Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Workflow
2.2. Study Area
2.3. Estimation of Energy Yield
2.4. Geographical Restrictions
2.5. Greenhouse Gas Payback Time and Annual GHG Savings
3. Results and Discussion
3.1. Repowerable Sites
3.2. Greenhouse Gas Payback Times of Wind Turbines
3.3. Annual GHG Savings of Wind Turbines
3.4. Annual GHG Savings in the Study Area
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Acronyms | Description |
AEYC,2019 | annual wind energy yield in the study area in 2019 (Wh) |
AEYC,F | future annual wind energy yield in the study area (Wh) |
AEYWT | mean annual wind energy yield at a wind turbine site (Wh) |
AS | annual greenhouse gas savings (gCO2,eq) |
ASC | annual greenhouse gas savings in the study area (gCO2,eq) |
ASWT | annual greenhouse gas savings at a wind turbine site (gCO2,eq) |
d | number of days in a year |
D | rotor diameter (m) |
GGAPM | life cycle greenhouse gas emissions of the power mix benchmark (gCO2,eq) |
GGAWTT | wind turbine type-specific life cycle greenhouse gas emissions (gCO2,eq) |
GPBT | greenhouse gas payback time (month) |
GPBTWT | greenhouse gas payback time at wind turbine sites (month) |
GRC | geographical restriction criterion |
H | total wind turbine height (m) |
hhub | hub height (m) |
LT | wind turbine’s service life (yr) |
n | number of hours |
Pr | rated power (W) |
PWT | wind power (W) |
Uhub | wind speed at hub height (m/s) |
average wind speed at hub height (m/s) | |
WFE | wind farm efficiency |
WTA | wind turbine availability |
WTSC | wind turbine spacing criterion (m) |
Abbreviations | Description |
CORDEX | Coordinated Regional Climate Downscaling Experiment |
ES1-ES4 | emission scenarios 1 to 4 |
GHG | greenhouse gas |
GPBT | greenhouse gas payback time |
LCA | life cycle assessment |
RE | renewable energy |
RCP | Representative Concentration Pathways |
S1–S96 | repowering scenarios 1 to 96 |
WSWS | Wind Speed-Wind Shear model |
WT | wind turbine |
WTT | wind turbine type |
References
- Bhandari, R.; Kumar, B.; Mayer, F. Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors. J. Clean. Prod. 2020, 277, 123385. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, Q.; Zhang, S.; Luo, K. The substitution of wind power for coal-fired power to realize China’s CO2 emissions reduction targets in 2020 and 2030. Energy 2017, 120, 164–178. [Google Scholar] [CrossRef]
- Maennel, A.; Kim, H.G. Comparison of greenhouse gas reduction potential through renewable energy transition in South Korea and Germany. Energies 2018, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Rabaia, M.K.H.; Abdelkareem, M.A.; Chae, K.J.; Olabi, A.G. A critical review on Environmental Impacts of Renewable Energy Systems and Mitigation Strategies: Wind, Hydro, Biomass and Geothermal. Sci. Total Environ. 2021, 766, 144505. [Google Scholar] [CrossRef] [PubMed]
- Sadorsky, P. Wind energy for sustainable development: Driving factors and future outlook. J. Clean. Prod. 2021, 289, 125779. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Liu, J. Life-cycle green-house gas emissions of onshore and offshore wind turbines. J. Clean. Prod. 2019, 210, 804–810. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Pryor, S.C. Potential contribution of wind energy to climate change mitigation. Nat. Clim. Chang. 2014, 4, 684–688. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, C.; Song, X.; Zhou, Y.; Chen, W. The impacts of wind technology advancement on future global energy. Appl. Energy 2016, 183, 1033–1037. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Apostolou, D. Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart. Renew. Energy 2017, 108, 72–84. [Google Scholar] [CrossRef]
- Li, H.; Jiang, H.D.; Dong, K.Y.; Wei, Y.M.; Liao, H. A comparative analysis of the life cycle environmental emissions from wind and coal power: Evidence from China. J. Clean. Prod. 2020, 248, 119192. [Google Scholar] [CrossRef]
- Diógenes, J.R.F.; Rodrigues, J.C.; Diógenes, M.C.F.; Claro, J. Overcoming barriers to onshore wind farm implementation in Brazil. Energy Policy 2020, 138, 111165. [Google Scholar] [CrossRef]
- Arantegui, R.L.; Jäger-Waldau, A. Photovoltaics and wind status in the European Union after the Paris Agreement. Renew. Sustain. Energy Rev. 2018, 81, 2460–2471. [Google Scholar] [CrossRef]
- Ortega-Izquierdo, M.; del Río, P. An analysis of the socioeconomic and environmental benefits of wind energy deployment in Europe. Renew. Energy 2020, 160, 1067–1080. [Google Scholar] [CrossRef]
- Weigt, H. Germany’s wind energy: The potential for fossil capacity replacement and cost saving. Appl. Energy 2009, 86, 1857–1863. [Google Scholar] [CrossRef] [Green Version]
- IPCC (Intergovernmental Panel on Climate Change). Renewable Energy Sources and Climate Mitigation. Special Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/ (accessed on 28 June 2021).
