Photocatalytic Methane Conversion over Pd/ZnO Photocatalysts under Mild Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Photocatalytic Tests
3. Materials and Methods
3.1. Photocatalysts Preparation
3.1.1. Alcohol-Reduction Method (ARM)
3.1.2. Borohydride Reduction Method (BRM)
3.2. Characterizations
3.3. Photocatalytic Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lang, J.; Ma, Y.; Wu, X.; Jiang, Y.; Hu, Y.H. Highly efficient light-driven methane coupling under ambient conditions based on an integrated design of a photocatalytic system. Green Chem. 2020, 22, 4669–4675. [Google Scholar] [CrossRef]
- Meng, X.; Cui, X.; Rajan, N.P.; Yu, L.; Deng, D.; Bao, X. Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis. Chem 2019, 5, 2296–2325. [Google Scholar] [CrossRef]
- Yu, L.; Li, D. Photocatalytic methane conversion coupling with hydrogen evolution from water over Pd/TiO2. Catal. Sci. Technol. 2017, 7, 635–640. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Pan, X.; Cortie, D.; Huang, X.; Yi, Z. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Chen, Z.; Ma, Z.; He, S.; Hou, Y.; Li, H.-H.; Yuan, R.; Huang, X.-H.; Wang, X.; Wang, X.; et al. Gold Plasmon-Induced Photocatalytic Dehydrogenative Coupling of Methane to Ethane on Polar Oxide Surfaces. Energy Environ. Sci. 2018, 11, 294–298. [Google Scholar] [CrossRef]
- Song, H.; Meng, X.; Wang, S.; Zhou, W.; Wang, X.; Kako, T.; Ye, J. Direct and Selective Photocatalytic Oxidation of CH4 to Oxygenates with O2 on Cocatalysts/ZnO at Room Temperature in Water. J. Am. Chem. Soc. 2019, 141, 20507–20515. [Google Scholar] [CrossRef]
- Linsebigler, A.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Di, H.; Ordomsky, V.K.; Khodakov, A.Y. Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions. Appl. Catal. B Environ. 2021, 286, 119913. [Google Scholar]
- Li, Q.; Ouyang, Y.; Li, H.; Wang, L.; Zeng, J. Photocatalytic Conversion of Methane: Recent Advancements and Prospects. Angew. Chem. 2022, 629, e202108069. [Google Scholar]
- Gomathi Devi, L.; Kavitha, R. A review on plasmonic metal–TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl. Surf. Sci. 2016, 360, 601–622. [Google Scholar] [CrossRef]
- Yu, L.; Shao, Y.; Li, D. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Appl. Catal. B Environ. 2017, 204, 216–223. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Tang, J. Methane transformation by photocatalysis. Nat. Rev. Mater. 2022, 7, 617–632. [Google Scholar] [CrossRef]
- Gondal, M.A.; Hameed, A.; Yamani, Z.H.; Arfaj, A. Photocatalytic transformation of methane into methanol under UV laser irradiation over WO3, TiO2 and NiO catalysts. Chem. Phys. Lett. 2004, 392, 372–377. [Google Scholar] [CrossRef]
- Taylor, C.E.; Noceti, R.P. New developments in the photocatalytic conversion of methane to methanol. Catal. Today 2000, 55, 259–267. [Google Scholar] [CrossRef]
- Hameed, A.; Ismail, I.M.I.; Aslam, M.; Gondal, M.A. Photocatalytic Conversion of Methane into Methanol: Performance of silver impregnated WO3. Appl. Catal. A Gen. 2014, 470, 327–335. [Google Scholar] [CrossRef]
- László, B.; Baán, K.; Varga, E.; Oszkó, A.; Erdohelhi, A.; Kónya, Z.; Kiss, J. Photo-induced reactions in the CO2-methane system on titanate nanotubes modified with Au and Rh nanoparticles. Appl. Catal. B Environ. 2016, 199, 473–484. [Google Scholar] [CrossRef]
- Cushing, S.K.; Li, J.; Meng, F.; Senty, T.R.; Suri, S.; Zhi, M.; Bristow, A.D.; Wu, N. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041. [Google Scholar] [CrossRef] [PubMed]
- Wada, K.; Yoshida, K.; Takatani, T.; Watanabe, Y. Selective photo-oxidation of light alkanes using solid metal oxide semiconductors. Appl. Catal. A 1993, 99, 21–36. [Google Scholar] [CrossRef]
- Lin, X.-Y.; Li, J.-Y.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Methane conversion over artificial photocatalysts. Catal. Commun. 2021, 159, 106346. [Google Scholar] [CrossRef]
- Jiang, W.; Low, J.; Mao, K.; Duan, D.; Chen, S.; Liu, W.; Pao, C.-W.; Ma, J.; Sang, S.; Shu, C.; et al. Pd-Modified ZnO–Au Enabling Alkoxy Intermediates Formation and Dehydrogenation for Photocatalytic Conversion of Methane to Ethylene. J. Am. Chem. Soc. 2021, 143, 269–278. [Google Scholar] [CrossRef]
