Low-Voltage Ride through Capability Augmentation of DFIG-Based Wind Farms Using Series-Parallel Resonance-Type Fault Current Limiter
Abstract
:1. Introduction
2. Series-Parallel Resonance-Type Fault Current Limiter (SPRFCL)
2.1. Architecture
2.2. Mathematical Model
2.3. Working Principle and Control Strategy
3. Comparison with Existing FCLs
3.1. Capacitive Bridge-Type Fault Current Limiter (CBFCL)
3.2. Parallel Resonance-Type Fault Current Limiter (PRFCL)
4. Study System Configuration
4.1. Modeling of the Wind Turbine
4.2. Modeling of the DFIG
5. Performance Evaluation of the Proposed SPRFCL
5.1. Graphical Analysis: Symmetrical Fault
5.2. Graphical Analysis: Asymmetrical Fault
5.3. Index-Based Analysis
5.4. Total Harmonic Distortion (THD) Analysis
5.5. Subsynchronous Resonance (SSR) Analysis
5.6. Power Consumption across the FCLs
5.7. Performance Comparison with Conventional LVRT Techniques
6. Economic Viewpoint of the Application of the SPRFCL
7. Conclusions
- The SPRFCL assures better overall voltage, current, power, speed, and torque profiles of the DFIG for both symmetrical and asymmetrical faults. The SPRFCL assures less perturbations in every response and provided better damping so as to make the settling time of each responses the lowest.
- The SPRFCL scores the lowest in index-based analysis, indicating lower deviation in system responses. The SPRFCL has improved the PCC voltage by 87.79%, when compared to the voltage profile without any FCL during a symmetrical fault. The PRFCL and CBFCL have improvements of 78.36% and 71.47%, respectively, which are much lower than that of the SPRFCL. Similarly, the SPRFCL guarantees the highest improvement in PCC voltage during an asymmetrical fault as well, scoring 16.74% more than the PRFCL and 17.54% more than the CBFCL.
- Better THD profiles and more reliable transient SSR responses are observed with the SPRFCL.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DFIG | Doubly fed induction generator |
FCL | Fault current limiter |
LVRT | Low-voltage ride-through capability |
WF | Wind farm |
DG | Distributed generator |
PCC | Point of common coupling |
RSC | Rotor side converter |
GSC | Grid side converter |
THD | Total harmonic distortion |
SSR | Subsynchronous resonance |
CBFCL | Capacitive bridge-type fault current limiter |
PRFCL | Parallel resonance-type fault current limiter |
Appendix A
Parameter | Value |
---|---|
Rated power | 2 MW |
Rated voltage | 575 V |
DC-link nominal voltage | 1150 V |
DC-link capacitance value | 10,000 F |
Wind speed | 15 ms |
Frequency | 60 Hz |
Resistance of stator | 0.023 pu |
Magnetizing inductance | 2.9 pu |
Leakage inductance of stator | 0.18 pu |
Inertia constant | 0.685 |
Leakage inductance of wound rotor | 0.16 pu |
Wound rotor resistance | 0.016 pu |
Friction factor | 0.01 |
References
- Haque, M.Y.Y.U.; Islam, M.R.; Hasan, J.; Sheikh, M.R.I. Negative Imaginary Theory-Based Proportional Resonant Controller for Voltage Control of Three-Phase Islanded Microgrid. J. Control Autom. Electr. Syst. 2021, 32, 214–226. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Das, K.; Cutululis, N.A.; Molina-García, Á. Offshore wind power integration into future power systems: Overview and trends. J. Mar. Sci. Eng. 2019, 7, 399. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, R.; Peña, R.; Alepuz, S.; Asher, G. Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans. Ind. Electron. 2013, 60, 2776–2798. [Google Scholar] [CrossRef]
- Islam, M.R.; Hasan, J.; Shipon, M.R.R.; Sadi, M.A.H.; Abuhussein, A.; Roy, T.K. Neuro Fuzzy Logic Controlled Parallel Resonance Type Fault Current Limiter to Improve the Fault Ride Through Capability of DFIG Based Wind Farm. IEEE Access 2020, 8, 115314–115334. [Google Scholar] [CrossRef]
