Use of Increasing Levels of Low-Quality Forage in Dairy Cows’ Diets to Regulate Enteric Methane Production in Subtropical Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Characteristics of Experimental Animals and Treatments
2.3. Measurements on Animals
Methane Production Measurement
2.4. Sample Collection and Laboratory Analysis of Feed and Faeces Samples
2.5. Analysis of Results
3. Results
3.1. Voluntary Dry Matter Intake
3.2. Energy and Protein Balance
3.3. Methane Emission
3.4. Milk Production and Milk Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charmley, E.; Williams, S.R.O.; Moate, P.; Hegarty, R.; Herd, R.; Oddy, H.; Reyenga, P.; Staunton, K.; Anderson, A.; Hannah, M. A Universal Equation to Predict Methane Production of Forage-Fed Cattle in Australia. Anim. Prod. Sci. 2016, 56, 169–180. [Google Scholar] [CrossRef]
- Hammond, K.J.; Pacheco, D.; Burke, J.L.; Koolaard, J.P.; Muetzel, S.; Waghorn, G.C. The Effects of Fresh Forages and Feed Intake Level on Digesta Kinetics and Enteric Methane Emissions from Sheep. Anim. Feed. Sci. Technol. 2014, 193, 32–43. [Google Scholar] [CrossRef]
- Piñeiro-Vázquez, A.T.; Jiménez-Ferrer, G.O.; Chay-Canul, A.J.; Casanova-Lugo, F.; Díaz-Echeverría, V.F.; Ayala-Burgos, A.J.; Solorio-Sánchez, F.J.; Aguilar-Pérez, C.F.; Ku-Vera, J.C. Intake, Digestibility, Nitrogen Balance and Energy Utilization in Heifers Fed Low-Quality Forage and Leucaena Leucocephala. Anim. Feed. Sci. Technol. 2017, 228, 194–201. [Google Scholar] [CrossRef]
- Nkrumah, J.D.; Okine, E.K.; Mathison, G.W.; Schmid, K.; Li, C.; Basarab, J.A.; Price, M.A.; Wang, Z.; Moore, S.S. Relationships of Feedlot Feed Efficiency, Performance, and Feeding Behavior with Metabolic Rate, Methane Production, and Energy Partitioning in Beef Cattle. J. Anim. Sci. 2006, 84, 145–153. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.A.; Cheng, K.-J.; Okine, E.K.; Mathison, G.W. Dietary, Environmental and Microbiological Aspects of Methane Production in Ruminants. Can. J. Anim. Sci. 1996, 76, 231–243. [Google Scholar] [CrossRef]
- Niu, P.; Schwarm, A.; Bonesmo, H.; Kidane, A.; Aspeholen Åby, B.; Storlien, T.M.; Kreuzer, M.; Alvarez, C.; Sommerseth, J.K.; Prestløkken, E. A Basic Model to Predict Enteric Methane Emission from Dairy Cows and Its Application to Update Operational Models for the National Inventory in Norway. Animals 2021, 11, 1891. [Google Scholar] [CrossRef] [PubMed]
- Moe, P.W.; Tyrrell, H.F. Methane Production in Dairy Cows. J. Dairy Sci. 1979, 62, 1583–1586. [Google Scholar] [CrossRef]
- Ramin, M.; Huhtanen, P. Development of Equations for Predicting Methane Emissions from Ruminants. J. Dairy Sci. 2013, 96, 2476–2493. [Google Scholar] [CrossRef]
- Ellis, J.L.; Kebreab, E.; Odongo, N.E.; McBride, B.W.; Okine, E.K.; France, J. Prediction of Methane Production from Dairy and Beef Cattle. J. Dairy Sci. 2007, 90, 3456–3466. [Google Scholar] [CrossRef]
- Ellis, J.L.; Kebreab, E.; Odongo, N.E.; Beauchemin, K.; McGinn, S.; Nkrumah, J.D.; Moore, S.S.; Christopherson, R.; Murdoch, G.K.; McBride, B.W.; et al. Modeling Methane Production from Beef Cattle Using Linear and Nonlinear Approaches. J. Anim. Sci. 2009, 87, 1334–1345. [Google Scholar] [CrossRef]
