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Abstract: Here, Pd nanoparticles supported on ZnO were prepared by the alcohol-reduction and
the borohydride-reduction methods, and their efficiency towards the photocatalytic conversion of
methane under mild conditions were evaluated. The resulting Pd/ZnO photocatalysts were char-
acterized by X-ray fluorescence, X-ray diffraction, X-ray photoelectron spectroscopy, UV–Vis, and
transmission electron microscopy. The reactions were performed with the photocatalysts dispersed
in water in a bubbling stream of methane under UV-light illumination. The products formed were
identified and quantified by gas chromatography (GC-FID/TCD/MSD). The principal products
formed were C2H6 and CO2 with minor quantities of C2H4 and CO. No H2 production was ob-
served. The preparation methods influenced the size and dispersion of Pd nanoparticles on the ZnO,
affecting the performance of the photocatalysts. The best performance was observed for the photo-
catalyst prepared by borohydride reduction with 0.5 wt% of Pd, reaching a C2H6 production rate of
686 µmol·h−1·g−1 and a C2H6 selectivity of 46%.
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1. Introduction

Methane (CH4) is the main component of natural gas and has been recently used as a
fuel due to its higher mass heat compared with other hydrocarbons; it is also an important
raw material in many industrial chemical processes [1,2]. However, the CH4 conversion in
these processes require severe conditions of temperature and pressure in order to promote
the breaking of the C-H bond, which tends to disrupt the CH4 conversion processes, leading
to carbon further undergoing oxidation towards undesired products.

The conversion of CH4 into value-added multicarbon (C2+) compounds under mild
conditions has aroused worldwide interest over the past years, and emerges as an appeal-
ing approach to generate desired products while avoiding further oxidation of CH4 and
C2 hydrocarbon products to CO2. However, CH4 conversion under mild conditions is
a challenge given the energy required for its activation, which has received increasing
attention, especially to produce ethane (C2H6) and ethylene (C2H4) [3–6].

The advantage of using photocatalytic reactions is the possibility of promoting even
difficult reactions close to room temperature, since the photoenergy provides sufficient
activation energy for the chemical reaction [7–10]. An interesting photocatalytic process was
described by Li and collaborators [3,11], which has the advantage of combining the CH4
conversion and the hydrogen (H2) evolution from water, simultaneously. In this process,
by employing TiO2 as a photocatalyst, neither methane conversion nor H2 production
were observed. On the other hand, the deposition of Pt or Pd nanoparticles on TiO2
greatly improved the production of ethane and hydrogen; this is because the Pd/TiO2
photocatalyst was more selective for ethane production than the Pt/TiO2 photocatalysts,
while the latter was more active for H2 production.
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The conversion of methane by photocatalytic processes has been extensively inves-
tigated through different reaction conditions, and has mainly used semiconductor and
hybrid metal/semiconductor materials as photocatalysts [12]. In this way, extensive work
has been devoted to finding a prospective material that combines all the requirements for
efficient mild and direct conversion of methane into high value-added products, which still
remains an expressive challenge [5,13–19]. Arguably, ZnO has been one of the most com-
monly used wide-bandgap n-type semiconductor for photocatalytic CH4 conversion [12].
It has been demonstrated that Zn+-O− pairs act as surface active sites, where O− centers
are responsible for breaking C-H bonds in CH4, while Zn2+ sites assist the C-C coupling.
Nevertheless, pure ZnO is not efficient for CH4 conversion, where the high recombination
rate of photoinduced hole/electron pairs is the major drawback [12,20].

Herein, this work aimed to compare two methods of Pd deposition over ZnO nanopar-
ticles, and to study their effects on the methane conversion in water in a flow reactor under
mild conditions. In this way, it was possible to obtain Pd nanoparticles with different sizes
and dispersions on the ZnO semiconductor and to observe the influence of these variables
in the photocatalytic CH4 conversion. This work may shed light on the design of modified
ZnO photocatalysts to achieve higher efficiency towards the desired products.

2. Results and Discussion
2.1. Characterization of Catalysts

Table 1 presents the amount of Pd deposited on the ZnO surface determined by the
wavelength dispersive X-ray fluorescence (WDXRF). Since the Pd/ZnO (1.00%) photo-
catalyst synthesized by BRM presented better photoactivity for CH4 conversion than the
material prepared by ARM, Pd/ZnO photocatalysts with different concentration were
also produced through BRM in order to observe its influence on the photoactivity. For all
samples, the Pd content is close to the nominal values.