- Wang, Y.; Sun, T. Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies. Renew. Energy 2012, 43, 30–36. [Google Scholar] [CrossRef]
- Dammeier, L.; Loriaux, J.M.; Steinmann, Z.J.N.; Smits, D.A.; van den Hurk, B.; Huijbregts, M.A.J. Space, time, and size dependencies of greenhouse gas payback times of wind turbines in Northwestern Europe. Environ. Sci. Technol. 2019, 53, 9289–9297. [Google Scholar] [CrossRef] [Green Version]
- Nugent, D.; Sovacool, B.K. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey. Energy Policy 2014, 65, 229–244. [Google Scholar] [CrossRef]
- Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S. Impacts of wind energy on environment: A review. Renew. Sustain. Energy Rev. 2015, 49, 437–443. [Google Scholar] [CrossRef]
- Bonou, A.; Laurent, A.; Olsen, S.I. Life cycle assessment of onshore and offshore wind energy-from theory to application. Appl. Energy 2016, 180, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M.; Wachsmann, U. Wind turbines in Brazil and Germany: An example of geographical variability in life-cycle assessment. Appl. Energy 2004, 77, 119–130. [Google Scholar] [CrossRef]
- Amponsah, N.Y.; Troldborg, M.; Kongton, B.; Aalders, I.; Hough, R.L. Greenhouse gas emissions from renewable sources: A review of lifecycle considerations. Renew. Sustain. Energy Rev. 2014, 39, 461–475. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Characterization of the life cycle greenhouse gas emissions from wind electricity generation systems. Int. J. Energy Environ. Eng. 2017, 8, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Wagner, H.J.; Baack, C.; Eickelkamp, T.; Epe, A.; Lohmann, J.; Troy, S. Life cycle assessment of the offshore wind farm alpha ventus. Energy 2011, 36, 2459–2464. [Google Scholar] [CrossRef]
- Yang, J.; Chang, Y.; Zhang, L.; Hao, Y.; Yan, Q.; Wang, C. The life-cycle energy and environmental emissions of a typical offshore wind farm in China. J. Clean. Prod. 2018, 180, 316–324. [Google Scholar] [CrossRef]
- Elshout, P.M.F.; Van Zelm, R.; Balkovic, J.; Obersteiner, M.; Schmid, E.; Skalsky, R.; Van der Velde, M.; Huijbregts, M.A.J. Greenhouse-gas payback times for crop-based biofuels. Nat. Clim. Chang. 2015, 5, 604–610. [Google Scholar] [CrossRef]
- Delarue, E.D.; Luickx, P.J.; D’haeseleer, W.D. The actual effect of wind power on overall electricity generation costs and CO2 emissions. Energy Convers. Manag. 2009, 50, 1450–1456. [Google Scholar] [CrossRef]
- Hernández, C.V.; González, J.S.; Fernández-Blanco, R. New method to assess the long-term role of wind energy generation in reduction of CO2 emissions–case study of the European union. J. Clean. Prod. 2019, 207, 1099–1111. [Google Scholar] [CrossRef]
- UBA (Federal Environment Agency). Emissionsbilanz Erneuerbarer Energieträger. Bestimmung der Verschiedenen Emissionen im Jahr 2018. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-11-07_cc-37-2019_emissionsbilanz-erneuerbarer-energien_2018.pdf (accessed on 16 March 2021). (In German).