- Archimède, H.; Eugène, M.; Marie Magdeleine, C.; Boval, M.; Martin, C.; Morgavi, D.P.; Lecomte, P.; Doreau, M. Comparison of Methane Production between C3 and C4 Grasses and Legumes. Anim. Feed. Sci. Technol. 2011, 166–167, 59–64. [Google Scholar] [CrossRef]
- Kennedy, P.M.; Charmley, E. Methane Yields from Brahman Cattle Fed Tropical Grasses and Legumes. Anim. Prod. Sci. 2012, 52, 225–239. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Castelán-Ortega, O.A.; Galindo-Maldonado, F.A.; Arango, J.; Chirinda, N.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Flores-Santiago, E.J.; Montoya-Flores, M.D.; Molina-Botero, I.C.; et al. Review: Strategies for Enteric Methane Mitigation in Cattle Fed Tropical Forages. Animal 2020, 14, s453–s463. [Google Scholar] [CrossRef] [PubMed]
- Soder, K.J.; Brito, A.F. Enteric Methane Emissions in Grazing Dairy Systems *. JDS Commun. 2023, 4, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Valencia Salazar, S.S.; Piñeiro Vázquez, A.T.; Molina Botero, I.C.; Lazos Balbuena, F.J.; Uuh Narváez, J.J.; Segura Campos, M.R.; Ramírez Avilés, L.; Solorio Sánchez, F.J.; Ku Vera, J.C. Potential of Samanea Saman Pod Meal for Enteric Methane Mitigation in Crossbred Heifers Fed Low-Quality Tropical Grass. Agric. For. Meteorol. 2018, 258, 108–116. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Valencia-Salazar, S.S.; Piñeiro-Vázquez, A.T.; Molina-Botero, I.C.; Arroyave-Jaramillo, J.; Montoya-Flores, M.D.; Lazos-Balbuena, F.J.; Canul-Solís, J.R.; Arceo-Castillo, J.I.; Ramírez-Cancino, L.; et al. Determination of Methane Yield in Cattle Fed Tropical Grasses as Measured in Open-Circuit Respiration Chambers. Agric. For. Meteorol. 2018, 258, 3–7. [Google Scholar] [CrossRef]
- Congio, G.F.S.; Bannink, A.; Mayorga, O.L.; Rodrigues, J.P.P.; Bougouin, A.; Kebreab, E.; Carvalho, P.C.F.; Berchielli, T.T.; Mercadante, M.E.Z.; Valadares-Filho, S.C.; et al. Improving the Accuracy of Beef Cattle Methane Inventories in Latin America and Caribbean Countries. Sci. Total Environ. 2023, 856, 159128. [Google Scholar] [CrossRef]
- Castelán Ortega, O.A.; Pedraza Beltrán, P.E.; Hernández Pineda, G.S.; Benaouda, M.; González Ronquillo, M.; T Molina, L.; Ku Vera, J.C.; Montelongo Pérez, H.D.; Vázquez Carrillo, M.F. Construction and Operation of a Respiration Chamber of the Head-Box Type for Methane Measurement from Cattle. Animals 2020, 10, 227. [Google Scholar] [CrossRef]
- Patra, A.K. Prediction of Enteric Methane Emission from Cattle Using Linear and Non-Linear Statistical Models in Tropical Production Systems. Mitig. Adapt. Strat. Glob. Chang. 2017, 22, 629–650. [Google Scholar] [CrossRef]
- van Lingen, H.J.; Niu, M.; Kebreab, E.; Valadares Filho, S.C.; Rooke, J.A.; Duthie, C.-A.; Schwarm, A.; Kreuzer, M.; Hynd, P.I.; Caetano, M.; et al. Prediction of Enteric Methane Production, Yield and Intensity of Beef Cattle Using an Intercontinental Database. Agric. Ecosyst. Environ. 2019, 283, 106575. [Google Scholar] [CrossRef]
