Evaluation of Rumen Methane Emission in Sahiwal and Gir Calves Supplemented with Combination of Methanogenic Inhibitors
Abstract
:1. Introduction
2. Results
2.1. Chemical and Mineral Composition of Feed
2.2. Body Weight and Intake of Nutrients
2.3. Apparent Digestibility Coefficients of Nutrients
2.4. Rumen Fermentation Parameters in Different Groups
2.5. Enteric Methane Emission in Different Groups
3. Discussion
3.1. Feed Intake and Digestibility
3.2. Rumen Fermentation Parameters
3.3. Enteric Methane Emission
4. Material and Methods
4.1. Experimental Location
4.2. Experimental Design
4.3. Digestibility Trial
4.4. Sampling, Processing, and Storage of Feed Samples
4.5. Analysis of Feed, Faeces, and Urine Samples
4.6. Rumen Fermentation Parameters
4.6.1. Individual Fatty Acid Estimation (IVFA)
4.6.2. Ammonia and Total Nitrogen Estimation
4.7. Estimation of Methane Production Using SF6 Method
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appuhamy, J.; France, J.; Kebreab, E. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Glob. Chang. Biol. 2016, 22, 3039–3056. [Google Scholar] [CrossRef]
- Choudhury, P.K.; Jena, R.; Tomar, S.K.; Puniya, A.K. Reducing Enteric Methanogenesis through Alternate Hydrogen Sinks in the Rumen. Methane 2022, 1, 320–341. [Google Scholar] [CrossRef]
- Leitanthem, V.K.; Chaudhary, P.; Bhakat, M.; Mohini, M.; Mondal, G. Impact of Moringa oleifera on rumen fermentation and methane emission under in vitro condition. AMB Expr. 2022, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Leitanthem, V.K.; Chaudhary, P.; Maiti, S.; Mohini, M.; Mondal, G. Impact of Moringa oleifera Leaves on Nutrient Utilization, Enteric Methane Emissions, and Performance of Goat Kids. Animals 2023, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Zu, H.; Xu, J.; Cong, Y. Reducing rumen methane emission through regulating rumen microorganisms by adding hydrogen-consuming compounds. Chin. J. Anim. Sci. 2019, 31, 4967–4972. [Google Scholar]
- Guo, Y.; Hassan, F.-U.; Li, M.; Xie, H.; Peng, L.; Tang, Z.; Yang, C. Effect of Sodium Nitrate and Cysteamine on In Vitro Ruminal Fermentation, Amino Acid Metabolism and Microbiota in Buffalo. Microorganisms 2022, 10, 2038. [Google Scholar] [CrossRef]
- Granja-Salcedo, Y.T.; Fernandes, R.M.; Araujo, R.C.D.; Kishi, L.T.; Berchielli, T.T.; Resende, F.D.D.; Berndt, A.; Siqueir, G.R. Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Front. Microbiol. 2019, 10, 614. [Google Scholar] [CrossRef]
- Xie, F.; Tang, Z.; Liang, X.; Wen, C.; Li, M.; Guo, Y.; Peng, K.; Yang, C. Sodium nitrate has no detrimental effect on milk fatty acid profile and rumen bacterial population in water buffaloes. AMB Expr. 2022, 12, 11. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Hellwing, A.L.F.; Brask, M.; Weisbjerg, M.R.; Højberg, O.; Larsen, M.K.; Dijkstra, J.; Erlandsen, E.J.; Lund, P. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J. Dairy Sci. 2016, 99, 6191–6205. [Google Scholar] [CrossRef]