Table 1. Pd content determined by wavelength dispersive X-ray fluorescence.

Photocatalyst Photocatalyst
Composition

Method of
Synthesis

Pd Content (wt. %)

Nominal WDXRF

Sample A Pd (1.00%)/ZnO ARM 1.00 1.22
Sample B Pd (1.00%)/ZnO BRM 1.00 1.13
Sample C Pd (0.50%)/ZnO BRM 0.50 0.55
Sample D Pd (0.25%)/ZnO BRM 0.25 0.44

Figure 1a shows the XRD patterns of commercial ZnO and the samples A and B.
According to the crystallography open database (COD), the (100), (002), (101), (102), (110),
(103), (200), (112), (201), and (204) diffraction peaks belong to the hexagonal crystal structure
of ZnO (CARD 00-900-4180). Given the low Pd content of the samples, no peaks different
from those found in the ZnO matrix were observed in the XRD patterns of the as-prepared
photocatalysts. This can be assigned to the broadening of Pd peaks caused by the small
size of the nanoparticles, as well as their low concentration in the material [3,11].

The synthesized photocatalysts were also characterized by UV–vis diffuse reflectance
spectroscopy (DRS), and the samples spectra are shown in Figure 1b. It is possible to notice
that the ZnO photocatalyst activation occurs around 380 nm of UV light. For the bandgap
energy calculations, the reflectance spectra were converted using the Kulbelk–Munk func-
tion as the ideal model for relating the reflectance and absorbance in powder samples [21].
The Tauc plot method was performed considering the direct allowed transition of ZnO [22].
The pristine semiconductor presented a bandgap energy of 3.31 eV, and no change was
observed in the bandgap of Pd-containing samples compared to pure semiconductor. This
was related to the fact that Pd is only deposited on the surface of ZnO, and no structural
change occurs in the bulk material, which is in agreement with the XRD results obtained.
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Figure 2 shows the TEM images of pure ZnO. Nanorods and hexagonal nanoparticles
varying their size in the range of 20 to 200 nm could be identified, but no uniform size and
morphology were present among the ZnO nanoparticles’ structure.
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Figure 2. (a–c) TEM images of pure ZnO nanoparticles.

Figure 3 shows the TEM images of samples A and B synthesized by ARM (Figure 3a,b)
and BRM (Figure 3c,d), respectively. Comparing the images of pure ZnO with those of the
synthesized photocatalysts, the appearance of black dots on the surface of ZnO, together
with the data obtained by WDXRF, confirm that both methods of synthesis were successful
for the deposition of Pd nanoparticles on the ZnO semiconductor surface.

Importantly, by analyzing the TEM images of Sample A (Figure 3a,b), it can be ob-
served that the Pd nanoparticles are more agglomerated when compared to Sample B
(Figure 3c,d). The average nanoparticles sizes are greater in Sample A (Figure 4a) than
Sample B (Figure 4b). Thus, the ARM method produced larger and more agglomerated Pd
nanoparticles, while the BRM method led to smaller and more dispersed Pd nanoparticles
on the ZnO surface. Such differences between the materials produced by the different
methods could be associated with the presence of the citric acid as a dispersing agent in the
BRM [23].
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The XPS analysis was used to determine the chemical state of the elements in the
samples before and after irradiation, as shown in Figure 5. Figure 5a shows the Zn 2p3/2
and 2p1/2 region of Sample B before irradiation, corresponding to 1021.41 eV and 1044.53 eV
binding energies, respectively. For the same sample after photocatalytic testing, the binding
energies show a slight shift to 1021.50 eV and 1044.62 eV, respectively [24]. The difference
of ~23.1 eV between them indicates the presence of Zn in a +2 oxidation state even before
or after the irradiation experiments. The peaks located at 335.48 and 340.76 eV are assigned
to Pd 3d in its Pd0 chemical state, with no +2 and +4 oxidation states, respectively. After
irradiation, these peaks shifted to 335.14 and 340.38 eV, respectively, and the presence of the
Pd +2 species was observed, although most of the Pd existed in oxidation state 0. The XRD
(Figure 1a) also confirms that the ZnO structure was preserved after irradiation, showing
that the photocatalyst has good stability under reaction conditions.
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2.2. Photocatalytic Tests