- Di Cosmo, V.; Valeri, L.M. How Much Does Wind Power Reduce CO2 Emissions? Evidence from the Irish single electricity market. Environ. Resour. Econ. 2018, 71, 645–669. [Google Scholar] [CrossRef]
- Grau, L.; Jung, C.; Schindler, D. Sounding out the repowering potential of wind energy—A scenario-based assessment from Germany. J. Clean. Prod. 2021, 293, 126094. [Google Scholar] [CrossRef]
- UBA (Federal Environment Agency). Erneuerbare Energie in Deutschland. Daten zur Entwicklung im Jahr 2020. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2021_hgp_erneuerbareenergien_-deutsch_bf.pdf (accessed on 16 March 2021). (In German).
- GWEC (Global Wind Energy Council). Global Wind Report 2021. Available online: https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf (accessed on 9 April 2021).
- Lantz, E.; Leventhal, M.; Baring-Gould, I. Wind Power Project Repowering: Financial Feasibility, Decision Drivers, and Supply Chain Effects; National Renewable Energy Lab (NREL): Golden, CO, USA, 2013. Available online: https://www.nrel.gov/docs/fy14osti/60535.pdf (accessed on 22 August 2020).
- Copernicus. Corine Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 1 June 2020).
- Jung, C.; Schindler, D. Development of a statistical bivariate wind speed-wind shear model (WSWS) to quantify the height-dependent wind resource. Energy Convers. Manag. 2017, 149, 303–317. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D.; Grau, L. Achieving Germany’s wind energy expansion target with an improved wind turbine siting approach. Energy Convers. Manag. 2018, 173, 383–398. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Introducing a new approach for wind energy potential assessment under climate change at the wind turbine scale. Energy Convers. Manag. 2020, 225, 113425. [Google Scholar] [CrossRef]
- Reiner Lemoine Institute (RLU). Wind Turbine Library. Available online: https://openenergy-platform.org/dataedit/view/supply/wind_turbine_library (accessed on 12 May 2021).
- Jung, C.; Schindler, D. The role of air density in wind energy assessment—A case study from Germany. Energy 2019, 171, 385–392. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D.; Laible, J. National and global wind resource assessment under six wind turbine installation scenarios. Energy Convers. Manag. 2018, 156, 403–415. [Google Scholar] [CrossRef]
- Jensen, J.P. Evaluating the environmental impacts of recycling wind turbines. Wind Energy 2019, 22, 316–326. [Google Scholar] [CrossRef]
- Germer, S.; Kleidon, A. Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000–2014? PLoS ONE 2019, 14, e0211028. [Google Scholar] [CrossRef]
- Langer, K.; Decker, T.; Roosen, J.; Menrad, K. Factors influencing citizens’ acceptance and non-acceptance of wind energy in Germany. J. Clean. Prod. 2018, 175, 133–144. [Google Scholar] [CrossRef]
- UBA (Federal Environment Agency). Entwicklung der Spezifischen Kohlendioxid-Emissionen des Deutschen Strommix 1990–2020. Available online: https://www.umweltbundesamt.de/bild/entwicklung-der-spezifischen-kohlendioxid-1 (accessed on 28 June 2021). (In German).
- BMWi (Federal Ministry for Economic Affairs and Energy). Stromerzeugungskapazitäten, Bruttostromerzeugung und Brutto-stromverbrauch Deutschland. Available online: https://www.bmwi.de/Redaktion/DE/Binaer/Energiedaten/Energietraeger/energiedaten-energietraeger-08-xls.xlsx?__blob=publicationFile&v=35 (accessed on 3 July 2021). (In German).
- Reyers, M.; Moemken, J.; Pinto, J.G. Future changes of wind energy potentials over Europe in a large CMIP5 multi-model ensemble. Int. J. Climatol. 2016, 36, 783–796. [Google Scholar] [CrossRef]
- UBA (Federal Environment Agency). Auswirkungen von Mindestabständen Zwischen Windenergieanlagen und Siedlungen. Auswertung im Rahmen der UBA-Studie Flächenanalyse Windenergie an Land. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-03-20_pp_mindestabstaende-windenergieanlagen.pdf (accessed on 28 June 2021). (In German).
- BWE (Bundesverband Wind Energie). Potential of Onshore Wind. Short Version. Available online: https://www.wind-energie.de/fileadmin/redaktion/dokumente/publikationen-oeffentlich/themen/01-mensch-und-umwelt/03-naturschutz/bwe_potenzialstudie_kurzfassung_2012-03.pdf (accessed on 28 June 2021). (In German).