- Uddin, W.; Zeb, K.; Tanoli, A.; Haider, A. Hardware-based hybrid scheme to improve the fault ride through capability of doubly fed induction generator under symmetrical and asymmetrical fault. IET Gener. Transm. Distrib. 2017, 12, 200–206. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, Z.; Wu, X.; Deng, F. Virtual damping flux-based LVRT control for DFIG-based wind turbine. IEEE Trans. Energy Convers. 2015, 30, 714–725. [Google Scholar] [CrossRef]
- Mahdianpoor, M.; Kiyoumarsi, A.; Ataei, M.; Hooshmand, R.A. Robust implementation of distribution static compensator along with bridge type fault current limiter for fault ride through enhancement of fixed speed wind turbines. IEEE Access 2017, 5, 14490–14501. [Google Scholar] [CrossRef]
- Zhu, D.; Zou, X.; Deng, L.; Huang, Q.; Zhou, S.; Kang, Y. Inductance-emulating control for DFIG-based wind turbine to ride-through grid faults. IEEE Trans. Power Electron. 2016, 32, 8514–8525. [Google Scholar] [CrossRef]
- Firouzi, M.; Gharehpetian, G.B. LVRT performance enhancement of DFIG-based wind farms by capacitive bridge-type fault current limiter. IEEE Trans. Sustain. Energy 2017, 9, 1118–1125. [Google Scholar] [CrossRef]
- Islam, M.R.; Upadhay, A.D.; Roy, T.K.; Hasan, J.; Mahmud, M.A. Nonlinear backstepping controller design for bridge-type fault current limiter to enhance the transient performance of hybrid power systems. Int. Trans. Electr. Energy Syst. 2021, e13097. [Google Scholar] [CrossRef]
- Rashid, G.; Ali, M.H. Fault ride through capability improvement of DFIG based wind farm by fuzzy logic controlled parallel resonance fault current limiter. Electr. Power Syst. Res. 2017, 146, 1–8. [Google Scholar] [CrossRef]
- Morren, J.; De Haan, S.W. Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip. IEEE Trans. Energy Convers. 2005, 20, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Pannell, G.; Zahawi, B.; Atkinson, D.J.; Missailidis, P. Evaluation of the performance of a DC-link brake chopper as a DFIG low-voltage fault-ride-through device. IEEE Trans. Energy Convers. 2013, 28, 535–542. [Google Scholar] [CrossRef]
- Moon, W.S.; Won, J.N.; Huh, J.S.; Kim, J.C. A study on the application of a superconducting fault current limiter for energy storage protection in a power distribution system. IEEE Trans. Appl. Supercond. 2013, 23, 5603404. [Google Scholar] [CrossRef]
- Truong, D.N.; Ngo, V.T. Designed damping controller for SSSC to improve stability of a hybrid offshore wind farms considering time delay. Int. J. Electr. Power Energy Syst. 2015, 65, 425–431. [Google Scholar] [CrossRef]
- Yang, J.; Fletcher, J.E.; O’Reilly, J. A series-dynamic-resistor-based converter protection scheme for doubly-fed induction generator during various fault conditions. IEEE Trans. Energy Convers. 2010, 25, 422–432. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Truong, D.N. Stability Enhancement of DFIG-Based Offshore Wind Farm Fed to a Multi-Machine System Using a STATCOM. IEEE Trans. Power Syst. 2013, 28, 2882–2889. [Google Scholar] [CrossRef]
- Firouzi, M.; Gharehpetian, G.B.; Mozafari, B. Power-flow control and short-circuit current limitation of wind farms using unified interphase power controller. IEEE Trans. Power Deliv. 2016, 32, 62–71. [Google Scholar] [CrossRef]
- Okedu, K.; Muyeen, S.; Takahashi, R.; Tamura, J. Comparative study between two protection schemes for DFIG-based wind generator. In Proceedings of the 2010 International Conference on Electrical Machines and Systems, IEEE, Incheon, Korea, 10–13 October 2010; pp. 62–67. [Google Scholar]
- Salles, M.; Cardoso, J.; Grilo, A.; Rahmann, C.; Hameyer, K. Control strategies of doubly fed induction generators to support grid voltage. In Proceedings of the 2009 IEEE International Electric Machines and Drives Conference, IEEE, Miami, FL, USA, 3–6 May 2009; pp. 1551–1556. [Google Scholar]
