Biomethanation of Crop Residues to Combat Stubble Burning in India: Design and Simulation Using ADM1 Mathematical Model
Abstract
:1. Introduction
1.1. Consequences of Stubble Burning
1.2. Biogas/Biomethane from Stubble
2. Results and Discussion
2.1. Methane Production with Rice-Crop Residue
2.2. Methane Production with Wheat Straw
2.3. Methane Production with Crop Residues from Maize, Cotton and Sugarcane
3. Materials and Methods
3.1. Mathematical Modelling
3.2. The Anaerobic Digestion Model (ADM1)
3.3. Design of the Biogas Plant
3.4. Model Input Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raeboline, A.; Eliazer, L.; Ravichandran, K.; Antony, U. The impact of the Green Revolution on indigenous crops of India. J. Ethn. Foods 2019, 6, 8. [Google Scholar]
- Devi, S.; Gupta, C.; Jat, S.L.; Parmar, M.S. Crop residue recycling for economic and environmental sustainability: The case of India. Open Agric. 2017, 2, 486–494. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop residue burning in India: Policy challenges and potential solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Listman, M. Alternatives to Burning Can Increase Indian Farmers’ Profits and Cut Pollution, New Study Shows. International Maize and Wheat Improvement Center (CIMMYT). 2019. Available online: https://www.cimmyt.org/news/alternatives-to-burning-can-increase-indian-farmers-profits-and-cut-pollution-new-study-shows/ (accessed on 4 February 2022).
- Safi, M. Indian Government Declares Delhi Air Pollution an Emergency. The Guardian, 6 November 2016. [Google Scholar]
- Mishra, M. Poison in the air: Declining air quality in India. Lung India 2019, 36, 160–161. [Google Scholar] [CrossRef]
- Singh, R.P. Impacts of stubble burning on ambient air quality of a critically polluted area–Mandi-Gobindgarh. Omi. Int. 2015, 3, 1000135. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kumar, S.; Sharma, D.; Singh, R.P.; Kharol, S.K.; Sharma, M.; Singh, A.K.; Singh, S.; Singh, A.; Singh, D. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over Northern India: Effects of crop residue burning. J. Geophy. Res.-Atmos. 2014, 119, 5424–5444. [Google Scholar] [CrossRef]
- Landrigan, P.P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, P.N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The lancet commission on pollution and health. Lancet 2018, 391, 10119. [Google Scholar] [CrossRef] [Green Version]
- Abdurrahman, M.I.; Chaki, S.; Saini, G. Stubble burning: Effects on health & environment, regulations and management practices. Environ. Adv. 2020, 2, 100011. [Google Scholar] [CrossRef]
- Venkatramanan, V.; Shah, S.; Rai, A.K.; Prasad, R. Nexus Between Crop Residue Burning, Bioeconomy and Sustainable Development Goals Over. Front. Energy Res. 2021, 8, 614212. [Google Scholar] [CrossRef]
- Mohite, J.; Sawant, S.; Pandit, A.; Pappula, S. Impact of lockdown and crop stubble burning on air quality of India: A case study from wheat-growing region. Environ. Monit. Assess. 2022, 194, 77. [Google Scholar] [CrossRef] [PubMed]
- Chawala, P.; Sandhu, H.A.S. Stubble burn area estimation and its impact on ambient air quality of Patiala & Ludhiana district, Punjab, India. Heliyon 2020, 6, e03095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, B.P.; Sinha, V. Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide. Environ. Int. 2016, 88, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Tipayarom, A.; Oanh, N.T.K. Influence of rice straw open burning on levels and profiles of semi-volatile organic compounds in ambient air. Chemosphere 2020, 243, 125379. [Google Scholar] [CrossRef]
- Health Effects Institute (HEI). Burden of Disease Attributable to Major Air Pollution Sources in India; Health Effects Institute: Boston, MA, USA, 2018. [Google Scholar]
- Ghosh, S.; Voigt, J.; Wynne, T.; Nelson, T. Developing an In-House Biological Safety Cabinet Certification Program at the University of North Dakota. Appl. Biosaf. 2019, 24, 153–160. [Google Scholar] [CrossRef]
- Pandey, R.; Kedia, S.; Malhotra, A. Addressing Air Quality Spurts due to Crop Stubble Burning during COVID-19 Pandemic: A Case of Punjab. 2020, pp. 1–26. Available online: https://www.teriin.org/research-paper/addressing-air-quality-spurts-due-crop-stubble-burning-during-covid19-pandemic-case (accessed on 18 February 2022).
