Optimization of Methane Feed and N:C Ratio for Biomass and Polyhydroxybutyrate Production by the Alphaproteobacterial Methanotroph Methylocystis sp. Rockwell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media Preparation and Bacterial Cultivation
2.2. Composition of Headspace Gases
2.3. Experimental Design and Statistical Analysis
2.4. PHB Quantification
3. Results
3.1. One-Variable-at-a-Time (OVAT) Analysis of Biomass and PHB Production
3.2. Analysis of Response Surface Methodology (RSM) for Biomass and PHB Production
3.3. Validation of Multi-Objective Optimal Conditions (MOOC)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cantera, S.; Munoz, R.; Lebrero, R.; Lopez, J.C.; Rodriguez, Y.; Garcia-Encina, P.A. Technologies for the bioconversion of methane into more valuable products. Curr. Opin. Biotechnol. 2018, 50, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Pfluger, A.R.; Wu, W.M.; Pieja, A.J.; Wan, J.; Rostkowski, K.H.; Criddle, C.S. Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresoure Technol. 2011, 102, 9919–9926. [Google Scholar] [CrossRef]
- Pieja, A.J.; Rostkowski, K.H.; Criddle, C.S. Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic Proteobacteria. Microb. Ecol. 2011, 62, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Rostkowski, K.H.; Pfluger, A.R.; Criddle, C.S. Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresoure Technol. 2013, 132, 71–77. [Google Scholar] [CrossRef]
- Stein, L.Y. Proteobacterial Methanotrophs, Methylotrophs, and Nitrogen. In Methane Biocatalysis: Paving the Way to Sustainability; Kalyuzhnaya, M.G., Xing, X.-H., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 57–66. [Google Scholar]
- Lazic, M.; Sugden, S.; Sauvageau, D.; Stein, L.Y. Metabolome profiles of the alphaproteobacterial methanotroph Methylocystis sp. Rockwell in response to carbon and nitrogen source. FEMS Microbiol. Lett. 2021, 368, 8. [Google Scholar] [CrossRef]
- Tays, C.; Guarnieri, M.T.; Sauvageau, D.; Stein, L.Y. Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Front. Microbiol. 2018, 9, 2239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Wang, X.W.; Zhou, J.T.; Zhang, Y. Enrichments of methanotrophic-heterotrophic cultures with high poly-beta-hydroxybutyrate (PHB) accumulation capacities. J. Environ. Sci. 2018, 65, 133–143. [Google Scholar] [CrossRef]
- Zaldívar-Carrillo, J.A.; Stein, L.Y.; Sauvageau, D. Defining nutrient combinations for optimal growth and polyhydroxybutyrate production by Methylosinus trichosporium OB3b using response surface methodology. Front. Microbiol. 2018, 9, 1513. [Google Scholar] [CrossRef] [PubMed]
- Nyerges, G.; Han, S.K.; Stein, L.Y. Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl. Environ. Microbiol. 2010, 76, 5648–5651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyerges, G.; Stein, L.Y. Ammonia co-metabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol. Lett. 2009, 297, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Lazic, M.; Gudneppanavar, R.; Whiddon, K.; Sauvageau, D.; Stein, L.Y.; Konopka, M. In vivo quantification of polyhydroxybutyrate (PHB) in the alphaproteobacterial methanotroph, Methylocystis sp. Rockwell. Appl. Microbiol. Biotechnol. 2022, 106, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Deb, K. Multi-objective Optimization. In Search Methodologies; Burke, E.K., Kendall, G., Eds.; Springer: Boston, MA, USA, 2014; pp. 403–449. [Google Scholar] [CrossRef]
