Raturi, G.; Sharma, S.; Dhiman, P.; Sanand, S.; Shivaraj, S.M.; Sonah, H.; Deshmukh, R. Silicon nanoparticles (SiNPs) in sustainable agriculture: Major emphasis on the practicality, efficacy and concerns. Nanoscale Adv. 2021, 3, 4019–4028. [Google Scholar] [CrossRef]
- Yan, G.; Huang, Q.; Zhao, S.; Xu, Y.; He, Y.; Nikolic, M.; Nikolic, N.; Liang, Y.; Zhu, Z. Silicon nanoparticles in sustainable agriculture: Synthesis, absorption, and plant stress alleviation. Front. Plant Sci. 2024, 15, 1393458. [Google Scholar] [CrossRef]
- El-Ashry, R.M.; El-Saadony, M.T.; El-Sobki, A.E.; El-Tahan, A.M.; Al-Otaibi, S.; El-Shehawi, A.M.; Saad, A.M.; Elshaer, N. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J. Biol. Sci. 2022, 29, 920–932. [Google Scholar] [CrossRef]
- Guzman-Chavez, F.; Arce, A.; Adhikari, A.; Vadhin, S.; Pedroza-Garcia, J.A.; Gandini, C.; Ajioka, J.W.; Molloy, J.; Sanchez-Nieto, S.; Varner, J.D.; et al. Constructing cell-free expression systems for low-cost access. ACS Synth. Biol. 2022, 11, 1114–1128. [Google Scholar] [CrossRef]
- Van de Cauter, L.; Fanalista, F.; Van Buren, L.; De Franceschi, N.; Godino, E.; Bouw, S.; Danelon, C.; Dekker, C.; Koenderink, G.H.; Ganzinger, K.A. Optimized cDICE for efficient reconstitution of biological systems in giant unilamellar vesicles. ACS Synth. Biol. 2021, 10, 1690–1702. [Google Scholar] [CrossRef]
- Houghton, M.C.; Kashanian, S.V.; Derrien, T.L.; Masuda, K.; Vollmer, F. Whispering-gallery mode optoplasmonic microcavities: From advanced single-molecule sensors and microlasers to applications in synthetic biology. ACS Photonics 2024, 11, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Heimann, R.B. Silicon nitride, a close to ideal ceramic material for medical application. Ceramics 2021, 4, 208–223. [Google Scholar] [CrossRef]
- Panayides, J.L.; Riley, D.L.; Hasenmaile, F.; van Otterlo, W. The role of silicon in drug discovery: A review. RSC Med. Chem. 2024, 15, 3286–3344. [Google Scholar] [CrossRef] [PubMed]
- Morse, D.E. Silicon biotechnology: Harnessing biological silica production to construct new materials. Trends Biotechnol. 1999, 17, 230–232. [Google Scholar] [CrossRef]
- Joshi, J.; Hanson, A.D. A pilot oral history of plant synthetic biology. Plant Physiol. 2024, 195, 36–47. [Google Scholar] [CrossRef]
- Fesenko, E.; Edwards, R. Plant synthetic biology: A new platform for industrial biotechnology. J. Exp. Bot. 2014, 65, 1927–1937. [Google Scholar] [CrossRef]
- Baltes, N.J.; Voytas, D.F. Enabling plant synthetic biology through genome engineering. Trends Biotechnol. 2015, 33, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.; Szopa, C.; Freissinet, C.; Buch, A.; Stalport, F.; Kaplan, D.; Raulin, F. Testing the capabilities of the Mars Organic Molecule Analyser (MOMA) chromatographic columns for the separation of organic compounds on Mars. Planet. Space Sci. 2020, 186, 104903. [Google Scholar] [CrossRef]
- Enya, K.; Yoshimura, Y.; Kobayashi, K.; Yamagishi, A. Extraterrestrial life signature detection microscopy: Search and analysis of cells and organics on Mars and other solar system bodies. Space Sci. Rev. 2022, 218, 49. [Google Scholar] [CrossRef]
- Weng, M.M.; Zaikova, E.; Millan, M.; Williams, A.J.; McAdam, A.C.; Knudson, C.A.; Fuqua, S.R.; Wagner, N.Y.; Craft, K.; Nawotniak, S.K.; et al. Life underground: Investigating microbial communities and their biomarkers in Mars-analog lava tubes at Craters of the Moon National Monument and Preserve. J. Geophys. Res. Planets 2022, 127, e2022JE007268. [Google Scholar] [CrossRef]
- Palma, V.; De la Rosa, J.M.; Onac, B.P.; Sauro, F.; Martínez-Frías, J.; Caldeira, A.T.; González-Pérez, J.A.; Jiménez-Morillo, N.T.; Miller, A.Z. Decoding organic compounds in lava tube sulfates to understand potential biomarkers in the Martian subsurface. Commun. Earth Environ. 2024, 5, 530. [Google Scholar] [CrossRef]
- Gaur, S.; Kumar, J.; Kumar, D.; Chauhan, D.K.; Prasad, S.M.; Srivastava, P.K. Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicol. Environ. Saf. 2020, 202, 110885. [Google Scholar] [CrossRef]
- Ranjan, A.; Sinha, R.; Bala, M.; Pareek, A.; Singla-Pareek, S.L.; Singh, A.K. Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. Plant Physiol. Biochem. 2021, 163, 15–25. [Google Scholar] [CrossRef]
- Majeed Zargar, S.; Ahmad Macha, M.; Nazir, M.; Kumar Agrawal, G.; Rakwal, R. Silicon: A Multitalented Micronutrient in OMICS Perspective–An Update. Curr. Proteom. 2012, 9, 245–254. [Google Scholar] [CrossRef]
- Goold, H.D.; Kroukamp, H.; Erpf, P.E.; Zhao, Y.; Kelso, P.; Calame, J.; Timmins, J.J.B.; Wightman, E.L.I.; Peng, K.; Carpenter, A.C.; et al. Construction and iterative redesign of synXVI a 903 kb synthetic Saccharomyces cerevisiae chromosome. Nat. Commun. 2025, 16, 841. [Google Scholar] [CrossRef]
- Mori, S.; Hashimoto, R.; Hisatomi, T.; Domen, K.; Saito, S. Artificial photosynthesis directed toward organic synthesis. Nat. Commun. 2025, 16, 1797. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, A.; Hopkins, K.; Simms, T. Silicon Is the Next Frontier in Plant Synthetic Biology. SynBio 2025, 3, 12. https://doi.org/10.3390/synbio3030012
Acharya A, Hopkins K, Simms T. Silicon Is the Next Frontier in Plant Synthetic Biology. SynBio. 2025; 3(3):12. https://doi.org/10.3390/synbio3030012
Chicago/Turabian StyleAcharya, Aniruddha, Kaitlin Hopkins, and Tatum Simms. 2025. "Silicon Is the Next Frontier in Plant Synthetic Biology" SynBio 3, no. 3: 12. https://doi.org/10.3390/synbio3030012
APA StyleAcharya, A., Hopkins, K., & Simms, T. (2025). Silicon Is the Next Frontier in Plant Synthetic Biology. SynBio, 3(3), 12. https://doi.org/10.3390/synbio3030012