- Islam, M.; Huda, M.; Hasan, J.; Sadi, M.A.H.; AbuHussein, A.; Roy, T.K.; Mahmud, M. Fault Ride Through Capability Improvement of DFIG Based Wind Farm Using Nonlinear Controller Based Bridge-Type Flux Coupling Non-Superconducting Fault Current Limiter. Energies 2020, 13, 1696. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Hasan, J.; Hasan, M.M.; Huda, M.N.; Sadi, M.A.H.; AbuHussein, A. Performance improvement of DFIG-based wind farms using NARMA-L2 controlled bridge-type flux coupling non-superconducting fault current limiter. IET Gener. Transm. Distrib. 2021, 14, 6580–6593. [Google Scholar] [CrossRef]
- Asghar, R. Fault current limiters types, operations and its limitations. Int. J. Sci. Eng. Res. 2018, 9, 1020–1027. [Google Scholar]
- Hasan, J.; Islam, M.R.; Islam, M.R.; Kouzani, A.Z.; Mahmud, M.P. A Capacitive Bridge-Type Superconducting Fault Current Limiter to Improve the Transient Performance of DFIG/PV/SG-Based Hybrid Power System. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Islam, M.R.; Hasan, J.; Islam, M.R.; Kouzani, A.Z.; Mahmud, M.P. Transient Performance Augmentation of DFIG Based Wind Farms by Nonlinear Control of Flux-Coupling-Type Superconducting Fault Current Limiter. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Chen, L.; Chen, H.; Yang, J.; Yu, Y.; Zhen, K.; Liu, Y.; Ren, L. Coordinated control of superconducting fault current limiter and superconducting magnetic energy storage for transient performance enhancement of grid-connected photovoltaic generation system. Energies 2017, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Lee, K.; Ryu, K. A numerical study on temperature increase in the resistive SFCL element due to the quench condition. IEEE Trans. Appl. Supercond. 2006, 16, 636–641. [Google Scholar] [CrossRef]
- Chen, L.; He, H.; Li, G.; Chen, H.; Wang, L.; Chen, X.; Tian, X.; Xu, Y.; Ren, L.; Tang, Y. Study of resistive-type superconducting fault current limiters for a hybrid high voltage direct current system. Materials 2019, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Abir, D.D.; Islam, M.R.; Hasan, J.; Huda, M.N.; Muttaqi, K.M.; Sutanto, D. Enhancement of FRT Capability of DFIG Based Wind Farm by a Hybrid Superconducting Fault Current Limiter With Bias Magnetic Field. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Kerala, India, 2–4 January 2020; pp. 1–6. [Google Scholar]
- Safaei, A.; Zolfaghari, M.; Gilvanejad, M.; Gharehpetian, G.B. A survey on fault current limiters: Development and technical aspects. Int. J. Electr. Power Energy Syst. 2020, 118, 105729. [Google Scholar] [CrossRef]
- Firouzi, M.; Gharehpetian, G. Improving fault ride-through capability of fixed-speed wind turbine by using bridge-type fault current limiter. IEEE Trans. Energy Convers. 2013, 28, 361–369. [Google Scholar] [CrossRef]
- Okedu, K.E.; Muyeen, S.; Takahashi, R.; Tamura, J. Wind farms fault ride through using DFIG with new protection scheme. IEEE Trans. Sustain. Energy 2012, 3, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, T.; Farjah, E.; Zandnia, A. Development of a high-performance bridge-type fault current limiter. IET Gener. Transm. Distrib. 2013, 8, 486–494. [Google Scholar] [CrossRef]
- Rashid, G.; Ali, M.H. A modified bridge-type fault current limiter for fault ride-through capacity enhancement of fixed speed wind generator. IEEE Trans. Energy Convers. 2014, 29, 527–534. [Google Scholar]
- Padmaja, A.; Shanmukh, A.; Mendu, S.S.; Devarapalli, R.; Serrano González, J.; García Márquez, F.P. Design of Capacitive Bridge Fault Current Limiter for Low-Voltage Ride-Through Capacity Enrichment of Doubly Fed Induction Generator-Based Wind Farm. Sustainability 2021, 13, 6656. [Google Scholar] [CrossRef]
- Moghimian, M.M.; Radmehr, M.; Firouzi, M. Series resonance fault current limiter (SRFCL) with MOV for LVRT enhancement in DFIG-based wind farms. Electr. Power Compon. Syst. 2019, 47, 1814–1825. [Google Scholar] [CrossRef]
