Co-Digestion of Cattle Slurry and Food Waste: Perspectives on Scale-Up
Abstract
:1. Introduction
2. Results and Discussion
2.1. Anaerobic Digestion Experiments
2.1.1. BMP Results
2.1.2. Performance in Co-Digestion Trials
Trial 1
Trial 2
2.1.3. Discussion of Experimental Results
2.2. Implications of Food Waste Addition to Supplement AD in UK Dairy Herds
2.2.1. Cattle Numbers, Herd Sizes, Slurry Production and Feedstock Parameters
2.2.2. Energy Production Potential from CS and FW for UK
2.2.3. Food Waste Quantities and Availability
2.2.4. Implications for Farms and Policymaking
- Of homes in rural areas, 20% are in the lowest energy efficiency bands (compared to 2.4% in urban areas);
- ‘Off gas-grid’ houses are mainly sited in rural areas and due to the higher carbon intensity of heating oil and LPG, account for a proportionally higher level (23%) of heating emissions;
- The combination of poor housing and expensive heating often drives rural households into fuel poverty.Initiatives to promote the adoption of FW:CS digesters could include the following:
- Farmer access to soft loans with below-market interest rates, delayed repayments or other flexible terms are policy interventions which could provide access to capital for such systems, and/or business tax breaks which recognise their environmental value;
- Incentive schemes which recognise and encourage flexible use of the biogas/biomethane for the many uses described above;
- Tax-based incentives in the food supply chain to encourage AD, e.g., where dairy processors pay farmers more for their milk (so they can fund an AD plant), but this is recouped through tax breaks for the processors to reduce their Scope 3 emissions, rather than passing the increased milk cost on to consumers;
- Where market-based incentives for biogas/biomethane production exist, there could be a guaranteed floor price for the energy, which could be set to a level to make an AD plant worth building from an economic point of view;
- A permitting regime which takes a risk-based but flexible approach to adding FW to these smaller CS digesters;
- Valuing, through direct subsidies, grants, or carbon reduction valuation (or a combination) the hard-to-monetise or ‘public good’ aspects of AD, such as nutrient recycling, local FW treatment, energy security, decarbonisation of household heating, grid balancing and pollution mitigation;
- Using penalties or incentives to encourage waste hauliers and local government to adhere to the proximity principle for FW treatment where possible.
2.3. Limitations of the Study and Research Needs
3. Materials and Methods
3.1. Methodological Approach of the Study
3.2. Experimental Work
3.2.1. Feedstocks, Inoculum and Trace Elements
3.2.2. Equipment and Experimental Set-Up
3.2.3. Analytical Methods
3.2.4. Calculations for Experimental Digestion Study
3.3. Approach for the Analysis of Adding Food Waste to UK Dairy Farm Slurry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
ADAT | Anaerobic digestion assessment tool |
AH | Average herd size |
AHDB | Agriculture and Horticulture Development Board |
BMP | Biochemical methane potential |
CHP | Combined heat and power plant |
CS | Cow slurry |
CSTR | Continuously stirred tank reactor |
Defra | Department of Food and Rural Affairs |
FNR | Fachagentur Nachwachsende Rohstoffe e.V |
FW | Food waste |
GHG | Greenhouse gas |
GJ | Gigajoules |
HaFS | Hospitality and food service |
HRT | Hydraulic retention time |
IA | Intermediate alkalinity |
KTBL | Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. |
kWh | Kilowatt hour |
LH | Large herd size |
MJ | Megajoule |
NVZ | Nitrate vulnerable zone |
OLR | Organic loading rate |
PA | Partial alkalinity |
PVC | Polyvinyl chloride |
SMP | Specific methane production |
STP | Standard temperature and pressure |
TA | Total alkalinity |
TAN | Total ammoniacal nitrogen |
TCD | Thermal conductivity detector |
ThCV | Theoretical calorific value |
TKN | Total Kjeldahl nitrogen |
TMP | Theoretical methane potential |
TS | Total solids |
UK | United Kingdom |
VFA | Volatile fatty acid |
VBP | Volumetric biogas production |
VMP | Volumetric methane production |
VS | Volatile solids |
WRAP | Waste Resources Action Programme |
WW | Wet weight |
Appendix A
Appendix A.1. Feedstock Characteristics
Parameter | Unit | FW1 | FW2 | CS |
---|---|---|---|---|
Total solids (TS) | % WW | 24.30 | 23.09 | 8.44 |
Volatile solids (VS) | % WW | 22.90 | 20.39 | 5.70 |
Total Kjeldahl nitrogen (TKN) | mg kg−1 WW | 7503 | 6693 | 3029 |
Trace elements | ||||
Cobalt (Co) | mg kg−1 TS | 0.10 | 0.15 | 1.76 |
Copper (Cu) | mg kg−1 TS | 5.85 | 5.20 | 64.60 |
Iron (Fe) | mg kg−1 TS | 88.9 | 125.7 | 1330.9 |
Manganese (Mn) | mg kg−1 TS | 92.1 | 86.9 | 94.8 |
Molybdenum (Mo) | mg kg−1 TS | 0.37 | 0.33 | 5.24 |
Nickel (Ni) | mg kg−1 TS | 0.73 | 0.62 | 19.5 |
Selenium (Se) | mg kg−1 TS | 0.17 | 0.17 | 0.24 |
Zinc (Zn) | mg kg−1 TS | 35.7 | 18.9 | 123.1 |
Elemental composition | ||||
Carbon (C) | % TS | 59.00 | 59.08 | 38.99 |