- Escobar-Bahamondes, P.; Oba, M.; Beauchemin, K.A. Universally Applicable Methane Prediction Equations for Beef Cattle Fed High- or Low-Forage Diets. Can. J. Anim. Sci. 2017, 97, 83–94. [Google Scholar] [CrossRef]
- Kreuzer, M.; Kirchgessner, M.; Müller, H.L. Effect of Defaunation on the Loss of Energy in Wethers Fed Different Quantities of Cellulose and Normal or Steamflaked Maize Starch. Anim. Feed. Sci. Technol. 1986, 16, 233–241. [Google Scholar] [CrossRef]
- Holter, J.B.; Young, A.J. Methane Prediction in Dry and Lactating Holstein Cows. J. Dairy Sci. 1992, 75, 2165–2175. [Google Scholar] [CrossRef] [PubMed]
- Harper, L.A.; Denmead, O.T.; Freney, J.R.; Byers, F.M. Direct Measurements of Methane Emissions from Grazing and Feedlot Cattle. J. Anim. Sci. 1999, 77, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.J.; Waghorn, G.C. Dairy Industry Perspectives of Methane Emissions and Production from Cattle Fed Pasture or Total Mixed Rations in New Zealand. Proc. N. Z. Soc. Anim. Prod. 2002, 62, 213–218. [Google Scholar]
- Beauchemin, K.A.; McGinn, S.M. Methane Emissions from Feedlot Cattle Fed Barley or Corn Diets. J. Anim. Sci. 2005, 83, 653–661. [Google Scholar] [CrossRef]
- Arceo-Castillo, J.I.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Piñeiro-Vázquez, A.T.; Aguilar-Pérez, C.F.; Ayala-Burgos, A.J.; Solorio-Sánchez, F.J.; Castelán-Ortega, O.A.; Quintana-Owen, P.; Ku-Vera, J.C. Effect of the Volume of Methane Released into Respiration Chambers on Full System Methane Recovery. Anim. Feed. Sci. Technol. 2019, 249, 54–61. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis: Apparatus, Reagents, Procedures and Some Applications. In Agriculture Handbook; USDA-ARS: Washington, DC, USA, 1979; pp. 1–19. [Google Scholar]
- Arndt, C.; Powell, J.M.; Aguerre, M.J.; Crump, P.M.; Wattiaux, M.A. Feed Conversion Efficiency in Dairy Cows: Repeatability, Variation in Digestion and Metabolism of Energy and Nitrogen, and Ruminal Methanogens. J. Dairy Sci. 2015, 98, 3938–3950. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Carrillo, M.F.; Zaragoza-Guerrero, R.; Corona-Gochi, L.; González-Ronquillo, M.; Castillo-Gallegos, E.; Castelán-Ortega, O.A. Effect of Cymbopogon Citratus on Enteric Methane Emission, Nutrients Digestibility, and Energy Partition in Growing Beef Cattle. Agriculture 2023, 13, 745. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-05799-9. [Google Scholar]
- Brito, A.F.; Silva, L.H.P. Symposium Review: Comparisons of Feed and Milk Nitrogen Efficiency and Carbon Emissions in Organic versus Conventional Dairy Production Systems. J. Dairy Sci. 2020, 103, 5726–5739. [Google Scholar] [CrossRef]
- Allen, M.S. Effects of Diet on Short-Term Regulation of Feed Intake by Lactating Dairy Cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef]
- Estrada-Flores, J.G.; González-Ronquillo, M.; Mould, F.L.; Arriaga-Jordán, C.M.; Castelán-Ortega, O.A. Chemical Composition and Fermentation Characteristics of Grain and Different Parts of the Stover from Maize Land Races Harvested at Different Growing Periods in Two Zones of Central Mexico. Anim. Sci. 2006, 82, 845–852. [Google Scholar] [CrossRef]