- Abuelfatah, K.; Zuki, A.B.; Goh, Y.; Sazili, A.Q.; Abubakr, A. Effects of feeding whole linseed on ruminal fatty acid composition and microbial population in goats. Anim. Nutr. 2016, 2, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wei, Z.; Guo, B.; Bai, R.; Liu, J.; Li, Y.; Sun, W.; Jiang, X.; Li, X.; Pi, Y. Flaxseed Meal and Its Application in Animal Husbandry: A Review. Agriculture 2022, 12, 2027. [Google Scholar] [CrossRef]
- Parikh, M.; Maddaford, T.G.; Austria, J.A.; Aliani, M.; Netticadan, T.; Pierce, G.N. Dietary Flaxseed as a Strategy for Improving Human Health. Nutrients 2019, 11, 1171. [Google Scholar] [CrossRef] [PubMed]
- Musco, N.; Tudisco, R.; Esposito, G.; Iommelli, P.; Totakul, P.; D’Aniello, B.; Lombardi, P.; Amato, R.; Wanapat, M.; Infascelli, F. Effects of Linseed Supplementation on Milk Production, Composition, Odd- and Branched-Chain Fatty Acids, and on Serum Biochemistry in Cilentana Grazing Goats. Animals 2022, 12, 783. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cortés, P.; Cívico, A.; de la Fuente, M.A.; Núñez Sánchez, N.; Peña Blanco, F.; Martínez Marín, A.L. Effects of dietary concentrate composition and linseed oil supplementation on the milk fatty acid profile of goats. Animal 2018, 12, 2310–2317. [Google Scholar] [CrossRef] [PubMed]
- Arokiyaraj, S.; Stalin, A.; Shin, H. Anti-methanogenic effect of rhubarb (Rheum spp.)—An in silico docking studies on methyl-coenzyme M reductase (MCR). Saudi J. Biol. Sci. 2019, 26, 1458–1462. [Google Scholar] [CrossRef]
- Kholif, S.M.; Morsy, T.A.; Matloup, O.H.; Ebeid, H.M.; Kholif, A.M. Effects of crushed linseed or linseed oil supplementation on performance of dairy goats and fatty acid profile in milk. Life Sci. J. 2015, 12, 94–99. [Google Scholar] [CrossRef]
- Kholif, A.E.; Morsy, T.A.; Abdo, M.M. Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. Anim. Feed. Sci. Technol. 2018, 244, 66–75. [Google Scholar] [CrossRef]
- Kholif, A.E.; Morsy, T.A.; Abd El Tawab, A.M.; Anele, U.Y.; Galyean, M.L. Effect of supplementing diets of Anglo-Nubian goats with soybean and flaxseed oils on lactational performance. J. Agric. Food Chem. 2016, 64, 6163–6170. [Google Scholar] [CrossRef]
- Benchaar, C.; Romero-Pérez, G.A.; Chouinard, P.Y.; Hassanat, F.; Eugene, M.; Petit, H.V.; Côrtes, C. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: Effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition. J. Dairy Sci. 2012, 95, 4578–4590. [Google Scholar] [CrossRef]
- Van Zijderveld, S.M.; Gerrits, W.J.J.; Apajalahti, J.A.; Newbold, J.R.; Dijkstra, J.; Leng, R.A.; Perdok, H.B. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 2010, 93, 5856–5866. [Google Scholar] [CrossRef]