Hydrogen (H) | % TS | 6.74 | 7.18 | 4.67 |
Oxygen (O) (by difference) | % TS | 29.95 | 29.83 | 25.76 |
Nitrogen (N) | % TS | 3.98 | 3.61 | 2.18 |
Sulphur (S) | % TS | 0.34 | 0.30 | 0.48 |
Calculated from elemental composition | ||||
Theoretical methane potential (TMP) | m3 kg−1 VS | 0.609 | 0.624 | 0.540 |
Biogas methane content | % CH4 (v/v) | 55.3 | 56.6 | 53.5 |
Theoretical calorific value (ThCV) | MJ kg−1 VS | 24.4 | 24.8 | 21.9 |
Appendix A.2. BMP Assay
Appendix A.3. Trials 1 and 2 Operating Parameters
Appendix B. Literature Data
Ref. | Manure | Temp (°C) | CM (g kg−1 WW) | FW (g kg−1 WW) | CM/FW | OLR (g VS L−1 day−1) | HRT (days) | SMP (mL CH4 g−1 VS) | Methane (% v/v) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TS | VS | VS % TS | TS | VS | VS % TS | VS Basis | WW Basis | CM | FW | all | ||||||
[79] | Beef | 35 | 23.4 | 13.8 | 59.0 | 221.2 | 172.1 | 77.8 | CM only | 1.2 | 0.0 | 1.2 | 12.0 | 67 | n/r | |
1.00 | 12.5 | 0.6 | 0.6 | 1.2 | 12.0 | 159 | n/r | |||||||||
0.50 | 6.2 | 0.4 | 0.8 | 1.2 | 12.0 | 194 | n/r | |||||||||
0.33 | 4.2 | 0.3 | 0.9 | 1.2 | 12.0 | 233 | n/r | |||||||||
FW only | 0.0 | 1.2 | 1.2 | 12.0 | 145 | n/r | ||||||||||
[80] | Dairy | 35 | 28.0 | 21.0 | 75.0 | 266.0 | 254.0 | 95.5 | 0.79 | 9.5 | 0.6 | 0.8 | 1.4 | 14.4 | 210–260 | 64–67% |
[21,26] * | Dairy | 36 | 93.1 | 65.2 | 70.0 | 237.4 | 217.1 | 91.4 | 0.25 | 0.8 | 0.4 | 1.6 | 2.0 | 30.0 | 218 | 62.7 |
0.67 | 2.2 | 0.8 | 1.2 | 2.0 | 30.0 | 241 | 57.9 | |||||||||
0.67 | 2.2 | 1.2 | 1.8 | 3.0 | 30.0 | 221 | 59.2 | |||||||||
1.50 | 5.0 | 1.8 | 1.2 | 3.0 | 30.0 | 298 | 59.2 | |||||||||
1.50 | 5.0 | 2.4 | 1.6 | 4.0 | 30.0 | 306 | 59.8 | |||||||||
[81] | Dairy | 55 | 98.0 | 50.9 | 51.9 | 232.0 | 220.0 | 94.8 | 2.08 | 9.0 | 4.7 | 2.2 | 6.9 | 20.0 | 330 | 68.7 |
[14] | n/r | 35 | 163.0 | 132.0 | 81.0 | 185.0 | 170.0 | 91.9 | 0.50 | 0.6 | 4.0 | 8.0 | 12.0 | 12.9 | 388 | 62.3 |
0.50 | 0.6 | 5.0 | 10.0 | 15.0 | 10.3 | 317 | 60.2 | |||||||||
0.50 | 0.6 | 6.0 | 12.0 | 18.0 | 8.6 | 139 | 39.7 | |||||||||
CM only | 4.0 | 0.0 | 4.0 | 33.0 | 69 | 33.5 | ||||||||||
FW only | 0.0 | 8.0 | 8.0 | 21.3 | 347 | 61.2 | ||||||||||
[82] | Dairy | 36 | n/r | 96.8 | – | n/r | 293.0 | – | 1.0 | 3.0 | 0.5 | 0.5 | 1.0 | 160.0 | 460–530 | 64.2–67.5 |
1.0 | 3.0 | 1.0 | 1.0 | 2.0 | 80.0 | 470–630 | 64.9–74.1 | |||||||||
1.0 | 3.0 | 1.5 | 1.5 | 3.0 | 54.0 | 470–510 | 69.8–72.2 | |||||||||
[83] | Dairy | 37 | 122.6 | 105.5 | 86.1 | 136.7 | 131.7 | 96.3 | CM only | 2.0 | 0.0 | 2.0 | 25.0 | 215 | 56.8 | |
123.4 | 106.7 | 86.5 | 10.1 | 15.6 | 2.0 | 0.2 | 2.2 | 25.0 | 231 | 58.7 | ||||||
120.6 | 103.6 | 85.9 | 4.9 | 7.3 | 2.0 | 0.4 | 2.4 | 25.0 | 245 | 57.6 | ||||||
3.0 | 4.6 | 2.0 | 0.7 | 2.7 | 25.0 | 255 | 56.3 | |||||||||
2.1 | 3.4 | 2.0 | 0.9 | 2.9 | 25.0 | 259 | 57.4 | |||||||||
1.6 | 2.6 | 2.0 | 1.2 | 3.2 | 25.0 | 282 | 58.3 | |||||||||
1.3 | 2.1 | 2.0 | 1.5 | 3.5 | 25.0 | 289 | 58.1 | |||||||||
1.0 | 1.7 | 2.0 | 1.9 | 3.9 | 25.0 | 297 | 58.3 | |||||||||
[84] | Dairy | 55 | 67.3 | 57.0 | 84.7 | 339 | 321.7 | 94.9 | CM only | 2.7 | - | 2.7 | 21.0 | 207 | n/r | |
1.60 | 9.0 | 2.4 | 1.5 | 3.9 | 21.0 | 281 | n/r | |||||||||
0.71 | 4.0 | 2.3 | 3.2 | 5.5 | 21.0 | 370 | n/r | |||||||||
0.41 | 2.3 | 2.0 | 4.8 | 6.9 | 21.0 | 290 | n/r | |||||||||
0.53 | 3.0 | 2.1 | 4.0 | 6.2 | 21.0 | 385 | n/r | |||||||||
[85] | Dairy | 37 | 62.3 | 47.4 | 76.1 | 187.0 | 175.7 | 94.0 | CM only | 1.8 | 0.0 | 1.8 | 25.9 | 218 | 62.6 | |
1.58 | 6.1 | 1.8 | 1.2 | 3.0 | 22.1 | 358 | 62.8 | |||||||||
0.83 | 3.1 | 1.8 | 2.2 | 4.0 | 19.5 | 402 | 63.3 | |||||||||
0.57 | 2.1 | 1.8 | 3.2 | 5.0 | 17.5 | 445 | 63.7 | |||||||||
[86] | n/r | 37 | 103.0 | 86.0 | 83.5 | 238.0 | 229.0 | 96.2 | 0.18 | 0.41 | 0.2 | 1.2 | 1.4 | 32.1 | 293 | 53 |
0.19 | 0.42 | 0.4 | 2.4 | 2.8 | 33.5 | 347 | 60 | |||||||||
0.21 | 0.46 | 0.7 | 3.7 | 4.4 | 29.5 | 372 | 64 | |||||||||
0.22 | 0.48 | 1.0 | 4.5 | 5.5 | 29.5 | unstable | 64 | |||||||||
[87] | n/r | 37 | n/r | n/r | – | n/r | n/r | – | 2 | n/r | – | – | 2.4 | 25.0 | 257 | 67 |
77.0 | 60.0 | 77.9 | for mixed substrates | 2 | n/r | – | – | 3.0 | 20.0 | 246 | 68 | |||||
2 | n/r | – | – | 4.0 | 15.0 | 236 | 66 | |||||||||
2 | n/r | – | – | 6.0 | 10.0 | 198 | 67 | |||||||||
2 | n/r | – | – | 8.6 | 7.0 | 170 | 62 | |||||||||
2 | n/r | – | – | 12.0 | 5.0 | 126 | 56 | |||||||||
2 | n/r | – | – | 15.0 | 4.0 | 0 | – | |||||||||
This study | Dairy | 35 | 76.0 | 54.2 | 71.3 | 260.3 | 246.4 | 94.7 | 0.66 | 3 | 1.2 | 1.8 | 3.1 | 33.3 | 322 | 60.5 |
84.4 | 57.0 | 67.5 | 243.0 | 229.0 | 94.2 | 1 | 3 | 1.6 | 2.5 | 4.1 | 25.0 | 318 | 60.9 | |||
1 | 3 | 2.0 | 3.1 | 5.1 | 20.0 | 329 | 60.9 | |||||||||
89.3 | 52.7 | 59.1 | 227.98 | 200.94 | 88.1 | 1.58 | 6 | 1.8 | 1.1 | 2.9 | 25.7 | 242 | 61.6 | |||
230.9 | 203.9 | 88.3 | 2 | 6 | 2.3 | 1.5 | 3.8 | 19.3 | 223 | 61.7 | ||||||
2 | 6 | 2.9 | 1.9 | 4.8 | 15.4 | 216 | 62.2 |
Element | Major Surveys | Co-digestion Studies d | |||||
---|---|---|---|---|---|---|---|