- Baumont, R.; Jailler, M.; Dulphy, J.P. Dynamic of voluntary intake, feeding behaviour and rumen function in sheep fed three contrasting types of hay. Ann. Zootech. 1997, 46, 231–244. [Google Scholar] [CrossRef]
- Detmann, E.; Paulino, M.F.; Mantovani, H.C.; de, C. Valadares Filho, S.; Sampaio, C.B.; de Souza, M.A.; Lazzarini, Í.; Detmann, K.S.C. Parameterization of Ruminal Fibre Degradation in Low-Quality Tropical Forage Using Michaelis–Menten Kinetics. Livest. Sci. 2009, 126, 136–146. [Google Scholar] [CrossRef]
- Allison, C.D. Factors Affecting Forage Intake by Range Ruminants: A Review. J. Range Manag. 1985, 38, 305–311. [Google Scholar] [CrossRef]
- Einarson, M.S.; Plaizier, J.C.; Wittenberg, K.M. Effects of Barley Silage Chop Length on Productivity and Rumen Conditions of Lactating Dairy Cows Fed a Total Mixed Ration. J. Dairy Sci. 2004, 87, 2987–2996. [Google Scholar] [CrossRef]
- Haselmann, A.; Zehetgruber, K.; Fuerst-Waltl, B.; Zollitsch, W.; Knaus, W.; Zebeli, Q. Feeding Forages with Reduced Particle Size in a Total Mixed Ration Improves Feed Intake, Total-Tract Digestibility, and Performance of Organic Dairy Cows. J. Dairy Sci. 2019, 102, 8839–8849. [Google Scholar] [CrossRef]
- Wang, B.; Mao, S.Y.; Yang, H.J.; Wu, Y.M.; Wang, J.K.; Li, S.L.; Shen, Z.M.; Liu, J.X. Effects of Alfalfa and Cereal Straw as a Forage Source on Nutrient Digestibility and Lactation Performance in Lactating Dairy Cows. J. Dairy Sci. 2014, 97, 7706–7715. [Google Scholar] [CrossRef]
- Niu, M.; Kebreab, E.; Hristov, A.N.; Oh, J.; Arndt, C.; Bannink, A.; Bayat, A.R.; Brito, A.F.; Boland, T.; Casper, D.; et al. Prediction of Enteric Methane Production, Yield, and Intensity in Dairy Cattle Using an Intercontinental Database. Glob. Chang. Biol. 2018, 24, 3368–3389. [Google Scholar] [CrossRef] [PubMed]
- van Gastelen, S.; Dijkstra, J.; Bannink, A. Are Dietary Strategies to Mitigate Enteric Methane Emission Equally Effective across Dairy Cattle, Beef Cattle, and Sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef]
- Kurihara, M.; Magner, T.; Hunter, R.A.; McCrabb, G.J. Methane Production and Energy Partition of Cattle in the Tropics. Br. J. Nutr. 1999, 81, 227–234. [Google Scholar] [CrossRef]
- AlZahal, O.; Or-Rashid, M.M.; Greenwood, S.L.; Douglas, M.S.; McBride, B.W. The Effect of Dietary Fiber Level on Milk Fat Concentration and Fatty Acid Profile of Cows Fed Diets Containing Low Levels of Polyunsaturated Fatty Acids. J. Dairy Sci. 2009, 92, 1108–1116. [Google Scholar] [CrossRef]
Treatments g/kg DM | ||||||
---|---|---|---|---|---|---|
Ingredients | A | B | C | D | ||
Maize + alfalfa silage | 600.5 | 520.4 | 447.3 | 376.9 | ||
Maize straw | - | 80.1 | 153.2 | 223.6 | ||
Ground maize | 185.8 | 185.8 | 185.8 | 185.8 | ||
Soja bean meal | 85.9 | 85.9 | 85.9 | 85.9 | ||
Canola meal | 56.2 | 56.2 | 56.2 | 56.2 | ||
Wheat bran | 64.8 | 64.8 | 64.8 | 64.8 | ||
Minerals and vitamins additive | 6.8 | 6.8 | 6.8 | 6.8 | ||
Chemical composition (mean ± SD) | Maize stover | Maize + alfalfa silage | ||||
DM (%) | 54.1 ± 0.3 | 55 ± 2.1 | 56.3 ± 1.2 | 60.3 ± 0.7 | 89.8 | 36.7 |