- Nolan, J.V.; Hegarty, R.S.; Hegarty, J.; Godwin, I.R.; Woodgate, R. Effects of dietary nitrate on rumen fermentation, methane production and digesta kinetics in sheep. Anim. Prod. Sci. 2010, 50, 801–806. [Google Scholar] [CrossRef]
- Cristobal-Carballo, O.; McCoard, S.A.; Cookson, A.L.; Ganesh, S.; Lowe, K.; Laven, R.A.; Muetzel, S. Effect of Methane Inhibitors on Ruminal Microbiota During Early Life and Its Relationship With Ruminal Metabolism and Growth in Calves. Front. Microbiol. 2021, 12, 710914. [Google Scholar] [CrossRef] [PubMed]
- Pi, Y.; Ma, L.; Pierce, K.; Wang, H.; Xu, J.; Bu, D. Rubber seed oil and flaxseed oil supplementation alter digestion, ruminal fermentation and rumen fatty acid profile of dairy cows. Animal 2019, 13, 2811–2820. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.J.; Mackie, R.I.; Attwood, G.T.; Janssen, P.H.; McAllister, T.A.; Leahy, S.C. Hydrogen and formate production and utilisation in the rumen and the human colon. Anim. Microbiome 2022, 4, 22. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Fernandez, G.; Denman, S.E.; Yang, C.; Cheung, J.; Mitsumori, M.; Mcsweeney, C.S. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Front. Microbiol. 2016, 7, 1122. [Google Scholar] [CrossRef]
- Ebrahimi, S.H.; Mohini, M.; Singhal, K.K.; Miri, V.H.; Tyagi, A.K. Evaluation of complementary effects of 9,10-anthraquinone and fumaric acid on methanogenesis and ruminal fermentation in vitro. Arch. Anim. Nutr. 2011, 65, 267–277. [Google Scholar] [CrossRef]
- Garcia-Lopez, P.M.; Kung, L.; Odom, J.J.M. In vitro inhibition of microbial methane production by 9,10-anthraquinone. J. Anim. Sci. 1996, 74, 2276–2284. [Google Scholar] [CrossRef]
- Lee, C.; Araujo, R.C.; Koenig, K.M.; Beauchemin, K.A. Effects of encapsulated nitrate on growth performance, carcass characteristics, nitrate residues in tissues, and enteric methane emissions in beef steers: Finishing phase. J. Anim. Sci. 2017, 95, 3712–3726. [Google Scholar]
- Wang, M.; Wang, R.; Xie, T.; Janssen, P.H.; Sun, X.; Beauchemin, K.A.; Tan, Z.; Tan, G.M. Shifts in rumen fermentation and microbiota are associated with dissolved ruminal hydrogen concentrations in lactating dairy cows fed different types of carbohydrates. J. Nutr. 2016, 146, 1714–1721. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Ungerfeld, E.M.; Zhang, X.M.; Long, D.L.; Mao, H.X.; Deng, J.P.; Bannink, A.; Tan, Z.L. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. J. Dairy Sci. 2018, 101, 9789–9799. [Google Scholar] [CrossRef] [PubMed]
- Ivan, M.; Petit, H.V.; Chiquette, J.; Wright, A.-D.G. Rumen fermentation and microbial population in lactating dairy cows receiving diets containing oilseeds rich in C-18 fatty acids. Br. J. Nutr. 2013, 109, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Guyader, J.; Eugène, M.; Meunier, B.; Doreau, M.; Morgavi, D.P.; Silberberg, M.; Rochette, Y.; Gerard, C.; Loncke, C.; Martin, C. Additive methane-mitigating effect between linseed oil and nitrate fed to cattle. J. Anim. Sci. 2015, 93, 3564–3577. [Google Scholar] [CrossRef]