McBride and Spiers (2001) a [88] | Sager (2007) b [89] | Sheppard and Sanipelli (2012) c [90] | Agyeman et al. (2014) [82] | El-Mashad and Zhang (2010) [91] | Adam (2019) [92] | This study | |
Al | – | 1670 | - | – | 1.72 | – | – |
B | 8.1 | – | 24.3 | – | 0.07 | – | – |
Co | 2.5 | 2.1 | 1.61 | – | – | 1.26 | 1.76 |
Cu | 139 | 51 | 75.7 | 123 | 110 | 55.7 | 64.6 |
Fe | – | 1970 | 879 | 705 | 2100 | 1202 | 1331 |
Mn | – | 180 | 311 | 176 | 210 | 150.4 | 94.8 |
Mo | 2.5 | 3.5 | 4.55 | 1.6 | <0.02 | 4.27 | 5.24 |
Ni | 8 | 6.3 | 4.59 | <0.02 | 9 | 19.5 | |
Se | 3 | 0.59 | 1.16 | – | – | 0.79 | 0.24 |
W | – | – | – | – | – | – | – |
Zn | 191 | 164 | 350 | 233 | 280 | 131.5 | 123 |
References
- Röder, M. More than food or fuel. Stakeholder perceptions of anaerobic digestion and land use; a case study from the United Kingdom. Energy Policy 2016, 97, 73–81. [Google Scholar] [CrossRef]
- Nleya, Y.; Young, B.; Nooraee, E.; Baroutian, S. Opportunities and Challenges for Anaerobic Digestion of Farm Dairy Effluent. ChemBioEng Rev. 2023, 10, 924–940. [Google Scholar]
- Banks, C.J.; Salter, A.M.; Heaven, S.; Riley, K. Energetic and environmental benefits of co-digestion of food waste and cattle slurry: A preliminary assessment. Resour. Conserv. Recycl. 2011, 56, 71–79. [Google Scholar]
- Xing, B.-S.; Cao, S.; Han, Y.; Wen, J.; Zhang, K.; Wang, X.C. Stable and high-rate anaerobic co-digestion of food waste and cow manure: Optimisation of start-up conditions. Bioresour. Technol. 2020, 307, 123195. [Google Scholar]
- WRAP. UK Food Waste & Food Surplus—Key Facts; Waste Resources Action Programme (WRAP): Banbury, UK, 2023. [Google Scholar]
- Bywater, A.; Kusch-Brandt, S. Exploring Farm Anaerobic Digester Economic Viability in a Time of Policy Change in the UK. Processes 2022, 10, 212. [Google Scholar] [CrossRef]
- March, M.D.; Haskell, M.J.; Chagunda, M.G.G.; Langford, F.M.; Roberts, D.J. Current trends in British dairy management regimens. J. Dairy Sci. 2014, 97, 7985–7994. [Google Scholar]
- Styles, D.; Gibbons, J.; Williams, A.P.; Stichnothe, H.; Chadwick, D.R.; Healey, J.R. Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on dairy farms. GCB Bioenergy 2015, 7, 1034–1049. [Google Scholar]
- Li, Y.; Zhao, J.; Krooneman, J.; Euverink, G.J.W. Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. Sci. Total Environ. 2021, 755, 142940. [Google Scholar] [CrossRef]
- Atandi, E.; Rahman, S. Prospect of anaerobic co-digestion of dairy manure: A review. Environ. Technol. Rev. 2012, 1, 127–135. [Google Scholar]
- Fachagentur Nachwachsende Rohstoffe. Leitfaden Biogas—Von der Gewinnung zur Nutzung, 7th ed.; Fachagentur Nachwachsende Rohstoffe e.V. (FNR): Gülzow, Germany, 2016. [Google Scholar]
- Karki, R.; Chuenchart, W.; Surendra, K.C.; Shrestha, S.; Raskin, L.; Sung, S.; Hashimoto, A.; Kumar Khanal, S. Anaerobic co-digestion: Current status and perspectives. Bioresour. Technol. 2021, 330, 125001. [Google Scholar]
- Ma, G.; Ndegwa, P.; Harrison, J.H.; Chen, Y. Methane yields during anaerobic co-digestion of animal manure with other feedstocks: A meta-analysis. Sci. Total Environ. 2020, 728, 138224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef]
- Srisowmeya, G.; Chakravarthy, M.; Bakshi, A.; Nandhini Devi, G. Improving process stability, biogas production and energy recovery using two-stage mesophilic anaerobic codigestion of rice wastewater with cow dung slurry. Biomass Bioenergy 2021, 152, 106184. [Google Scholar] [CrossRef]
- Bioenergy and Organic Resources Research Group (Ed.) Anaerobic Digestion Assessment Tool (ADAT); University of Southampton: Southampton, UK, 2017. [Google Scholar]
- Mistry, P.; Misselbrook, T. Assessment of Methane Management and Recovery Options for Livestock Manures and Slurries. In Defra Energy in Agriculture and Food; Sustainable Agriculture Strategy Division, Department for Environment Food and Rural Affairs: Oxford, UK, 2005; p. 63. [Google Scholar]
- Banks, C.; Heaven, S.; Zhang, Y.; Baier, U. Food Waste Digestion: Anaerobic Digestion of Food Waste for a Circular Economy; IEA Bioenergy Paris: Paris, France, 2018. [Google Scholar]
- Zhang, Y.; Banks, C.J.; Heaven, S. Anaerobic digestion of two biodegradable municipal waste streams. J. Environ. Manag. 2012, 104, 166–174. [Google Scholar] [CrossRef]
- Yirong, C.; Zhang, W.; Heaven, S.; Banks, C.J. Influence of ammonia in the anaerobic digestion of food waste. J. Environ. Chem. Eng. 2017, 5, 5131–5142. [Google Scholar] [CrossRef]
- Banks, C.J.; Zhang, Y. Technical Report: Optimising Inputs and Outputs from Anaerobic Digestion Processes; University of Southampton: Southampton, UK, 2010. [Google Scholar]
- Labatut, R.A.; Angenent, L.T.; Scott, N.R. Biochemical methane potential and biodegradability of complex organic substrates. Bioresour. Technol. 2011, 102, 2255–2264. [Google Scholar] [CrossRef]
- Cornell, M. Improvement of the Digestion of Cattle Slurry via the Process of Co-Digestion. Ph.D. Thesis, University of Southampton, Southampton, UK, 2011. [Google Scholar]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Zollitsch, W.; Mayer, K.; Gruber, L. Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agric. Ecosyst. Environ. 2007, 118, 173–182. [Google Scholar] [CrossRef]