- Landi, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Ping, Y.; Jiang, Q. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate. Sci. Rep. 2012, 2, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Luo, S.; Chen, R.; Yu, J.; Xiang, L. Ba-Modified ZnO Nanorods Loaded with Palladium for Highly Sensitive and Rapid Detection of Methane at Low Temperatures. Chemsensors 2022, 10, 346. [Google Scholar] [CrossRef]
- Lin, W.-H.; Chiu, Y.-H.; Shao, P.-W.; Hsu, Y.-J. Metal-Particle-Decorated ZnO Nanocrystals: Photocatalysis and Charge Dynamics. ACS Appl. Mater. Interfaces 2016, 8, 32754–32763. [Google Scholar] [CrossRef]
- Singh, S.P.; Yamamoto, A.; Fudo, E.; Tanaka, A.; Kominami, H.; Yoshida, H. A Pd-Bi Dual-Cocatalyst-Loaded Gallium Oxide Photocatalyst for Selective and Stable Nonoxidative Coupling of Methane. ACS Catal. 2021, 11, 13768–13781. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, C.; Low, J.; Duan, D.; Ma, J.; Jiang, W.; Chen, Y.; Liu, H.; Qi, Z.; Long, R.; et al. High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2. Nat Commun. 2022, 13, 1–9. [Google Scholar] [CrossRef]
- Spinacé, E.V.; Neto, A.; Vasconcelos, T.R.R.; Linardi, M. Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process. J. Power Sources 2004, 137, 17–23. [Google Scholar] [CrossRef]
- Queiroz, C.M.S.; Machado, A.P.; Paiva, A.R.N.; Antoniassi, R.M.; Vaz, J.M.; Spinacé, E.V. Active Pt/CeO2 catalysts prepared by an alcohol-reduction process for low-temperature CO-PROX reaction. Mater. Renew. Sustain. Energy 2019, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Leal, G.B.; Ciotti, L.; Watacabe, B.N.; Silva, D.C.L.; Antoniassi, R.M.; Silva, J.C.; Linardi, M.; Giudici, R.; Vaz, J.M.; Spinacé, E.V. Preparation of Au/TiO2 by a facile method at room temperature for the CO preferential oxidation reaction. Catal. Commun. 2018, 116, 38–42. [Google Scholar] [CrossRef]
Photocatalyst | Photocatalyst Composition | Method of Synthesis | Pd Content (wt. %) | |
---|---|---|---|---|
Nominal | WDXRF | |||
Sample A | Pd (1.00%)/ZnO | ARM | 1.00 | 1.22 |
Sample B | Pd (1.00%)/ZnO | BRM | 1.00 | 1.13 |
Sample C | Pd (0.50%)/ZnO | BRM | 0.50 | 0.55 |
Sample D | Pd (0.25%)/ZnO | BRM | 0.25 | 0.44 |
Photocatalyst | Products’ Formation Rate (µmol·h−1·g−1) | Selectivity (%) | ||||||
---|---|---|---|---|---|---|---|---|
CO2 | C2H4 | C2H6 | CO | CO2 | C2H4 | C2H6 | CO | |
Blank | 9 | - | - | - | 100 | - | - | - |
ZnO Sigma-Aldrich | 113 | - | 5 | 7 | 90.4 | - | 4.0 | 5.6 |
Sample A | 214 | 2 | 56 | 4 | 77.5 | 0.7 | 20.3 | 1.5 |
Sample B | 336 | 14 | 291 | 3 | 52.2 | 2.2 | 45.2 | 0.4 |
Photocatalyst | Products’ Formation Rates (µmol·h−1·g−1) | Selectivity (%) | ||||||
---|---|---|---|---|---|---|---|---|
CO2 | C2H4 | C2H6 | CO | CO2 | C2H4 | C2H6 | CO | |
Sample B | 336 | 14 | 291 | 3 | 52.2 | 2.2 | 45.2 | 0.4 |
Sample C | 770 | 24 | 686 | 4 | 51.9 | 1.6 | 46.2 | 0.3 |
Sample D | 387 | 9 | 272 | 3 | 57.7 | 1.3 | 40.5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pignataro Machado, A.; Amaral Carminati, S.; Ribeiro Januário, E.; Silvaino Ferreira, P.; Moreira Vaz, J.; Spinacé, E.V. Photocatalytic Methane Conversion over Pd/ZnO Photocatalysts under Mild Conditions. Methane 2023, 2, 44-55. https://doi.org/10.3390/methane2010003
Pignataro Machado A, Amaral Carminati S, Ribeiro Januário E, Silvaino Ferreira P, Moreira Vaz J, Spinacé EV. Photocatalytic Methane Conversion over Pd/ZnO Photocatalysts under Mild Conditions. Methane. 2023; 2(1):44-55. https://doi.org/10.3390/methane2010003
Chicago/Turabian StylePignataro Machado, Arthur, Saulo Amaral Carminati, Eliane Ribeiro Januário, Patricia Silvaino Ferreira, Jorge Moreira Vaz, and Estevam Vitorio Spinacé. 2023. "Photocatalytic Methane Conversion over Pd/ZnO Photocatalysts under Mild Conditions" Methane 2, no. 1: 44-55. https://doi.org/10.3390/methane2010003
APA StylePignataro Machado, A., Amaral Carminati, S., Ribeiro Januário, E., Silvaino Ferreira, P., Moreira Vaz, J., & Spinacé, E. V. (2023). Photocatalytic Methane Conversion over Pd/ZnO Photocatalysts under Mild Conditions. Methane, 2(1), 44-55. https://doi.org/10.3390/methane2010003