- Newbold, J.R.; van Zijderveld, S.M.; Hulshof, R.B.A.; Fokkink, W.B.; Leng, R.A.; Terencio, P.; Powers, J.; Van Adrichem, P.S.J.; Paton, N.D.; Perdok, H.B. The effect of incremental levels of dietary nitrate on methane emissions in Holstein steers and performance in Nelore bulls. J. Anim. Sci. 2014, 92, 5032–5040. [Google Scholar] [CrossRef]
- Pal, K.; Patra, A.K.; Sahoo, A.; Soren, N.M. Effects of nitrate and fumarate in tree leaves-based diets on nutrient utilization, rumen fermentation, microbial protein supply and blood profiles in sheep. Livest. Sci. 2015, 172, 5–15. [Google Scholar] [CrossRef]
- Klop, G.; Hatew, B.; Bannink, A.; Dijkstra, J. Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2016, 99, 1161–1172. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Martineau, R.; Gervais, R. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production. J. Dairy Sci. 2015, 98, 7993–8008. [Google Scholar] [CrossRef]
- Vargas, J.E.; Andrés, S.; López-Ferreras, L.; Snelling, T.J.; Yáñez-Ruíz, D.R.; García-Estrada, C.; López, S. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Sci. Rep. 2020, 10, 1613. [Google Scholar] [CrossRef] [PubMed]
- van Gastelen, S.; Visker, M.H.P.W.; Edwards, J.E.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Alferink, S.J.J.; Hendriks, W.H.; Bovenhuis, H.; Smidt, H.; Dijkstra, J. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows. J. Dairy Sci. 2017, 100, 8939–8957. [Google Scholar] [CrossRef]
- ICAR. Nutrient requirements of cattle and buffalo. In Nutrient Requirements of Animals; Indian Council of Agricultural Research: New Delhi, Indian, 2013. [Google Scholar]
- AOAC. Association of Official Analytical Chemist. In Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005; Volume 222. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Johnson, K.; Huyler, M.; Westberg, H.; Lamb, B.; Zimmerman, P. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Tech. 1994, 28, 359–362. [Google Scholar] [CrossRef] [PubMed]
Parameter | Oats | Wheat Straw | Concentrate Mixture |
---|---|---|---|
Dry matter (%) | 16.61 | 90.91 | 89.26 |
Organic matter (%) | 90.41 | 88.75 | 89.55 |
Crude protein (%) | 8.76 | 3.57 | 19.32 |
Ether extract (%) | 2.63 | 1.36 | 3.82 |
Neutral detergent fiber (%) | 59.36 | 77.92 | 23.45 |
Acid detergent fiber (%) | 40.05 | 55.33 | 14.17 |
Crude fiber (%) | 27.04 | 40.65 | 3.73 |
Total ash (%) | 9.58 | 11.25 | 10.44 |
Parameter | Sahiwal (C) | Sahiwal (T) | Gir (C) | Gir (T) | p-Value |
---|---|---|---|---|---|
Body weight (kg) | 159.16 ± 14.99 | 161.08 ± 3.55 | 167.82 ± 19.09 | 163.05 ± 10.03 | 0.971 |