- Tsapekos, P.; Kougias, P.G.; Kuthiala, S.; Angelidaki, I. Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Convers. Manag. 2018, 159, 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Banks, C.J.; Heaven, S. Co-digestion of source segregated domestic food waste to improve process stability. Bioresour. Technol. 2012, 114, 168–178. [Google Scholar] [CrossRef]
- Angelidaki, I.; Sanders, W. Assessment of the anaerobic biodegradability of macropollutants. Re/Views Environ. Sci. Bio/Technol. 2004, 3, 117–129. [Google Scholar] [CrossRef]
- WRAP. Literature Review—Relationship Between Household Food Waste Collection and Food Waste Prevention; Waste and Resources Action Programme (WRAP): Banbury, UK, 2011. [Google Scholar]
- van der Werf, P.; Seabrook, J.A.; Gilliland, J.A. “Reduce food waste, save money”: Testing a novel intervention to reduce household food waste. Environ. Behav. 2021, 53, 151–183. [Google Scholar] [CrossRef]
- Karunasena, G.G.; Pearson, D. Food waste in Australian households: Evidence for designing interventions. J. Consum. Behav. 2022, 20, 1523–1533. [Google Scholar]
- WRAP. Impact of Household Food Waste Collections on Household Food Waste Arisings; Waste and Resources Action Programme (WRAP): Cardiff, UK, 2019. [Google Scholar]
- Zhang, W.; Alessi, A.M.; Heaven, S.; Chong, J.P.J.; Banks, C.J. Dynamic changes in anaerobic digester metabolic pathways and microbial populations during acclimatisation to increasing ammonium concentrations. Waste Manag. 2021, 135, 409–419. [Google Scholar]
- Banks, C.J.; Zhang, Y.; Jiang, Y.; Heaven, S. Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour. Technol. 2012, 104, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Angelidaki, I.; Ahring, B.K. Anaerobic thermophilic digestion of manure at different ammonia loads: Effect of temperature. Water Res. 1994, 28, 727–731. [Google Scholar]
- Department for Environment, Food & Rural Affairs (Defra). Livestock Populations in the United Kingdom (Accredited Official Statistics). Available online: https://www.gov.uk/government/statistics/livestock-populations-in-the-united-kingdom (accessed on 5 January 2025).
- UK and EU Cow Numbers. Available online: https://ahdb.org.uk/dairy/uk-and-eu-cow-numbers (accessed on 3 January 2025).
- National Statistics. 2021 UK Greenhouse Gas Emissions, Final Figures; National Statistics: London, UK, 2023. [Google Scholar]
- Arnott, G.; Ferris, C.P.; O’Connell, N.E. Review: Welfare of dairy cows in continuously housed and pasture-based production systems. Animal 2017, 11, 261–273. [Google Scholar]
- Allen, J. Decarbonising United Kingdom Dairy Production. In Farm of the Future; Bywater, A., Ed.; Royal Agricultural Society of England: Stoneleigh, UK, 2022; p. 25. [Google Scholar]
- Agriculture and Horticulture Development Board (AHDB). Slurry Wizard. Available online: https://ahdb.org.uk/slurry-wizard (accessed on 1 January 2025).
- Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL). Wirtschaftlichkeitsrechner Biogas. Available online: https://daten.ktbl.de/biogas/startseite.do (accessed on 27 December 2024).
- Fachagentur Nachwachsende Rohstoffe e.V. (FNR) (Ed.) Guide to Biogas from Production to Use; Fachagentur Nachwachsende Rohstoffe e.V. (FNR): Gülzow, Germany, 2010; p. 232. [Google Scholar]
- Department for Business, Energy & Industrial Strategy and Department for Energy Security and Net Zero (DESNZ). National Energy Efficiency Data—Framework (NEED). Available online: https://www.gov.uk/government/collections/national-energy-efficiency-data-need-framework#consumption-data-tables (accessed on 9 January 2025).
- Department for Environment, Food & Rural Affairs. Cattle Farm Practices Survey April 2019. Available online: https://www.gov.uk/government/statistics/cattle-farm-practices-survey-april-2019 (accessed on 12 December 2024).
- Filimonau, V.; Todorova, E.; Mzembe, A.; Sauer, L.; Yankholmes, A. A comparative study of food waste management in full service restaurants of the United Kingdom and the Netherlands. J. Clean. Prod. 2020, 258, 120775. [Google Scholar]
- Edie Newsroom. Restaurants Among ‘Worst Culprits’ for Food Waste. Available online: https://www.edie.net/restaurants-among-worst-culprits-for-food-waste/ (accessed on 31 December 2024).
- Shine, P.; Upton, J.; Sefeedpari, P.; Murphy, M.D.; Shine, P.; Upton, J.; Sefeedpari, P.; Murphy, M.D. Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses. Energies 2020, 13, 1288. [Google Scholar] [CrossRef]
- Upton, J.; Humphreys, J.; Groot Koerkamp, P.W.G.; French, P.; Dillon, P.; De Boer, I.J.M. Energy demand on dairy farms in Ireland. J. Dairy Sci. 2013, 96, 6489–6498. [Google Scholar]
- Agriculture and Horticulture Development Board (AHDB). An Overview of the Cost of Energy. Available online: https://ahdb.org.uk/knowledge-library/an-overview-of-the-cost-of-energy (accessed on 4 January 2025).