The photocatalytic activity of ZnO and Pd/ZnO photocatalysts are shown in Figure 6,
where the graphs represent the percentages of the different products present in the CH4
flow rate on the ordinate axis and the chromatographic injections performed during the
experiments on the abscissa axis. Among the 12 chromatographic injections performed
during the photoactivity analysis, the first was discarded. The subsequent two injections
were collected while the light source remained switched off, whereas injections three to
nine were performed upon illumination. Before the last two injections, the light was turned
off again. Initially, a blank experiment (Figure 6a), using only ultrapure water and CH4,
was performed in order to observe possible photochemical reactions that may occur in the
system. In this case, a very slight increase in the production of CO2, C2H6, and C2H4 was
observed upon photoirradiation. This was ascribed to the photochemical reactions that CH4
can undergo, although the amounts of evolved products were extremely low. The addition
of pure ZnO to the system (Figure 6b) increased the CO2 production by almost 12-fold
upon photoirradiation, while small amounts of C2H6 and CO were formed. This behavior
was associated with the photocatalytic activity of the ZnO when photoexcited across the
band gap, promoting the formation of electron (e−)/hole (h+) pairs. These species can then
promote the formation of methyl radicals (•CH3) through the direct interaction of CH4 with
holes, or indirectly through its interaction with other radicals resulting from photocatalytic
reactions, such as hydroxyl radicals (•OH) produced from water. The formation of •CH3
is a crucial step in the photocatalytic conversion of CH4 to C2H6, as it allows coupling
reactions between these radicals to occur [19]. The Pd/ZnO photocatalyst synthesized by
ARM (Sample A), when compared to pure ZnO, showed enhanced photoactivity, leading
to an increase in the CO2 and C2H6 production, as it can be seen in Figure 6c. The Pd/ZnO
(1.0%) photocatalyst synthesized by BRM (Sample B) showed enhanced photoactivity
compared to Sample A and its products’ formation can be seen in Figure 6d.

The products’ formation rates (µmol·h−1·g−1) of the blank experiment using ZnO and
Pd/ZnO photocatalysts are shown in Table 2.

Table 2. Products’ formation rates of ZnO and Pd (1.0%)/ZnO photocatalysts synthesized by ARM
and BRM methods.

Photocatalyst
Products’ Formation Rate

(µmol·h−1·g−1)
Selectivity

(%)

CO2 C2H4 C2H6 CO CO2 C2H4 C2H6 CO

Blank 9 - - - 100 - - -
ZnO Sigma-Aldrich 113 - 5 7 90.4 - 4.0 5.6

Sample A 214 2 56 4 77.5 0.7 20.3 1.5
Sample B 336 14 291 3 52.2 2.2 45.2 0.4

The addition of Pd to the ZnO semiconductor increased the products; formation rates
and strongly modified the selectivity when compared to the bare ZnO photocatalyst. In
addition, it is important to highlight that the size and distribution of Pd nanoparticles
on ZnO also influence the quantity and selectivity of the evolved products. The best
performance was observed for Sample B with a C2H6 formation rate of four times greater
than that of Sample A and with a C2H6 selectivity of 45% while, for Sample A, it was
only 20%.