Dry Matter intake through oats (kg/d) | 1.30 ± 0.21 | 1.27 ± 0.08 | 1.45 ± 0.20 | 1.38 ± 0.08 | 0.864 |
Dry matter intake through wheat straw (kg/d) | 0.88 ± 0.16 | 0.72 ± 0.09 | 1.07 ± 0.20 | 0.85 ± 0.14 | 0.527 |
Dry matter intake through Concentrate mix. (kg/d) | 1.97 ± 0.03 | 1.98 ± 0.02 | 1.96 ± 0.02 | 1.95 ± 0.02 | 0.809 |
Total dry matter intake (kg/d) | 4.14 ± 0.38 | 3.97 ± 0.14 | 4.48 ± 0.43 | 4.18 ± 0.24 | 0.720 |
Dry matter intake (kg/100 kg BW) | 2.61 ± 0.04 | 2.46 ± 0.05 | 2.70 ± 0.07 | 2.57 ± 0.06 | 0.072 |
Dry matter intake (g/kgW 0.75) | 92.24 ± 2.04 | 87.62 ± 2.15 | 96.30 ± 2.16 | 91.69 ± 2.17 | 0.770 |
Organic matter intake (kg) | 3.71 ± 0.35 | 3.55 ± 0.13 | 4.01 ± 0.39 | 3.74 ± 0.21 | 0.732 |
Organic matter intake (kg/100 kg BW) | 2.34 ± 0.03 | 2.20 ± 0.05 | 2.41 ± 0.06 | 2.30 ± 0.06 | 0.071 |
Crude protein intake (kg/d) | 0.53 ± 0.02 | 0.52 ± 0.01 | 0.55 ± 0.02 | 0.52 ± 0.02 | 0.506 |
Crude protein intake (kg/100 kg BW) | 0.35 ± 0.02 | 0.32 ± 0.00 | 0.34 ± 0.03 | 0.32 ± 0.01 | 0.723 |
Ether extract intake (kg) | 0.13 ± 0.01 | 0.12 ± 0.01 | 0.14 ± 0.01 | 0.12 ± 0.01 | 0.238 |
Ether extract intake (kg/100 kg BW) | 0.08 ± 0.00 | 0.07 ± 0.01 | 0.09 ± 0.00 | 0.07 ± 0.01 | 0.076 |
Neutral detergent fiber intake (kg) | 1.99 ± 0.31 | 1.87 ± 0.12 | 2.21 ± 0.35 | 1.97 ± 0.13 | 0.804 |
Neutral detergent fiber (kg/100 kg BW) | 1.22 ± 0.08 | 1.16 ± 0.06 | 1.28 ± 0.08 | 1.21 ± 0.04 | 0.615 |
Acid detergent fiber intake (kg) | 1.36 ± 0.17 | 1.28 ± 0.06 | 1.51 ± 0.20 | 1.33 ± 0.12 | 0.724 |
Acid detergent fiber (kg/100 kg BW) | 0.84 ± 0.03 | 0.79 ± 0.03 | 0.89 ± 0.03 | 0.81 ± 0.04 | 0.195 |
Crude fiber intake (kg) | 0.76 ± 0.19 | 0.73 ± 0.09 | 0.87 ± 0.20 | 0.83 ± 0.06 | 0.904 |
Crude fiber intake (kg/100 kg BW) | 0.44 ± 0.08 | 0.45 ± 0.05 | 0.48 ± 0.08 | 0.52 ± 0.03 | 0.833 |
Total digestible nutrients intake (kg/d) | 2.52 ± 0.25 | 2.33 ± 0.15 | 2.75 ± 0.30 | 2.50 ± 0.18 | 0.651 |
Total digestible nutrients intake (kg/100 kg BW) | 1.58 ± 0.03 | 1.45 ± 0.07 | 1.64 ± 0.03 | 1.54 ± 0.05 | 0.117 |
Parameter | Sahiwal (C) | Sahiwal (T) | Gir (C) | Gir (T) | p-Value |
---|---|---|---|---|---|
Dry matter (%) | 63.19 ± 1.29 | 61.40 ± 1.75 | 64.28 ± 1.20 | 62.99 ± 2.15 | 0.689 |
Organic matter (%) | 64.31 ± 1.26 | 62.60 ± 1.71 | 64.80 ± 1.26 | 63.77 ± 2.13 | 0.812 |
Crude protein (%) | 63.46 ± 1.23 | 63.37 ± 1.14 | 63.32 ± 0.92 | 62.84 ± 1.94 | 0.989 |
Ether extract (%) | 74.60 ± 0.81 | 73.25 ± 1.04 | 75.30 ± 1.13 | 73.69 ± 1.51 | 0.613 |
Neutral detergent fiber (%) | 55.46 ± 1.85 | 54.43 ± 2.08 | 57.06 ± 2.06 | 54.66 ± 3.26 | 0.867 |
Acid detergent fiber (%) | 42.98 ± 2.14 | 41.47 ± 2.57 | 42.97 ± 2.59 | 40.90 ± 3.55 | 0.934 |
Parameter | Sahiwal (C) | Sahiwal (T) | Gir (C) | Gir (T) | p-Value |
---|---|---|---|---|---|
Acetate (%) | 63.91 ± 0.86 | 62.90 ± 0.60 | 62.79 ± 0.65 | 61.69 ± 0.21 | 0.130 |