- Stein, L.Y.; Bringel, F.; DiSpirito, A.A.; Han, S.; Jetten, M.S.M.; Kalyuzhnaya, M.G.; Kits, K.D.; Klotz, M.G.; den Camp, H.; Semrau, J.D.; et al. Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. strain Rockwell (ATCC 49242). J. Bacteriol. 2011, 193, 2668–2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittenbury, R.K.; Phillips, C.; Wilkinson, J.F. Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology 1970, 61, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4 ed.; Wiley: New York, NY, USA, 2016. [Google Scholar]
- Sen, G.A. Application of Full Factorial Experimental Design and Response Surface Methodology for Chromite Beneficiation by Knelson Concentrator. Minerals 2016, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.F.; Tukey, J.W. Transformations related to the angular and the square root. Ann. Math. Stat. 1950, 21, 607–611. [Google Scholar] [CrossRef]
- Iwueze, I.S.; Johnson, O. Covariance analysis of the squares of the purely diagonal bilinear time series models. Braz. J. Probab. Stat. 2011, 25, 90–98. [Google Scholar] [CrossRef]
- Zhang, T.T.; Zhou, J.T.; Wang, X.W.; Zhang, Y. Poly-beta-hydroxybutyrate Production by Methylosinus trichosporium OB3b at Different Gas-phase Conditions. Iran. J. Biotechnol. 2019, 17, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Khosravi-Darani, K.; Mokhtari, Z.B.; Amai, T.; Tanaka, K. Microbial production of poly(hydroxybutyrate) from C-1 carbon sources. Appl. Microbiol. Biotechnol. 2013, 97, 1407–1424. [Google Scholar] [CrossRef]
- Bordel, S.; Rojas, A.; Munoz, R. Reconstruction of a Genome Scale Metabolic Model of the polyhydroxybutyrate producing methanotroph Methylocystis parvus OBBP. Microb. Cell Fact. 2019, 18, 104. [Google Scholar] [CrossRef]
- Juengert, J.R.; Borisova, M.; Mayer, C.; Wolz, C.; Brigham, C.J.; Sinskey, A.J.; Jendrossek, D. Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16. Appl. Environ. Microbiol. 2017, 83, e00755-17. [Google Scholar] [CrossRef] [Green Version]
- Pieja, A.J.; Sundstrom, E.R.; Criddle, C.S. Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresoure Technol. 2012, 107, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Pieja, A.J.; Sundstrom, E.R.; Criddle, C.S. Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl. Environ. Microbiol. 2011, 77, 6012–6019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordel, S.; Rodriguez, Y.; Hakobyan, A.; Rodriguez, E.; Lebrero, R.; Munoz, R. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis. Metab. Eng. 2019, 54, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.X.; Xin, J.Y.; Chen, L.L.; Song, H.; Xia, C.U. Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. J. Nat. Gas Chem. 2008, 17, 103–109. [Google Scholar] [CrossRef]
- Sundstrom, E.R.; Criddle, C.S. Optimization of Methanotrophic Growth and Production of Poly(3-Hydroxybutyrate) in a High-Throughput Microbioreactor System. Appl. Environ. Microbiol. 2015, 81, 4767–4773. [Google Scholar] [CrossRef] [PubMed]
KNO3 (mM) | NH4Cl (mM) | CH4 (mmol) | Final OD540 | Dry wt. (mg/L) | PHB (mg/L) | PHB Cell Content (%DW) |
---|---|---|---|---|---|---|
10 | - | 0 | 0.009 ± 0.001 | 5.33 ± 2.31 | 0.00 | 0.00 |
10 | - | 2 | 0.266 ± 0.028 | 157.33 ± 8.33 | 0.00 | 0.00 |
10 | - | 4 | 0.417 ± 0.051 | 270.67 ± 22.03 | 9.16 ± 3.33 | 3.47 ± 1.54 |
10 | - | 6 | 0.596 ± 0.012 | 378.67 ± 43.88 | 41.70 ± 16.51 | 11.20 ± 4.89 |