- Department for Energy Security and Net Zero (DESNZ). Gas and Electricity Prices in the Non-Domestic Sector. Available online: https://www.gov.uk/government/statistical-data-sets/gas-and-electricity-prices-in-the-non-domestic-sector (accessed on 28 December 2024).
- Cowley, C.; Wade Brorsen, B. The Hurdles to Greater Adoption of Anaerobic Digesters. Agric. Resour. Econ. Rev. 2018, 47, 132–157. [Google Scholar]
- Poeschl, M.; Ward, S.; Owende, P. Environmental impacts of biogas deployment—Part II: Life cycle assessment of multiple production and utilization pathways. J. Clean. Prod. 2012, 24, 184–201. [Google Scholar] [CrossRef]
- Ward, N.; Atkins, A.; Atkins, P.; Ward, N.; Atkins, A.; Atkins, P. Estimating methane emissions from manure: A suitable case for treatment? Environ. Res. Food Syst. 2024, 1, 025003. [Google Scholar] [CrossRef]
- Rural Payments Agency. About the SLURRY Infrastructure Grant Round 2, Who Can Apply and What It Can Pay for. Available online: https://www.gov.uk/government/publications/slurry-infrastructure-grant-round-2-applicant-guidance/about-the-slurry-infrastructure-grant-round-2-who-can-apply-and-what-it-can-pay-for (accessed on 5 January 2025).
- Bywater, A.; Heaven, S.; Zhang, Y.; Banks, C.J. Potential for Biomethanisation of CO2 from Anaerobic Digestion of Organic Wastes in the United Kingdom. Processes 2022, 10, 1202. [Google Scholar] [CrossRef]
- Loboichenko, V.; Iranzo, A.; Casado-Manzano, M.; Navas, S.J.; Pino, F.J.; Rosa, F. Study of the use of biogas as an energy vector for microgrids. Renew. Sustain. Energy Rev. 2024, 200, 114574. [Google Scholar] [CrossRef]
- Loma-Osorio, I.D.; Borge-Diez, D.; Loma-Osorio, I.D.; Borge-Diez, D. Electrical Resilience in Residential Microgrids Powered by Biogas Micro-Combined Heat and Power (Micro-CHP) Systems. Eng. Proc. 2023, 37, 106. [Google Scholar] [CrossRef]
- Peppers, J.; Li, Y.; Xue, J.; Chen, X.; Alaimo, C.; Wong, L.; Young, T.; Green, P.G.; Jenkins, B.; Zhang, R.; et al. Performance analysis of membrane separation for upgrading biogas to biomethane at small scale production sites. Biomass Bioenergy 2019, 128, 105314. [Google Scholar] [CrossRef]
- Bienert, K.; Schumacher, B.; Arboleda, M.R.; Billig, E.; Shakya, S.; Rogstrand, G.; Zieliński, M.; Dębowski, M.; Bienert, K.; Schumacher, B.; et al. Multi-Indicator Assessment of Innovative Small-Scale Biomethane Technologies in Europe. Energies 2019, 12, 1321. [Google Scholar] [CrossRef]
- Schröer, D.; Herlicka, L.; Heinold, A.; Latacz-Lohmann, U.; Meisel, F. A network design problem for upgrading decentrally produced biogas into biomethane. J. Clean. Prod. 2024, 452, 142049. [Google Scholar] [CrossRef]
- Bennamann. Cornwall Council Invests £1.58 Million Our 6-Farm Pilot with Cormac Biomethane Fuel Supply. Available online: https://bennamann.com/cornwall-council-invests-1-58-million-in-our-6-farm-pilot-with-cormac-biomethane-fuel-supply/ (accessed on 16 January 2025).
- New Holland. T6 Methane Power. Available online: https://agriculture.newholland.com/en-gb/europe/products/agricultural-tractors/t6-methane-power (accessed on 10 January 2025).
- Arla. Forget Horsepower, Britain’s Farmers are Turning to Cow Power in a Bid to Be More Sustainable. Available online: https://news.arlafoods.co.uk/news/forget-horsepower-britains-farmers-are-turning-to-cow-power-in-a-bid-to-be-more-sustainable (accessed on 4 January 2025).
- Scania. Gas Truck Specifications. Available online: https://www.scania.com/uk/en/home/products/trucks/gas-truck/gas-truck-specifications.html (accessed on 11 January 2025).
- Bywater, A.; Gueterbock, R.; Woollacott, M.; Briggs, S.; Budden, K. (Eds.) Farm of the Future: Journey to Net Zero; Royal Agricultural Society of England (RASE): Stoneleigh, UK, 2022. [Google Scholar]
- Department for Environment, Food & Rural Affairs. Policy Paper: Simpler Recycling in England: Policy Update; Department for Environment, Food & Rural Affairs (Defra): London, UK, 2024. [Google Scholar]
- Walker, M.; Zhang, Y.; Heaven, S.; Banks, C. Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour. Technol. 2009, 100, 6339–6346. [Google Scholar] [CrossRef]
- Ripley, L.E.; Boyle, W.C.; Converse, J.C. Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. J. Water Pollut. Control Fed. 1986, 58, 406–411. [Google Scholar]
- Symons, G.; Buswell, A. The methane fermentation of carbohydrates1, 2. J. Am. Chem. Soc. 1933, 55, 2028–2036. [Google Scholar]
- IFRF. Combustion Handbook—File 24; International Flame Research Foundation: Sheffield, UK, 2024. [Google Scholar]
- Rao, M.; Singh, S.; Singh, A.; Sodha, M. Bioenergy conversion studies of the organic fraction of MSW: Assessment of ultimate bioenergy production potential of municipal garbage. Appl. Energy 2000, 66, 75–87. [Google Scholar] [CrossRef]
- Farming & Water Scotland. Better Nutrient Use: Working It out. Available online: https://www.farmingandwaterscotland.org/resource/better-nutrient-use-working-it-out/ (accessed on 5 January 2025).
- Zhang, W.; Heaven, S.; Banks, C.J. Thermophilic Digestion of Food Waste by Dilution: Ammonia Limit Values and Energy Considerations. Energy Fuels 2017, 31, 10890–10900. [Google Scholar]
- Suhartini, S.; Nurika, I.; Roshni, P.; Melville, L. Estimation of Biogas Production and the Emission Savings from Anaerobic Digestion of Fruit-based Agro-industrial Waste and Agricultural crops residues. BioEnergy Res. 2021, 14, 844–859. [Google Scholar]
- Hidayat, N.; Suhartini, S.; Utami, R.; Pangestuti, M. Anaerobic digestion of fungally pre-treated oil palm empty fruit bunches: Energy and carbon emission footprint. IOP Conf. Ser. Earth Environ. Sci. 2020, 524, 012019. [Google Scholar]
- Zhang, W.; Venetsaneas, N.; Heaven, S.; Banks, C.J. Impact of low loading on digestion of the mechanically-separated organic fraction of municipal solid waste. Waste Manag. 2020, 107, 101–112. [Google Scholar] [PubMed]
- Department for Environment, Food & Rural Affairs. Structure of the Agricultural Industry in England and the UK at June (Statistical Data Set). Available online: https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june (accessed on 29 December 2024).