- Chen, K.; Wang, M.; Huang, C.; Kinney, P.L.; Anastas, P.T. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. Lancet 2020, 4, E210–E212. [Google Scholar] [CrossRef]
- Singh, Y.; Jat, M.L.; Sidhu, H.S.; Singh, P.; Varma, A. Policy Brief to Reduce Air Pollution Caused by Rice Crop Residue Burning. NAAS. Policy Brief no.2; National Academy of Agriculture (NAAS): Delhi, India, 2017; p. 16. [Google Scholar]
- Chakrabarti, S.; Khan, M.T.; Kishore, A.; Roy, D.; Scott, S.P. Risk of acute respiratory infection from crop burning in India: Estimating disease burden and economic welfare from satellite and national health survey data for 250 000 persons. Int. J. Epidemiol. 2019, 48, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P. Energy Generation by Use of Crop Stubble in Punjab. In Climate Change Challenge (3C) and Social-Economic-Ecological Interface-Building; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 507–518. ISBN 978-3-319-31013-8. [Google Scholar]
- Karampinis, E.; Kourkoumpas, D.-S.; Grammelis, P.; Kakaras, E. New power production options for biomass and cogeneration. Wiley Interdiscip. Rev. Energy Environ. 2015, 4, 471–485. [Google Scholar] [CrossRef]
- IEA. Outlook for Biogas and Biomethane. Prospects for Organic Growth. World Energy Outlook Special Report. 2020, p. 93. Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth (accessed on 20 January 2022).
- Koornneef, J.; Van Breevoort, P.; Noothout, P.; Hendriks, C.; Luning, L.; Camps, A. Global potential for biomethane production with carbon capture, transport and storage up to 2050. Energy Procedia 2013, 37, 6043–6052. [Google Scholar] [CrossRef] [Green Version]
- Ardolino, F.; Cardamone, G.F.; Parillo, F.; Arena, U. Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective. Renew. Sustain. Energy Rev. 2021, 139, 110588. Available online: https://www.sciencedirect.com/science/article/pii/S1364032120308728 (accessed on 4 February 2022). [CrossRef]
- Zavarkó, M.; Imre, A.R.; Pörzse, G.; Csedő, Z. Past, present and near future: An overview of closed, running and planned biomethanation facilities in Europe. Energies 2021, 14, 5591. [Google Scholar] [CrossRef]
- Sterner, M.; Specht, M. Power-to-gas and power-to-x—The history and results of developing a new storage concept. Energies 2021, 14, 6594. [Google Scholar] [CrossRef]
- Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Mittal, S.; Ahlgren, O.; Erik, R.; Shukla, P. Future biogas resource potential in India: A bottom-up analysis. Renew. Energy 2019, 141, 379–389. [Google Scholar] [CrossRef]
- Mittal, S.; Ahlgren, E.O.; Shukla, P.R. Barriers to biogas dissemination in India: A review. Energy Policy 2018, 112, 361–370. [Google Scholar] [CrossRef]
- Misri, B. Hay and Crop Residues in India and Nepal; Food and Agriculture Organization: Rome, Italy, 2016; Available online: http://www.fao.org/docrep/005/x7660e/x7660e0q.htm (accessed on 22 February 2022).