10 | - | 8 | 0.558 ± 0.098 | 340 ± 24 | 56.75 ± 6.81 | 16.81 ± 2.98 |
10 | - | 10 | 0.550 ± 0.045 | 334.67 ± 32.33 | 35.28 ± 10.21 | 10.45 ± 2.49 |
- | 10 | 0 | 0.014 ± 0.001 | 5.33 ± 2.31 | 0.00 | 0.00 |
- | 10 | 2 | 0.393 ± 0.015 | 232 ± 10.58 | 19.83 ± 1.08 | 8.55 ± 0.16 |
- | 10 | 4 | 0.596 ± 0.003 | 320 ± 20.78 | 50.69 ± 13.72 | 15.90 ± 4.33 |
- | 10 | 6 | 0.679 ± 0.004 | 461.33 ± 26.63 | 12.85 ± 1.31 | 2.86 ± 0.41 |
- | 10 | 8 | 0.626 ± 0.004 | 397.33 ± 8.33 | 12.09 ± 2.34 | 3.04 ± 0.54 |
- | 10 | 10 | 0.601 ± 0.013 | 325.33 ± 33.31 | 11.95 ± 0.92 | 3.72 ± 0.70 |
CH4 (mmol) | NH4Cl (mM) | KNO3 (mM) | Final OD540 | Dry wt. (mg/L) | PHB (mg/L) | PHB Cell Content (%DW) |
---|---|---|---|---|---|---|
6 | - | 0 | 0.153 ± 0.016 | 81.33 ± 14.05 | 24.19 ± 6.60 | 30 ± 7.94 |
6 | - | 0.5 | 0.470 ± 0.013 | 274 ± 8.49 | 96.69 ± 2.67 | 35.32 ± 2.07 |
6 | - | 1 | 0.612 ± 0.025 | 408 ± 6.93 | 65.06 ± 29.82 | 16.03 ± 7.60 |
6 | - | 2 | 0.635 ± 0.015 | 416 ± 33.94 | 18.33 ± 2.82 | 4.39 ± 0.32 |
6 | - | 4 | 0.685 ± 0.045 | 466 ± 59.40 | 7.34 ± 3.24 | 1.63 ± 0.90 |
6 | - | 8 | 0.731 ± 0.012 | 469.33 ± 8.33 | 10.83 ± 1.17 | 2.31 ± 0.29 |
6 | 0 | - | 0.153 ± 0.016 | 81.33 ± 14.05 | 24.19 ± 6.60 | 30 ± 7.94 |
6 | 0.5 | - | 0.424 ± 0.015 | 276 ±10.58 | 113.31 ± 9.78 | 41.15 ± 4.63 |
6 | 1 | - | 0.621 ± 0.050 | 404 ± 31.24 | 196.12 ± 29.75 | 48.54 ± 6.55 |
6 | 2 | - | 0.668 ± 0.015 | 457.33 ± 25.40 | 133.62 ± 26.24 | 29.20 ± 5.24 |
6 | 4 | - | 0.720 ± 0.031 | 462.67 ± 25.72 | 97.15 ± 12.67 | 21 ± 2.37 |
6 | 8 | - | 0.742 ± 0.003 | 465.33 ± 9.24 | 93.33 ± 5.83 | 20.05 ± 1.20 |
Optimization | N-Source | N:C Ratio | Methane (mmol) | Biomass Yield (mg/L) | PHB Yield (mg/L) | PHB Content (% Cell DW) | |||
---|---|---|---|---|---|---|---|---|---|
Projection | Experimental | Projection | Experimental | Projection | Experimental | ||||
1- %PHB cell content, PHB conc. | NMS | 0.016 | 4.88 | 352.46 | 372 ± 20 | 124.44 | 173.65 ± 13.10 | 36.08 | 46.79 ± 4.74 |
AMS | 0.016 | 6.28 | 364.84 | 372 ± 38.15 | 158 | 196.93 ± 12.80 | 44.50 | 53.11 ± 3.03 | |
2- Biomass, %PHB cell content, PHB conc. | NMS | 0.017 | 6.07 | 414.42 | 431.67 ± 34.03 | 130.56 | 102.04 ± 2.88 | 32.58 | 23.73 ± 1.83 |
AMS | 0.019 | 6.88 | 408.66 | 488.33 ± 7.64 | 162.88 | 164.44 ± 3.21 | 41.72 | 33.68 ± 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, H.K.; Sauvageau, D.; Stein, L.Y. Optimization of Methane Feed and N:C Ratio for Biomass and Polyhydroxybutyrate Production by the Alphaproteobacterial Methanotroph Methylocystis sp. Rockwell. Methane 2022, 1, 355-364. https://doi.org/10.3390/methane1040026
Sharma HK, Sauvageau D, Stein LY. Optimization of Methane Feed and N:C Ratio for Biomass and Polyhydroxybutyrate Production by the Alphaproteobacterial Methanotroph Methylocystis sp. Rockwell. Methane. 2022; 1(4):355-364. https://doi.org/10.3390/methane1040026
Chicago/Turabian StyleSharma, Hem K., Dominic Sauvageau, and Lisa Y. Stein. 2022. "Optimization of Methane Feed and N:C Ratio for Biomass and Polyhydroxybutyrate Production by the Alphaproteobacterial Methanotroph Methylocystis sp. Rockwell" Methane 1, no. 4: 355-364. https://doi.org/10.3390/methane1040026
APA StyleSharma, H. K., Sauvageau, D., & Stein, L. Y. (2022). Optimization of Methane Feed and N:C Ratio for Biomass and Polyhydroxybutyrate Production by the Alphaproteobacterial Methanotroph Methylocystis sp. Rockwell. Methane, 1(4), 355-364. https://doi.org/10.3390/methane1040026