We extend the Quantum Memory Matrix (QMM) framework—previously shown to unify gauge interactions and reproduce cold dark matter phenomenology—to account for the observed late-time cosmic acceleration. In QMM, each Planck-scale cell carries a finite-dimensional Hilbert space of quantum imprints. We show that (1)
[...] Read more.
We extend the Quantum Memory Matrix (QMM) framework—previously shown to unify gauge interactions and reproduce cold dark matter phenomenology—to account for the observed late-time cosmic acceleration. In QMM, each Planck-scale cell carries a finite-dimensional Hilbert space of quantum imprints. We show that (1) once local unitary evolution saturates the available micro-states, a uniform residual “vacuum-imprint energy” remains; its stress–energy tensor is of pure cosmological-constant form, with magnitude suppressed by the cell capacity, naturally yielding
; and (2) if imprint writes continue but are overdamped by cosmic expansion, the coarse-grained entropy field
undergoes slow-roll evolution, generating an effective equation of state
that is testable by DESI,
Euclid, and Roman. We derive the modified Friedmann equations, linear perturbations, and joint constraints from Planck 2018, BAO, and Pantheon +, finding that the QMM imprint model reproduces the observed TT, TE, and EE spectra without introducing additional free parameters and alleviates the
tension while remaining consistent with the large-scale structure. In this picture, dark matter and dark energy arise as gradient-dominated and potential-dominated limits of the same underlying information field, completing the QMM cosmological sector with predictive power and internal consistency.
Full article