- Department for Environment, Food & Rural Affairs (Defra). Rural Urban Classification. Available online: https://www.gov.uk/government/collections/rural-urban-classification (accessed on 1 January 2025).
- Li, R.; Chen, S.; Li, X. Anaerobic co-digestion of kitchen waste and cattle manure for methane production. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 31, 1848–1856. [Google Scholar]
- Neves, L.; Oliveira, R.; Alves, M. Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil. Water Res. 2009, 43, 5142–5150. [Google Scholar] [CrossRef]
- Castrillón, L.; Marañón, E.; Fernández-Nava, Y.; Ormaechea, P.; Quiroga, G. Thermophilic co-digestion of cattle manure and food waste supplemented with crude glycerin in induced bed reactor (IBR). Bioresour. Technol. 2013, 136, 73–77. [Google Scholar]
- Agyeman, F.O.; Tao, W. Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate. J. Environ. Manag. 2014, 133, 268–274. [Google Scholar]
- Usack, J.; Angenent, L. Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 1—Performance and operating limits. Water Res. 2015, 87, 446–457. [Google Scholar] [CrossRef]
- Zarkadas, I.S.; Sofikiti, A.S.; Voudrias, E.A.; Pilidis, G.A. Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters: Focussing on mixing ratios. Renew. Energy 2015, 80, 432–440. [Google Scholar] [CrossRef]
- Morken, J.; Gjetmundsen, M.; Fjørtoft, K. Determination of kinetic constants from the co-digestion of dairy cow slurry and municipal food waste at increasing organic loading rates. Renew. Energy 2018, 117, 46–51. [Google Scholar] [CrossRef]
- Hegde, S.; Trabold, T.A. Anaerobic digestion of food waste with unconventional co-substrates for stable biogas production at high organic loading rates. Sustainability 2019, 11, 3875. [Google Scholar] [CrossRef]
- Bi, S.; Hong, X.; Yang, H.; Yu, X.; Fang, S.; Bai, Y.; Liu, J.; Gao, Y.; Yan, L.; Wang, W.; et al. Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste. Renew. Energy 2020, 150, 213–220. [Google Scholar] [CrossRef]
- McBride, M.B.; Spiers, G. Trace element content of selected fertilizers and dairy manures as determined by ICP–MS. Commun. Soil Sci. Plant Anal. 2001, 32, 139–156. [Google Scholar] [CrossRef]
- Sager, M. Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biol. Biochem. 2007, 39, 1383–1390. [Google Scholar]
- Sheppard, S.; Sanipelli, B. Trace elements in feed, manure, and manured soils. J. Environ. Qual. 2012, 41, 1846–1856. [Google Scholar] [CrossRef]
- El-Mashad, H.M.; Zhang, R. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 2010, 101, 4021–4028. [Google Scholar] [CrossRef]
- Adam, J.H. Co-Digestion of Cattle Slurry and Food Waste. Ph.D. Thesis, University of Southampton, Southampton, UK, 2019. [Google Scholar]
Parameter | Unit | FW1 | FW2 | CS |
---|---|---|---|---|
Specific methane yield—replicate 1 | L CH4 g−1 VS | 0.463 | 0.478 | 0.187 |
Specific methane yield—replicate 2 | L CH4 g−1 VS | 0.455 | 0.462 | 0.200 |
BMP value (average of replicates) | L CH4 g−1 VS | 0.459 | 0.470 | 0.193 |
BMP/TMP a | - | 75.4% | 75.3% | 35.8% |
BMP/ThCV b | - | 81.6% | 82.1% | 35.1% |
Modified Gompertz model (Equation (2)) | ||||
Ultimate methane yield Mm | L CH4 g−1 VS | 0.460 | 0.475 | 0.210 |
Maximum methane production rate Rm | L CH4 g−1 VS day−1 | 0.214 | 0.203 | 0.027 |
Duration of lag phase λ | day | 0.0 | 0.0 | 0.0 |
R2 value c | - | 0.9734 | 0.9578 | 0.8172 |
Pseudo-parallel model (Equation (3)) | ||||
Ultimate methane yield Mm | L CH4 g−1 VS | 0.460 | 0.475 | 0.210 |
Proportion of readily degradable material P | - | 0.87 | 0.82 | 0.58 |
Readily degradable rate constant k1 | day−1 | 1.00 | 0.96 | 1.15 |
Less readily degradable rate constant k2 | day−1 | 0.10 | 0.07 | 0.05 |
Duration of lag phase λ | day | 0.15 | 0.15 | 0.00 |
R2 value c | - | 0.9981 | 0.9951 | 0.9959 |
Parameter | Unit | Co-Digestion | Control | |||
---|---|---|---|---|---|---|
CS | FW | |||||
Digester | 3-1 and 3-2 | 4-1 and 4-2 | 5-1 and 5-2 | C-1 and C-2 | F-1 and F-2 | |
VBP | L L−1 day−1 | 1.64 ± 0.09 | 2.14 ± 0.03 | 2.76 ± 0.04 | 0.48 ± 0.00 | 2.38 ± 0.05 |
VMP | L CH4 L−1 day−1 | 0.99 ± 0.05 | 1.30 ± 0.02 | 1.68 ± 0.02 | 0.30 ± 0.00 | 1.39 ± 0.02 |