Therefore, Pd/ZnO photocatalysts with different Pd wt% loadings were prepared by
BRM. The products’ formation rate (µmol·h−1·g−1) are shown in Table 3.
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From the data in Table 3, it is noticeable that the amount of Pd deposited on the
ZnO surface affects the products’ formation rates, with the amount of 0.5 wt% (Sample
C) showing the best performance. It is worth mentioning that an additional increase
in the Pd charge causes a decrease in the performance and probably contributes to the
recombination process of the charge carriers instead of promoting charge separation [25].
In this manner, Sample C showed a C2H6 formation rate of 686 µmol·h−1·g−1, a C2H4
formation rate of 24 µmol·h−1·g−1, and a C2H6 selectivity of 46%. For all Pd/ZnO samples
prepared through BRM, a C2H6: CO2 molar ratio of approximately 1:1 was observed.
Using Pd/TiO2 as the photocatalyst, Li and Yu [3] achieved a C2H6 formation rate of
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55 µmol·h−1·g−1 with a C2H6: CO2 molar ratio of approximately 2.5:1 and a H2 production
rate of 122 µmol·h−1·g−1. Curiously, no H2 production was observed for ZnO and for all
Pd/ZnO photocatalysts. On the other hand, when Pd nanoparticles were supported on
TiO2 and Ga2O3 by ARM or BRM methods and tested for CH4 conversion in the same
conditions, the formation of H2 was observed in appreciable quantities (in the range of
10 to 30 mmol·h−1·g−1). A similar result was recently described for the photocatalytic
non-oxidative coupling of methane using ZnO as the photocatalyst, which showed C2H6
production but no production of H2, while H2 formation was observed for TiO2 and
Ga2O3 photocatalysts. The authors suggest that ZnO was possibly reduced by H2 upon
photoirradiation [26].

Table 3. Products’ formation rates of Pd/ZnO photocatalysts synthesized by BRM with different Pd
wt% loading.

Photocatalyst
Products’ Formation Rates

(µmol·h−1·g−1)
Selectivity

(%)

CO2 C2H4 C2H6 CO CO2 C2H4 C2H6 CO

Sample B 336 14 291 3 52.2 2.2 45.2 0.4
Sample C 770 24 686 4 51.9 1.6 46.2 0.3
Sample D 387 9 272 3 57.7 1.3 40.5 0.5

Li and Yu [3] proposed a mechanism for Pd/TiO2 photocatalysts. Initially, the water
was activated by holes, forming the •OH radicals, which reacted with CH4 molecules,
forming •CH3 radicals that were responsible for the formation of the C2 products. It was
also inferred that the H2 production comes primarily from water molecules and that Pd
acts as an electron trap to avoid its recombination with the hole, and as a center for CH4
activation. Recently, the generation of •OH radicals in metal nanoparticles (Pt, Pd, Au, or
Ag) supported on TiO2 and ZnO was measured by photoluminescence [6]. The authors
showed that metal/TiO2 photocatalysts were more efficient than metal/ZnO in producing
•OH radicals [6]. Based on these results, it is possible that in our system using Pd/ZnO
photocatalysts, the CH4 is preferably activated directly by the holes rather than indirectly
by •OH radicals, as shown in Figure 7.
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Our results showed that the Pd/ZnO photocatalyst with smaller Pd nanoparticles
sizes and good dispersion on a ZnO semiconductor seems to contribute to a more efficient
separation of photogenerated charges (holes and electrons), contributing to a greater
efficiency in the system, which enhances the C2H6 formation. Recently, a high-performance
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Pd/TiO2 photocatalyst, where TiO2 was decorated with Pd single atoms highly dispersed
on TiO2, was described for the photocatalytic non-oxidative conversion of methane to C2H6,
resulting in a production rate of 910 µmol·h−1·g−1 and suppressing the over-oxidation to
CO2 [27]. Compared to the photocatalyst in which Pd nanoparticles were dispersed on
TiO2, the single-atom photocatalyst was much more active, demonstrating that the size
and the dispersion of the metallic atoms on the semiconductor can strongly influence the
activity and selectivity of these materials [27].

3. Materials and Methods
3.1. Photocatalysts Preparation

All chemicals were of analytical grade and used without any further purification. The
Pd/ZnO photocatalysts were prepared by the alcohol-reduction method (ARM) [28,29] and
by the borohydride reduction method (BRM) [30].

For both methods of synthesis, the prepared Pd nanoparticles were deposited over
nanosized commercial ZnO obtained from Saint Louis—USA Sigma-Aldrich (≤100 nm
particle size). An aqueous solution of sodium tetrachloropalladate (Na2PdCl4·3H2O) was
used as a Pd precursor.

3.1.1. Alcohol-Reduction Method (ARM)

The ARM utilizes ethylene glycol (EG) as a reducing agent [28,29]. Briefly, proper
amounts of Pd precursor and ZnO were dispersed in an aqueous solution containing EG in
a ratio of 3:1 EG/H2O. The reaction was refluxed (175 ◦C) under vigorous stirring for 1 h.
The solid was separated by centrifugation, washed several times with distilled water, and
dried at 80 ◦C. The resulting material was ground to a powdery appearance.