- Victorin, M.; Davidsson, Å.; Wallberg, O. Characterization of Mechanically Pretreated Wheat Straw for Biogas Production. Bioenergy Res. 2020, 13, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Hutňan, M. Maize Silage as Substrate for Biogas Production. In Advances in Silage Production and Utilization; IntechOpen: London, UK, 2016. [Google Scholar]
- Böjti, T.; Kovács, K.L.; Kakuk, B.; Wirth, R.; Rákhely, G.; Bagi, Z. Pretreatment of poultry manure for efficient biogas production as monosubstrate or co-fermentation with maize silage and corn stover. Anaerobe 2017, 46, 138–145. [Google Scholar] [CrossRef]
- Dahunsi, S.O.; Oranusi, S.; Owolabi, J.B.; Efeovbokhan, V.E. Synergy of Siam weed (Chromolaena odorata) and poultry manure for energy generation: Effects of pretreatment methods, modeling and process optimization. Bioresour. Technol. 2017, 225, 409–417. [Google Scholar] [CrossRef]
- Søndergaard, M.M.; Fotidis, I.A.; Kovalovszki, A.; Angelidaki, I. Anaerobic co-digestion of agricultural by-products with manure, for enhanced biogas production. Energy Fuels 2015, 29, 8088–8094. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.R.; Schleder, A.M.; Droguett, E.L. A Methodology for Risk Analysis Based on Hybrid Bayesian Networks: Application to the Regasification System of Liquefied Natural Gas Onboard a Floating Storage and Regasification Unit. Risk Anal. 2014, 34, 2098–2120. [Google Scholar] [CrossRef]
- Kouzi, A.I.; Puranen, M.; Kontro, M.H. Evaluation of the factors limiting biogas production in full-scale processes and increasing the biogas production efficiency. Environ. Sci. Pollut. Res. 2020, 27, 28155–28168. [Google Scholar] [CrossRef] [PubMed]
- Thamsiriroj, T.; Nizami, A.S.; Murphy, J.D. Why does mono-digestion of grass silage fail in long term operation? Appl. Energy 2012, 95, 64–76. [Google Scholar] [CrossRef]
- Sträuber, H.; Bühligen, F.; Kleinsteuber, S.; Nikolausz, M.; Porsch, K. Improved anaerobic fermentation of wheat straw by alkaline pre-treatment and addition of alkali-tolerant microorganisms. Bioengineering 2015, 2, 66–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biernacki, P.; Steinigeweg, S.; Borchert, A.; Uhlenhut, F. Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine. Bioresour. Technol. 2013, 127, 188–194. [Google Scholar] [CrossRef]
- Misevičius, A.B.P. Experimental investigation of biogas production using biodegradable municipal waste. J. Environ. Enginee L. Manag. 2011, 19, 167–177. [Google Scholar]
- Barrera, E.L.; Spanjers, H.; Solon, K.; Amerlinck, Y.; Nopens, I.; Dewulf, J. Modeling the anaerobic digestion of cane-molasses vinasse: Extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. Water Res. 2015, 71, 42–54. [Google Scholar] [CrossRef]
- Hassam, S.; Ficara, E.; Leva, A.; Harmand, J. A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1). Biochem. Eng. J. 2015, 99, 193–203. [Google Scholar] [CrossRef]
- Fezzani, B.; Cheikh, R.B. Implementation of IWA anaerobic digestion model No. 1 (ADM1) for simulating the thermophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a semi-continuous tubular digester. Chem. Eng. J. 2008, 141, 75–88. [Google Scholar] [CrossRef]
- Satpathy, P.; Biernacki, P.; Cypionka, H.; Steinigeweg, S. Modelling anaerobic digestion in an industrial biogas digester: Application of lactate-including ADM1 model (Part II). J. Environ. Sci. Health 2016, 51, 1226–1232. [Google Scholar] [CrossRef]
- Keil, A.; Krishnapriya, P.P.; Mitra, A.; Jat, M.L.; Sidhu, H.S.; Krishna, V.V.; Shyamsundar, P. Changing agricultural stubble burning practices in the Indo-Gangetic plains: Is the Happy Seeder a profitable alternative? J. Agric. Sustain. 2021, 19, 128–151. [Google Scholar] [CrossRef]
- Alexaki, K.J.N.; van den Hof, M. From Burning to Buying: Creating a Circular Production Chain Out of Left-Over Crop. 2019. Available online: https://www.rvo.nl/sites/default/files/2019/12/MVO-Nederland-rapport-India.pdf (accessed on 22 February 2022).