SMP | L CH4 g−1 VS | 0.322 ± 0.017 | 0.318 ± 0.005 | 0.329 ± 0.004 | 0.184 ± 0.001 | 0.435 ± 0.000 |
CH4 content | % v/v | 60.5 ± 0.0 | 60.9 ± 0.2 | 60.1 ± 0.2 | 62.7 ± 0.1 | 58.3 ± 0.0 |
Digestate TS | % WW | 6.49 ± 0.04 | 6.75 ± 0.02 | 6.95 ± 0.05 | 5.66 ± 0.05 | 7.40 ± 0.00 |
Digestate VS | % WW | 4.47 ± 0.02 | 4.68 ± 0.02 | 4.84 ± 0.01 | 3.64 ± 0.04 | 5.76 ± 0.01 |
VS destruction | % VS | 57.8 ± 0.2 | 59.3 ± 0.5 | 59.6 ± 0.2 | 37.8 ± 2.3 | 90.3 ± 0.0 |
pH | – | 7.77 ± 0.01 | 7.69 ± 0.01 | 7.66 ± 0.00 | 7.78 ± 0.00 | 7.90 ± 0.02 |
TA | g CaCO3 kg−1 WW | 16.5 ± 0.0 | 15.5 ± 0.3 | 14.8 ± 0.1 | 13.5 ± 0.1 | 20.0 ± 0.2 |
PA | g CaCO3 kg−1 WW | 12.1 ± 0.0 | 11.3 ± 0.3 | 10.9 ± 0.2 | 10.1 ± 0.1 | 15.2 ± 0.2 |
IA | g CaCO3 kg−1 WW | 3.9 ± 0.0 | 3.7 ± 0.0 | 3.4 ± 0.0 | 3.1 ± 0.0 | 4.2 ± 0.0 |
IA/PA ratio | 0.32 ± 0.00 | 0.32 ± 0.01 | 0.31 ± 0.01 | 0.31 ± 0.00 | 0.28 ± 0.01 | |
TAN | g N kg−1 WW | 2.46 ± 0.01 | 2.30 ± 0.01 | 2.28 ± 0.02 | 2.01 ± 0.00 | 4.03 ± 0.07 |
Total VFA | g L−1 | 0.16 ± 0.03 | 0.12 ± 0.01 | 0.16 ± 0.01 | 0.04 ± 0.01 | 0.19 ± 0.01 |
Trial 1 | Unit | Co-Digestion | CS Control | FW Control | ||
---|---|---|---|---|---|---|
Applied OLR a | g VS L−1 day−1 | 3.1 | 4.1 | 5.1 | 1.6 | 3.2 |
FW addition | g WW day−1 | 30.0 | 40.0 | 50.0 | 0.0 | 52.4 |
g VS L−1 day−1 | 1.85 | 2.46 | 3.08 | 0.00 | 3.23 | |
CS addition | g WW day−1 | 90 | 120 | 150 | 120 | 0 |
g VS L−1 day−1 | 1.22 | 1.62 | 2.03 | 1.62 | 0.00 | |
HRT a | days | 33.3 | 25.0 | 20.0 | 33.3 | 76.3 |
Predicted SMP b | L CH4 g−1 VS | 0.353 | 0.348 | 0.343 | 0.193 | 0.460 |
Predicted/Actual SMP b | % | 91.3 | 91.2 | 95.9 | 95.1 | 94.4 |
Predicted SMP c | L CH4 g−1 VS | 0.335 | 0.335 | 0.335 | 0.183 | 0.434 |
Predicted/Actual SMP c | % | 96.2 | 94.7 | 98.3 | - | - |
Trial 2 | Unit | Co-digestion | CS Control | FW Control | ||
Applied OLR a | g VS L−1 day−1 | 2.9 | 3.8 | 4.8 | 2.9 | 2.9 |
FW addition | g WW day−1 | 22.2 | 29.6 | 37.0 | 0.0 | 58.0 |
g VS L−1 day−1 | 1.12 | 1.49 | 1.86 | 0.00 | 2.91 | |
CS addition | g WW day−1 | 133.2 | 177.6 | 222.0 | 216.5 | 0.0 |
g VS L−1 day−1 | 1.76 | 2.34 | 2.93 | 2.86 | 0.00 | |
HRT a | days | 25.7 | 19.3 | 15.4 | 18.5 | 69.0 |
Predicted SMP c | L CH4 g−1 VS | 0.212 | 0.212 | 0.212 | 0.058 | 0.456 |
Predicted/Actual SMP c | % | 114.2 | 105.1 | 101.8 | - | - |
Parameter | Unit | Co-Digestion | Control | |||
---|---|---|---|---|---|---|
CS | FW | |||||
Digester | 3-1 and 3-2 | 4-1 and 4-2 | 5-1 and 5-2 | C-1 and C-2 | F-1 and F-2 | |
VBP | L L−1 day−1 | 1.13 ± 0.05 | 1.39 ± 0.01 | 1.67 ± 0.00 | 0.26 ± 0.01 | 2.19 ± 0.08 |
VMP | L CH4 L−1 day−1 | 0.70 ± 0.04 | 0.86 ± 0.01 | 1.04 ± 0.01 | 0.15 ± 0.00 | 1.33 ± 0.07 |
SMP | L CH4 g−1 VS | 0.242 ± 0.013 | 0.223 ± 0.002 | 0.216 ± 0.001 | 0.058 ± 0.001 | 0.456 ± 0.023 |
CH4 content | % v/v | 61.6 ± 0.4 | 61.7 ± 0.1 | 62.2 ± 0.3 | 56.6 ± 0.2 | 60.7 ± 0.9 |
Digestate TS | % WW | 8.18 ± 0.06 | 8.14 ± 0.10 | 8.37 ± 0.12 | 7.68 ± 0.00 | 9.82 ± 0.11 |
Digestate VS | % WW | 5.23 ± 0.01 | 5.35 ± 0.05 | 5.50 ± 0.05 | 4.92 ± 0.03 | 6.80 ± 0.23 |
VS destruction | % VS | 43.9 ± 0.0 | 42.5 ± 1.6 | 37.3 ± 0.5 | 18.6 ± 0.8 | – |
pH | – | 7.75 ± 0.00 | 7.76 ± 0.00 | 7.75 ± 0.00 | 7.76 ± 0.02 | 8.13 ± 0.07 |
TA | g CaCO3 kg−1 WW | 18.0 ± 0.6 | 16.8 ± 0.1 | 16.2 ± 0.2 | 13.8 ± 0.5 | 31.8 ± 2.8 |
PA | g CaCO3 kg−1 WW | 11.5 ± 0.1 | 10.7 ± 0.0 | 10.3 ± 0.1 | 9.0 ± 0.3 | 21.2 ± 4.2 |
IA | g CaCO3 kg−1 WW | 6.5 ± 0.4 | 6.1 ± 0.1 | 5.9 ± 0.1 | 4.9 ± 0.2 | 10.6 ± 1.4 |
IA/PA ratio | – | 0.57 ± 0.03 | 0.57 ± 0.00 | 0.58 ± 0.01 | 0.54 ± 0.00 | 0.54 ± 0.17 |
TAN | g N kg−1 WW | 1.99 ± 0.00 | 1.82 ± 0.02 | 1.75 ± 0.00 | 1.38 ± 0.03 | 6.06 ± 0.09 |
Total VFA | g L−1 | 0.04 ± 0.00 | 0.06 ± 0.02 | 0.31 ± 0.05 | 0.05 ± 0.00 | 11.46 ± 7.74 |
England | Northern Ireland | Wales a | Scotland | United Kingdom b | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Number | % England | Number | % NI | Number | % Wales | Number | % Scotland | Number | % | |
Average herd size | 166 | 124 | 164 | 208 | 160 | |||||
Cows per holding in herds > 500 cows | 758 | 632 | 819 | 824 | 769 | |||||
Number of dairy cattle | ||||||||||