- Masurowski, F.; Drechsler, M.; Frank, K. A spatially explicit assessment of the wind energy potential in response to an increased distance between wind turbines and settlements in Germany. Energy Policy 2016, 97, 343–350. [Google Scholar] [CrossRef]
- Moemken, J.; Reyers, M.; Feldmann, H.; Pinto, J.G. Future changes of wind speed and wind energy potentials in EURO-CORDEX ensemble simulations. J. Geophys. Res. Atmos. 2018, 123, 6373–6389. [Google Scholar] [CrossRef]
- Tobin, I.; Jerez, S.; Vautard, R.; Thais, F.; Van Meijgaard, E.; Prein, A.; Déqué, M.; Kotlarski, S.; Maule, C.F.; Nikulin, G.; et al. Climate change impacts on the power generation potential of a European mid-century wind farms scenario. Environ. Res. Lett. 2016, 11, 034013. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. On the inter-annual variability of wind energy generation—A case study from Germany. Appl. Energy 2018, 230, 845–854. [Google Scholar] [CrossRef]
- Wohland, J.; Omrani, N.E.; Keenlyside, N.; Witthaut, D. Significant multidecadal variability in German wind energy generation. Wind Energy Sci. 2019, 4, 515–526. [Google Scholar] [CrossRef] [Green Version]
- BMU (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety). Klimaschutzplan 2050. Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/klimaschutzplan_2050_bf.pdf (accessed on 1 July 2021). (In German).
- UBA (Federal Environment Agency). Treibhausgasminderungsziele Deutschlands. Available online: https://www.umweltbundesamt.de/daten/klima/treibhausgasminderungsziele-deutschlands (accessed on 28 June 2021). (In German).
WTT | hhub (m) | D (m) | H (m) | AEYWT (GWh) | |
---|---|---|---|---|---|
1 | 2371 | 140 | 97 | 189 | 4.2 |
2 | 3313 | 140 | 120 | 200 | 5.8 |
3 | 4201 | 140 | 134 | 207 | 7.4 |
4 | 9516 | 140 | 164 | 222 | 16.7 |
ES1 [46] | ES2 [47] | ES3 [30] | ES4 [46] | |
---|---|---|---|---|
Year | 2019 | 2019 | 1990 | |
Value | 400 | 650 | 760 | 765 |
Natural Gas | Mineral Oil | Hard Coal | Lignite | Nuclear Energy |
---|---|---|---|---|
499 | 733 | 888 | 1054 | 24.2 |
Scenarios | WTGRC (%) | WTWTSC,RCP4.5 (%) | WTWTSC,RCP8.5 (%) |
---|---|---|---|
S1–S8 | 96.1 | 37.6 | 37.6 |
S9–S16 | 79.1 | 31.9 | 31.9 |
S17–S24 | 39.5 | 16.9 | 16.9 |
S25–S32 | 96.1 | 30.2 | 30.2 |
S33–S40 | 79.1 | 25.6 | 25.6 |
S41–S48 | 34.4 | 12.2 | 12.2 |
S49–S56 | 96.1 | 27.3 | 27.3 |
S57–S64 | 79.1 | 23.2 | 23.3 |
S65–S72 | 32.5 | 10.6 | 10.6 |
S73–S80 | 96.1 | 23.0 | 23.0 |
S81–S88 | 79.1 | 19.6 | 19.6 |
S89–S96 | 28.5 | 8.1 | 8.1 |
Variable | Main Driver | Scenario Element |
---|---|---|
GPBT | GGAWTT | WTT |
GGAPM | ES | |
AEYWT | RCP, WTT | |
ASWT | GGAWTT | WTT |
GGAPM | ES | |
AEYWT | RCP, WTT | |
ASC | GGAWTT | WTT |
GGAPM | ES | |
AEYWT | RCP, WTT | |
WT number | GRC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sander, L.; Jung, C.; Schindler, D. Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany. Wind 2021, 1, 1-19. https://doi.org/10.3390/wind1010001
Sander L, Jung C, Schindler D. Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany. Wind. 2021; 1(1):1-19. https://doi.org/10.3390/wind1010001
Chicago/Turabian StyleSander, Leon, Christopher Jung, and Dirk Schindler. 2021. "Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany" Wind 1, no. 1: 1-19. https://doi.org/10.3390/wind1010001
APA StyleSander, L., Jung, C., & Schindler, D. (2021). Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany. Wind, 1(1), 1-19. https://doi.org/10.3390/wind1010001