- Obileke, K.C.; Mamphweli, S.; Meyer, E.L.; Makaka, G.; Nwokolo, N. Development of a mathematical model and validation for methane production using cow dung as substrate in the underground biogas digester. Processes 2021, 9, 643. [Google Scholar] [CrossRef]
- Manjusha, C.; Beevi, B.S. Mathematical Modeling and Simulation of Anaerobic Digestion of Solid Waste. Procedia Technol. 2016, 24, 654–660. [Google Scholar] [CrossRef] [Green Version]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.; Siegrist, H.; Vavilin, V.A. Anaerobic Digestion Model No. 1; IWA Publishing: London, UK, 2002. [Google Scholar]
- Schoen, M.A.; Sperl, D.; Gadermaier, M.; Goberna, M.; Franke-Whittle, I.; Insam, H.; Ablinger, J.; Wett, B. Population dynamics at digester overload conditions. Bioresour. Technol. 2009, 100, 5648–5655. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, G.; Gavala, H.N.; Skiadas, I.V.; Lyberatos, G. ADM1-based modeling of methane production from acidified sweet sorghum extract in a two stage process. Bioresour. Technol. 2012, 106, 10–19. [Google Scholar] [CrossRef]
- Biernacki, P.; Steinigeweg, S.; Borchert, A.; Uhlenhut, F.; Brehm, A. Application of Anaerobic Digestion Model No. 1 for describing an existing biogas power plant. Biomass Bioenergy 2013, 59, 441–447. [Google Scholar] [CrossRef]
- Wett, B.; Schoen, M.; Phothilangka, P.; Wackerle, F.; Insam, H. Model-based design of an agricultural biogas plant: Application of Anaerobic digestion model No. 1 for an improved four chamber scheme. Water Sci. Technol. 2007, 55, 21–28. [Google Scholar] [CrossRef]
- Satpathy, P.; Biernacki, P.; Uhlenhut, F.; Cypionka, H.; Steinigeweg, S. Modelling anaerobic digestion in a biogas reactor: ADM1 model development with lactate as an intermediate (Part I). J. Environ. Sci. Health 2016, 51, 1216–1225. [Google Scholar] [CrossRef]
- Choi, Y.; Ryu, J.; Lee, S.R. Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J. Anim. Sci. Technol. 2020, 62, 74–83. [Google Scholar] [CrossRef] [Green Version]
- The Math Works. MATLAB—Optimization ToolboxTM 6, User’s Guide. Natick, MA, USA. Available online: https://in.mathworks.com/company/newsroom/mathworks-announces-release-2013b-of-the-matlab-and-simulink-product-families.html (accessed on 3 February 2022).
- Satpathy, P. Influence of Lactate in Anaerobic Digestion and in the Anaerobic Digestion Model No. 1 (ADM1); Carl von Ossietzky: Oldenburg, Germany, 2016. [Google Scholar]
- NPMCR. National Policy for Management of Crop Residues. Gov. India Nat. Resour. Manag. Div. 2014. Available online: http://agricoop.nic.in/sites/default/files/NPMCR_1.pdf (accessed on 2 February 2022).
- Air Quality Life Index. Delhi Air Pollution: Stubble Burning Share in City’s Pollution Rises to 42%. Chicago 2020. Available online: https://aqli.epic.uchicago.edu/news/delhi-air-pollution-stubble-burning-share-in-citys-pollution-rises-to-42/ (accessed on 2 February 2022).