In herds < 150 | 294,680 | 28% | 173,875 | 55% | 67,617 | 26% | 38,146 | 22% | 574,318 | 32% |
In herds > 150 | 769,939 | 72% | 142,900 | 45% | 188,304 | 74% | 137,158 | 78% | 1,238,301 | 68% |
TOTAL | 1,064,619 | 316,775 | 255,921 | 175,304 | 1,812,619 | |||||
In herds > 500 | 178,995 | 13,262 | 41,792 | 41,191 | 275,240 | 15% | ||||
Number of dairy holdings | ||||||||||
<150 animals | 7091 | 73% | 2587 | 81% | 1642 | 70% | 1071 | 71% | 12,391 | 74% |
>150 animals | 2611 | 27% | 598 | 19% | 702 | 30% | 442 | 29% | 4353 | 26% |
TOTAL | 9702 | 3185 | 2344 | 1513 | 16,744 | |||||
>500 animals | 236 | 21 | 51 | 50 | 358 | 2% |
Parameter | Unit | S1-AH | S1-LH | S2-AH | S2-LH | S3-AH | S3-LH |
---|---|---|---|---|---|---|---|
Housed season–digester feed and configuration | |||||||
CS | t WW day−1 | 8.5 | 40.8 | 8.5 | 40.8 | 8.5 | 40.8 |
FW at given ratio | t WW day−1 | – | – | 1.4 | 6.8 | 2.8 | 13.6 |
Total daily feed | t WW day−1 | 8.5 | 40.8 | 9.9 | 47.6 | 11.3 | 54.4 |
CS VS | kg VS day−1 | 633.46 | 3048.51 | 633.46 | 3048.51 | 633.46 | 3048.51 |
FW VS | kg VS day−1 | - | - | 312.06 | 1501.81 | 624.13 | 3003.62 |
Total VS | kg VS day−1 | 633 | 3049 | 946 | 4550 | 1258 | 6052 |
Digester size (assuming 28-day retention for S1, and OLR of 5 kg VS m3 day−1 for S2, S3) | m3 | 237 | 1143 | 189 | 910 | 252 | 1210 |
Retention time | days | 28 | 28 | 19 | 19 | 22 | 22 |
Energy production | MJ day−1 | 4198 | 20,202 | 8893 | 42,795 | 13,587 | 65,389 |
CHP size | kWe | 16 | 77 | 34 | 163 | 52 | 250 |
Grazing season–digester feed and configuration | |||||||
CS | t WW day−1 | 2.1 | 10.2 | 2.1 | 10.2 | 2.1 | 10.2 |
FW (at given ratio plus extra for CS shortfall) | t WW day−1 | – | – | 2.4 | 11.4 | 3.8 | 18.2 |
Total daily feed | t WW day−1 | 2.1 | 10.2 | 4.5 | 21.6 | 5.9 | 28.4 |
CS VS | kg VS day−1 | 158 | 762 | 158 | 762 | 158 | 762 |
FW VS | kg VS day−1 | – | – | 521 | 2509 | 833 | 4011 |
Total VS | kg VS day−1 | 158 | 762 | 680 | 3271 | 992 | 4773 |
Retention time | days | 28 | 28 | 30 | 30 | 34 | 34 |
Energy production | MJ day−1 | 1049 | 5050 | 8893 | 42,795 | 13,587 | 65,389 |
CHP size | kWe | 4 | 19 | 34 | 163 | 52 | 250 |
Yearly feed | |||||||
CS: housed season | t WW yr−1 | 1552 | 7468 | 1552 | 7468 | 1552 | 7468 |
CS: grazing season | t WW yr−1 | 386 | 1857 | 386 | 1857 | 386 | 1857 |
Total CS fed yearly | t WW yr−1 | 1938 | 9325 | 1938 | 9325 | 1938 | 9325 |
FW: housed season | t WW yr−1 | – | – | 259 | 1245 | 517 | 2489 |
FW: grazing season | t WW yr−1 | – | – | 430 | 2068 | 687 | 3306 |
Total FW fed yearly | t WW yr−1 | – | – | 688 | 3313 | 1204 | 5795 |
Total combined yearly feed | t WW yr−1 | 1938 | 9325 | 2626 | 12,638 | 3142 | 15,120 |
Yearly energy production | |||||||
Gross energy value | MJ year−1 | 959,180 | 4,616,052 | 3,245,777 | 15,620,300 | 4,959,384 | 23,867,037 |
CHP electricity | kWh year−1 | 83,308 | 400,919 | 281,906 | 1,356,672 | 430,738 | 2,072,927 |
Biomethane | kg | 19,200 | 92,398 | 64,970 | 312,668 | 99,271 | 477,741 |
Consumption Type User | kWh Cow−1 yr−1 | AH (160) | LH (770) | kWh/ 1000 Litres Milk | AH (1,295,360 L) | LH (6,233,920 L) |
---|---|---|---|---|---|---|
High | 687 | 109,920 | 528,990 | 98.2 | 127,204 | 612,171 |
Average | 405 | 64,800 | 311,850 | 54.17 | 70,170 | 337,691 |
Low | 264 | 42,240 | 203,280 | 41.71 | 54,029 | 260,017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bywater, A.; Adam, J.A.H.; Kusch-Brandt, S.; Heaven, S. Co-Digestion of Cattle Slurry and Food Waste: Perspectives on Scale-Up. Methane 2025, 4, 8. https://doi.org/10.3390/methane4020008
Bywater A, Adam JAH, Kusch-Brandt S, Heaven S. Co-Digestion of Cattle Slurry and Food Waste: Perspectives on Scale-Up. Methane. 2025; 4(2):8. https://doi.org/10.3390/methane4020008
Chicago/Turabian StyleBywater, Angela, Jethro A. H. Adam, Sigrid Kusch-Brandt, and Sonia Heaven. 2025. "Co-Digestion of Cattle Slurry and Food Waste: Perspectives on Scale-Up" Methane 4, no. 2: 8. https://doi.org/10.3390/methane4020008
APA StyleBywater, A., Adam, J. A. H., Kusch-Brandt, S., & Heaven, S. (2025). Co-Digestion of Cattle Slurry and Food Waste: Perspectives on Scale-Up. Methane, 4(2), 8. https://doi.org/10.3390/methane4020008