- Rezaee, M.; Harley, R.G. Resonance-based fault current limiters: Theory, applications, and assessment. IEEE Trans. Ind. Appl. 2018, 54, 3066–3076. [Google Scholar] [CrossRef]
- Naderi, S.B.; Jafari, M.; Hagh, M.T. Parallel-resonance-type fault current limiter. IEEE Trans. Ind. Electron. 2012, 60, 2538–2546. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.K.; Ali, M.H. Transient stability augmentation of PV/DFIG/SG-based hybrid power system by parallel-resonance bridge fault current limiter. Electr. Power Syst. Res. 2016, 130, 89–102. [Google Scholar] [CrossRef]
- Arikan, O.; Kucukaydin, B. A new approach to limit fault current with series–parallel resonance strategy. Electr. Eng. 2020, 102, 1287–1296. [Google Scholar] [CrossRef]
- Tian, X.; Li, G.; Chi, Y.; Wang, W.; Tang, H.; Li, X. Voltage phase angle jump characteristic of DFIGs in case of weak grid connection and grid fault. J. Mod. Power Syst. Clean Energy 2016, 4, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Rashid, G.; Ali, M.H. Transient stability enhancement of doubly fed induction machine-based wind generator by bridge-type fault current limiter. IEEE Trans. Energy Convers. 2015, 30, 939–947. [Google Scholar] [CrossRef]
- Chapman, S.J. Electric Machinery and Power System Fundamentals; McGraw-Hill Science Engineering: New York, NY, USA, 2002. [Google Scholar]
- Morren, J.; De Haan, S.; Bauer, P.; Pierik, J.; Bozelie, J. Comparison of complete and reduced models of a wind turbine with doubly-fed induction generator. In Proceedings of the 10th European Conference on Power Electronics and Applications, EPE, Toulouse, France, 2–4 September 2003; pp. 1–10. [Google Scholar]
- Virulkar, V.; Gotmare, G. Sub-synchronous resonance in series compensated wind farm: A review. Renew. Sustain. Energy Rev. 2016, 55, 1010–1029. [Google Scholar] [CrossRef]
- Golshannavaz, S.; Aminifar, F.; Nazarpour, D. Application of UPFC to enhancing oscillatory response of series-compensated wind farm integrations. IEEE Trans. Smart Grid 2014, 5, 1961–1968. [Google Scholar] [CrossRef]
- Islam, M.R.; Ajom, M.G.; Sheikh, M. Application of DC chopper to augment fault ride through of DFIG based wind turbine. In Proceedings of the 2017 2nd International Conference on Electrical & Electronic Engineering (ICEEE), Rajshahi, Bangladesh, 27–29 December 2017; pp. 1–4. [Google Scholar]
Index Parameters (%) | No FCL | CBFCL | PRFCL | SPRFCL |
---|---|---|---|---|
vlt(pu.s) | 10.330 | 2.947 | 2.235 | 1.313 |
pow(pu.s) | 15.833 | 5.717 | 2.738 | 2.085 |
dclink(pu.s) | 9.023 | 0.149 | 0.120 | 0.053 |
spd(pu.s) | 0.310 | 2.876 | 0.406 | 0.140 |
rtr(pu.s) | 10.807 | 7.230 | 6.188 | 3.375 |
str(pu.s) | 8.591 | 6.802 | 5.579 | 1.377 |
torque(pu.s) | 17.762 | 8.397 | 7.779 | 2.439 |
Index Parameters (%) | No FCL | CBFCL | PRFCL | SPRFCL |
---|---|---|---|---|
vlt(pu.s) | 7.377 | 2.199 | 2.141 | 0.906 |
pow(pu.s) | 10.735 | 4.131 | 3.233 | 1.591 |
dclink(pu.s) | 0.393 | 0.085 | 0.062 | 0.044 |
spd(pu.s) | 1.757 | 0.257 | 0.249 | 0.085 |
rtr(pu.s) | 5.881 | 5.036 | 4.292 | 2.189 |
str(pu.s) | 7.376 | 4.371 | 3.623 | 1.468 |
torque(pu.s) | 15.129 | 7.547 | 6.387 | 2.894 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, M.Y.-Y.U.; Hasan, J.; Islam, M.R.; Islam, M.R. Low-Voltage Ride through Capability Augmentation of DFIG-Based Wind Farms Using Series-Parallel Resonance-Type Fault Current Limiter. Wind 2021, 1, 20-43. https://doi.org/10.3390/wind1010002
Haque MY-YU, Hasan J, Islam MR, Islam MR. Low-Voltage Ride through Capability Augmentation of DFIG-Based Wind Farms Using Series-Parallel Resonance-Type Fault Current Limiter. Wind. 2021; 1(1):20-43. https://doi.org/10.3390/wind1010002
Chicago/Turabian StyleHaque, Md. Yah-Ya Ul, Jakir Hasan, Md. Rashidul Islam, and Md. Rabiul Islam. 2021. "Low-Voltage Ride through Capability Augmentation of DFIG-Based Wind Farms Using Series-Parallel Resonance-Type Fault Current Limiter" Wind 1, no. 1: 20-43. https://doi.org/10.3390/wind1010002