OM (g/kg DM) | 915.4 ± 18 | 927.1 ± 14 | 923.8 ± 12 | 923.2 ± 12 | 93.5 | 89.0 |
CP (g/kg DM) | 162 ± 2.1 | 159.8 ± 15 | 158.8 ± 1.7 | 158.1 ± 2.3 | 6.0 | 10.8 |
NDF (g/kg DM) | 401.8 ± 12 | 433.4 ± 3.7 | 464.8 + 3.9 | 504.7 ± 8.8 | 75.4 | 52.7 |
ADF (g/kg DM) | 244.1 ± 6.1 | 282.1 ± 6.4 | 310.5 ± 7.2 | 347.3 ± 19 | 54.7 | 39.0 |
LIG (g/kg DM) | 31.7 ± 8.1 | 39.4 ± 4.8 | 52.9 ± 6.9 | 58.8 ± 9.2 | 12.3 | 10.2 |
CEL (g/kg DM) | 213.1 ± 16.4 | 242.6 ± 7.8 | 257.6 ± 8.5 | 288.4 ± 24.4 | 207 | 28.8 |
HEM (g/kg DM) | 157 ± 15 | 151.4 ± 10 | 154.3 ± 9 | 157.5 ± 18 | 84 | 12.7 |
NFC (g/kg DM) | 326.9 ± 16 | 310.4 ± 14 | 281.2 ± 29 | 240.4 ± 34 | - | - |
EE (g/kg DM) | 24.6 ± 3.8 | 23.4 ± 3.3 | 19.8 ± 0.9 | 20 ± 1.0 | - | - |
GE (MJ/kg DM) | 17.07 ± 0.4 | 16.95 ± 0.5 | 16.97 ± 0.6 | 16.61 ± 0.9 | 12.0 | 16.7 |
Treatments | SEM | p Value | Contrast | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | Lineal | Cuadr. | Cub. | |||
BLW | 441.1 | 440.8 | 431.2 | 447.5 | 10.1 | NS | NS | NS | NS |
BW 0.75 | 96.2 | 96.1 | 94.5 | 97.1 | 1.9 | NS | NS | NS | NS |
Intake, DM kg/day | |||||||||
DMI | 13.4 | 14.3 | 15.4 | 15.6 | 0.81 | 0.05 | 0.016 | NS | NS |
DMI, %LW | 2.9 | 3.2 | 3.5 | 3.5 | 0.19 | 0.06 | 0.017 | NS | NS |
OMi | 11.8 | 13.3 | 13.9 | 14.4 | 0.73 | 0.07 | 0.017 | NS | NS |
CPi | 2.5 | 2.4 | 2.3 | 2.1 | 0.13 | NS | 0.026 | NS | NS |
NDFi | 5.1 c | 6.2 bc | 7.1 ab | 7.9 a | 0.36 | 0.0008 | 0.0001 | NS | NS |
ADFi | 3.1 c | 4.0 bc | 4.7 ab | 5.4 a | 0.27 | 0.0003 | <0.0001 | NS | NS |
LIGi | 0.41 b | 0.58 b | 0.83 a | 0.9 a | 0.05 | <0.0001 | <0.0001 | NS | NS |
CELi | 2.7 c | 3.4 bc | 3.9 ab | 4.5 a | 0.24 | 0.001 | 0.0001 | NS | NS |
HEMi | 2.0 | 2.1 | 2.4 | 2.4 | 0.14 | NS | 0.02 | NS | NS |
NFCi | 4.2 | 4.4 | 4.4 | 3.7 | 0.24 | NS | NS | NS | NS |
GEi, MJ/d | 219.9 | 241.8 | 262.2 | 261.5 | 14.1 | NS | 0.03 | NS | NS |
Digestibility, % | |||||||||
DMD | 73.6 a | 68.3 b | 62.2 c | 57.9 d | 1.00 | <0.0001 | <0.0001 | NS | NS |
DGE | 75.4 a | 69.2 ab | 62.5 bc | 58.6 c | 1.85 | 0.0001 | <0.0001 | NS | NS |
DOM | 72.8 a | 67.4 ab | 61.4 bc | 58.5 c | 2.15 | 0.002 | 0.0003 | NS | NS |
DNDF | 48.3 a | 46.2 ab | 44.2 b | 41.6 c | 0.50 | <0.0001 | <0.0001 | 0.06 | NS |
DADF | 49.1 | 41.5 | 36.3 | 30.4 | 0.44 | <0.0001 | <0.0001 | 0.07 | NS |
DCP | 70.3 | 69.5 | 68.9 | 68.7 | 0.33 | 0.01 | 0.002 | NS | NS |
DDMi | 9.5 | 9.8 | 9.7 | 9.1 | 0.5 | NS | NS | NS | NS |
DEi, MJ/d | 167.3 | 167.9 | 165.3 | 152.4 | 9.3 | NS | NS | NS | NS |
Treatments | SEM | p Value | Contrasts | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | Lineal | Cuadr. | Cub. | |||
Energy (MJ/day) | |||||||||
GEi | 219.9 | 241.8 | 262.2 | 261.5 | 14.1 | NS | 0.03 | NS | NS |
GEf | 54.3 a | 74.0 ab | 98.6 bc | 109.9 c | 7.2 | 0.0007 | <0.0001 | NS | NS |
DEi | 167.3 | 167.9 | 165.3 | 152.4 | 9.3 | NS | NS | NS | NS |
GEu | 9.40 | 10.2 | 10.8 | 11.0 | 0.4 | 0.09 | 0.02 | NS | NS |
MEi | 141.7 | 141.7 | 140.5 | 128.4 | 8.2 | NS | NS | NS | NS |
MEi:Gei (qm) | 0.64 a | 0.58 ab | 0.53 bc | 0.50 c | 0.018 | 0.0006 | <0.0001 | NS | NS |