3.1.2. Borohydride Reduction Method (BRM)

The BRM utilizes sodium borohydride as a reducing agent and sodium citrate as a
dispersing agent [30]. The ZnO was dispersed in an aqueous solution containing a proper
amount of Pd precursor and sodium citrate (Pd:citrate ratio 1:3). An aqueous solution
of sodium borohydride was dropped into the mixture under vigorous stirring at room
temperature. The reaction was maintained under stirring for 24 h. The dispersed solid was
separated by centrifugation, washed several times with distilled water, and dried at 80 ◦C.
The resulting material was ground to a powdery appearance.

3.2. Characterizations

The Pd content (wt%) was determined by wavelength dispersive X-ray fluorescence
(WDXRF), performed using a Rigaku Supermini200 spectrometer with a 50 kV Palladium
anode X-ray tube with 200 W of potency and a zirconium bean filter. Then, UV–Vis
diffuse reflectance spectroscopy analysis was carried out using a Varian Cary50 UV-Vis
Spectrophotometer with a xenonium lamp and barium sulfate (BaSO4) as a blank pattern.
The X-ray diffraction analysis was performed using a Bruker D8 Advance 3 kW instrument
using a copper tube and a scintillation detector. Transmission electron microscopy images
of the synthesized materials were obtained from a 200 keV JEOL JEM 2010. The X-ray
photoelectron spectroscopy (XPS) experiments were carried out with K-alpha surface
analysis (Thermo Scientific, Waltham, MA, USA) equipment with an Al-Kα X-ray source
(1486.6 eV) and a flood gun.

3.3. Photocatalytic Tests

The photocatalytic activity measurements were carried out in a 250 mL Ace photo-
chemical reactor coupled to the GC-FID/TCD/MSD system. The photocatalysts were
dispersed in 250 mL of ultrapure water and CH4 was bubbled through in a flow ratio of
25 mL min−1, while a 450 W Hg lamp was used as a light source. In addition, two cooling
systems were used, one coupled to a condenser at the output of the photoreactor that was
connected to the GC system to condense the water (15 ◦C), and the other for cooling the Hg
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lamp (40 ◦C). In this way, the photocatalytic reactions were carried out at a temperature
close to 60 ◦C.

The gas chromatographic (GC) model utilized was Agilent 7890B coupled to MSD
5977B. The equipment has a thermal conductivity detector (TCD), methanizer (MET), and
flame ionization detector (FID), as well as a quadrupole mass spectrometer detector (MSD).
Two different columns were used in order to separate the reaction products, namely a plot
U and a molecular sieve 5 Å column. Twelve injections were performed in a total of 7 h of
analysis, each one of 33 min. The first 3 injections took place with the light switched off,
while injections 4 to 10 took place with the light switched on; in the last 2 injections the
light was turned off again, so it was possible to monitor the influence of light on the system.
Prior to testing the activity of the catalyst, calibration curves were produced to quantify
CO2, C2H4, C2H6, C3H8, C4H10, H2, CH4, and CO. The detection limits were 0.001% for
CO2 and C2-C4; 0.008% for CH4 and CO, and 0.3% for H2.

Two certified gas mixtures containing some of the expected products (carbon dioxide,
ethane, ethene, propane, butane, carbon monoxide) at different known concentrations
were used to build a calibration curve in order to analyze the products formed during the
photocatalytic reaction.

The selectivity was calculated according to the following equation:

Product selectivity =
n product

n total o f the products f ormed
× 100% (1)

where n represents the molar amounts.

4. Conclusions

Here, Pd/ZnO photocatalysts dispersed in water in a bubbling stream of methane
under UV-light illumination were shown to be active for CH4 conversion. The main
products formed were C2H6 and CO2, with minor quantities of C2H4 and CO; however,
no H2 production was observed. The photocatalyst preparation methods influenced the
size and dispersion of Pd nanoparticles on the ZnO support, playing a pivotal role in the
quantity and selectivity of the products formed. The Pd/TiO2 photocatalysts with smaller
Pd particle sizes, good dispersion, and an optimal Pd content were shown to be more active
and selective for C2H6 production.
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