Propionate (%) | 19.24 a ± 0.38 | 21.86 b ± 0.47 | 18.75 a ± 0.37 | 21.34 b ± 0.18 | <0.011 |
Butyrate (%) | 12.30 ab ± 0.29 | 11.23 a ± 0.40 | 12.71 b ± 0.37 | 11.68 ab ± 0.29 | 0.033 |
A:P | 3.33 b ± 0.11 | 2.89 a ± 0.08 | 3.35 b ± 0.07 | 2.89 a ± 0.01 | <0.013 |
NH3N (mg/dL) | 18.10 a ± 0.21 | 19.88 ab ± 0.36 | 19.69 ab ± 0.48 | 21.65 b ± 0.94 | 0.034 |
Total N (g/dL) | 72.33 a ± 3.90 | 74.66 a ± 1.47 | 109.66 b ± 5.32 | 112.00 b ± 5.11 | <0.014 |
pH | 6.58 ± 0.02 | 6.57 ± 0.03 | 6.61 ± 0.03 | 6.63 ± 0.04 | 0.485 |
Parameter | Sahiwal (C) | Sahiwal (T) | Gir (C) | Gir (T) | p-Value |
---|---|---|---|---|---|
CH4 (g/d) | 65.39 b ± 2.70 | 51.90 a ± 2.88 (−20.63%) | 74.55 c ± 1.01 (+12.28%) | 61.38 b ± 1.43 (−17.66%) | <0.010 |
CH4 (g/kg DMI) | 16.55 ± 1.72 | 13.18 ± 0.86 (−20.36%) | 17.37 ± 1.54 (+4.72%) | 14.96 ± 1.06 (−13.87%) | 0.162 |
CH4 (g/kg DDMI) | 26.24 ± 2.79 | 21.58 ± 1.56 (−17.76%) | 27.22 ± 2.84 (+3.60%) | 23.90 ± 1.80 (−12.20%) | 0.340 |
CH4 (g/kg OMI) | 18.50 ± 1.95 | 14.72 ± 0.96 (−20.43%) | 19.44 ± 1.78 (+4.84%) | 16.70 ± 1.14 (−14.09%) | 0.163 |
CH4 (g/kg DOMI) | 28.83 ± 3.12 | 23.61 ± 1.68 (−18.10%) | 30.27 ± 3.28 (+4.76%) | 26.33 ± 1.92 (−13.01%) | 0.313 |
CH4 (g/kg CPI) | 123.63 ab ± 7.24 | 100.64 a ± 6.02 (−18.59%) | 135.92 b ± 3.19 (+9.04%) | 118.20 ab ± 6.45 (−13.03%) | 0.040 |
CH4 (g/kg TDNI) | 27.39 ± 2.96 | 22.59 ± 1.59 (−17.52%) | 28.78 ± 3.06 (+4.83%) | 25.14 ± 1.77 (−12.65%) | 0.324 |
CH4 energy loss as % | |||||
Gross energy intake (MJ/d) | 4.95 ± 0.47 | 3.93 ± 0.23 | 5.20 ± 0.41 | 4.46 ± 0.28 | 0.140 |
Digestible energy intake (MJ/d) | 8.08 ab ± 0.65 | 6.44 a ± 0.36 | 8.63 b ± 0.53 | 7.39 ab ± 0.41 | 0.057 |
Metabolizable energy intake (MJ/d) | 9.73 ± 0.79 | 7.76 ± 0.44 | 10.38 ± 0.65 | 8.91 ± 0.50 | 0.062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, R.D.; Chaudhary, P.; Tyagi, N.; Mohini, M.; Mondal, G. Evaluation of Rumen Methane Emission in Sahiwal and Gir Calves Supplemented with Combination of Methanogenic Inhibitors. Methane 2023, 2, 241-251. https://doi.org/10.3390/methane2020016
Reddy RD, Chaudhary P, Tyagi N, Mohini M, Mondal G. Evaluation of Rumen Methane Emission in Sahiwal and Gir Calves Supplemented with Combination of Methanogenic Inhibitors. Methane. 2023; 2(2):241-251. https://doi.org/10.3390/methane2020016
Chicago/Turabian StyleReddy, Rachala Dinesh, Parul Chaudhary, Nitin Tyagi, Madhu Mohini, and Goutam Mondal. 2023. "Evaluation of Rumen Methane Emission in Sahiwal and Gir Calves Supplemented with Combination of Methanogenic Inhibitors" Methane 2, no. 2: 241-251. https://doi.org/10.3390/methane2020016
APA StyleReddy, R. D., Chaudhary, P., Tyagi, N., Mohini, M., & Mondal, G. (2023). Evaluation of Rumen Methane Emission in Sahiwal and Gir Calves Supplemented with Combination of Methanogenic Inhibitors. Methane, 2(2), 241-251. https://doi.org/10.3390/methane2020016