- BBC. Stubble Burning: Why It Continues to Smother North India. BBC Asia, 30 November 2020. [Google Scholar]
- Katuwal, H.; Bohara, A.K. Biogas: A promising renewable technology and its impact on rural households in Nepal. Renew. Sustain. Energy Rev. 2009, 13, 2668–2674. [Google Scholar] [CrossRef]
- Suhartini, S.; Lestari, Y.P.; Nurika, I. Estimation of methane and electricity potential from canteen food waste. IOP Conf. Ser. Earth Environ. Sci. 2019, 230. [Google Scholar] [CrossRef]
- Renwable Gas Association of India Developing Biogas: Towards a Greener Future. Available online: http://www.rgaoi.com/ (accessed on 3 February 2022).
- Ghosh, N. Punjab Cabinet Approves IOCL’s Proposal to Set Up Compressed Biogas Plant. Hindustan Times, 17 December 2020. [Google Scholar]
- Nevzorova, T.; Kutcherov, V. Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strateg. Rev. 2019, 26, 100414. [Google Scholar] [CrossRef]
- Pfau, S.F.; Hagens, J.E.; Dankbaar, B. Biogas between renewable energy and bio-economy policies—Opportunities and constraints resulting from a dual role. Energy Sustain. Soc. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Krich, K.; Augenstein, D.; Batmale, J.; Rutledge, B.; Salour, D. Biomethane from Dairy Waste. In A Sourcebook for the Production and Use of Renewable Natural Gas; 2005; Available online: https://escholarship.org/uc/item/35k1861z (accessed on 20 January 2022).
- Tsegaye, B.; Balomajumder, C.; Roy, P. Biodelignification and hydrolysis of rice straw by novel bacteria isolated from wood feeding termite. 3 Biotech 2018, 8, 447. [Google Scholar] [CrossRef] [PubMed]
- Kataki, S.; Hazarika, S.; Baruaha, D.C. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient. Waste Manag. 2017, 59, 102–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, N.; Liu, S.; Xin, F.; Zhou, J.; Jia, H.; Xu, J.; Jiang, M.; Dong, W. Biomethane production from lignocellulose: Biomass recalcitrance and its impacts on anaerobic digestion. Front. Bioeng. Biotechnol. 2019, 7, 191. [Google Scholar] [CrossRef] [PubMed]
Parameter % | Rice Straw a | Animal Manure c | Wheat Straw d | Maize Stalk | Sugarcane Straw g | Cotton Stalk h |
---|---|---|---|---|---|---|
Dry Matter (DM) | 93.63 a | 9 | 91.4 | 94.30 e | 76.7 | 94.3 |
Organic Dry Matter (ODM) | 69.38 a | 80 | 91.1 | 76.15 e | 86.3 | 95.1 |
Raw Protein | 4.62 b | 0.74 | 63.0 | 3.60 f | 27.7 | 6.1 |
Raw Lipid | 40.63 b | 0.17 | 16.8 | 0.52 f | 9.18 | 1.67 |
Raw Fibre | 39.95 b | 1.15 | 79.85 | 78.5 f | 70 | 88.5 |
Inert fraction | 0.3 a | 0.5 | 0.08 | 13.57 f | 15 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satpathy, P.; Pradhan, C. Biomethanation of Crop Residues to Combat Stubble Burning in India: Design and Simulation Using ADM1 Mathematical Model. Methane 2022, 1, 125-138. https://doi.org/10.3390/methane1020011
Satpathy P, Pradhan C. Biomethanation of Crop Residues to Combat Stubble Burning in India: Design and Simulation Using ADM1 Mathematical Model. Methane. 2022; 1(2):125-138. https://doi.org/10.3390/methane1020011
Chicago/Turabian StyleSatpathy, Preseela, and Chinmay Pradhan. 2022. "Biomethanation of Crop Residues to Combat Stubble Burning in India: Design and Simulation Using ADM1 Mathematical Model" Methane 1, no. 2: 125-138. https://doi.org/10.3390/methane1020011
APA StyleSatpathy, P., & Pradhan, C. (2022). Biomethanation of Crop Residues to Combat Stubble Burning in India: Design and Simulation Using ADM1 Mathematical Model. Methane, 1(2), 125-138. https://doi.org/10.3390/methane1020011