MEi:DEi | 0.84 | 0.84 | 0.85 | 0.84 | 0.005 | NS | NS | NS | NS |
Protein (kg or g/d) | |||||||||
CPi (kg/d) | 2.50 | 2.48 | 2.32 | 2.21 | 0.13 | NS | 0.025 | NS | NS |
Nf (g/d) | 110.1 | 112.4 | 118.5 | 119.2 | 7.50 | NS | 0.02 | NS | NS |
DCPi (kg/d) | 1.7 | 1.7 | 1.6 | 1.4 | 0.08 | NS | 0.03 | NS | NS |
Nu (g/d) | 159.0 | 169.9 | 179.2 | 181.3 | 11.2 | NS | NS | NS | NS |
MPi (Kg/d) | 0.75 | 0.78 | 0.66 | 0.57 | 0.11 | 0.09 | 0.01 | NS | NS |
MPi:CPi | 0.30 | 0.32 | 0.29 | 0.27 | 0.07 | NS | NS | NS | NS |
MPi:DPCi | 0.43 | 0.46 | 0.42 | 0.40 | 0.05 | NS | NS | NS | NS |
Treatments | EEM | p Value | Contrast | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | Lineal | Cuadr. | Cub. | |||
CH4 L/day | 409 | 405 | 381 | 390 | 21.3 | NS | NS | NS | NS |
CH4 L/kg DM | 32.1 a | 28.1 b | 23.1 c | 21.2 d | 0.4 | <0.0001 | <0.0001 | NS | NS |
Ym | 7.4 a | 6.6 b | 5.3 c | 5.0 d | 0.09 | <0.0001 | <0.0001 | NS | NS |
CH4 L/kg milk | 28.9 | 30 | 20.2 | 21.2 | 3.8 | NS | 0.07 | NS | NS |
Treatments | SEM | p Value | Contrast | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | Lineal | Cuadr. | Cub. | |||
Yield, kg/d | |||||||||
Milk yield | 16.1 | 17.9 | 16.9 | 17.1 | 2.3 | NS | NS | NS | NS |
ECM | 16.9 | 17.2 | 19.5 | 19.8 | 1.8 | NS | 0.06 | NS | NS |
Fat content | 0.56 | 0.66 | 0.62 | 0.67 | 0.09 | 0.09 | NS | NS | NS |
Protein content | 0.54 | 0.60 | 0.58 | 0.59 | 0.08 | NS | NS | NS | NS |
Composition, % | |||||||||
Fat content | 3.6 b | 3.6 b | 3.69 ab | 3.9 a | 0.04 | 0.03 | 0.01 | NS | NS |
Protein content | 3.5 | 3.4 | 3.42 | 3.4 | 0.04 | 0.09 | 0.08 | NS | NS |
NFS | 8.6 | 8.8 | 8.76 | 8.6 | 0.15 | 0.07 | NS | 0.02 | NS |
FEC | 1.2 | 1.1 | 1.1 | 1.1 | 0.11 | NS | NS | NS | NS |
N conversion | 0.26 | 0.25 | 0.25 | 0.24 | 0.02 | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benaouda, M.; González-Ronquillo, M.; Avilés-Nova, F.; Zaragoza-Guerrero, R.; Ku-Vera, J.C.; Castelán-Ortega, O.A. Use of Increasing Levels of Low-Quality Forage in Dairy Cows’ Diets to Regulate Enteric Methane Production in Subtropical Regions. Methane 2024, 3, 149-159. https://doi.org/10.3390/methane3010009
Benaouda M, González-Ronquillo M, Avilés-Nova F, Zaragoza-Guerrero R, Ku-Vera JC, Castelán-Ortega OA. Use of Increasing Levels of Low-Quality Forage in Dairy Cows’ Diets to Regulate Enteric Methane Production in Subtropical Regions. Methane. 2024; 3(1):149-159. https://doi.org/10.3390/methane3010009
Chicago/Turabian StyleBenaouda, Mohammed, Manuel González-Ronquillo, Francisca Avilés-Nova, Reynaldo Zaragoza-Guerrero, Juan Carlos Ku-Vera, and Octavio Alonso Castelán-Ortega. 2024. "Use of Increasing Levels of Low-Quality Forage in Dairy Cows’ Diets to Regulate Enteric Methane Production in Subtropical Regions" Methane 3, no. 1: 149-159. https://doi.org/10.3390/methane3010009
APA StyleBenaouda, M., González-Ronquillo, M., Avilés-Nova, F., Zaragoza-Guerrero, R., Ku-Vera, J. C., & Castelán-Ortega, O. A. (2024). Use of Increasing Levels of Low-Quality Forage in Dairy Cows’ Diets to Regulate Enteric Methane Production in Subtropical Regions. Methane, 3(1), 149-159. https://doi.org/10.3390/methane3010009